The primary role of PL validators is to be called implicitly during
CREATE FUNCTION, but they are also normal functions that a user can call
explicitly. Add a permissions check to each validator to ensure that a
user cannot use explicit validator calls to achieve things he could not
otherwise achieve. Back-patch to 8.4 (all supported versions).
Non-core procedural language extensions ought to make the same two-line
change to their own validators.
Andres Freund, reviewed by Tom Lane and Noah Misch.
Security: CVE-2014-0061
In ordinary operation, VACUUM must be careful to take a cleanup lock on
each leaf page of a btree index; this ensures that no indexscans could
still be "in flight" to heap tuples due to be deleted. (Because of
possible index-tuple motion due to concurrent page splits, it's not enough
to lock only the pages we're deleting index tuples from.) In Hot Standby,
the WAL replay process must likewise lock every leaf page. There were
several bugs in the code for that:
* The replay scan might come across unused, all-zero pages in the index.
While btree_xlog_vacuum itself did the right thing (ie, nothing) with
such pages, xlogutils.c supposed that such pages must be corrupt and
would throw an error. This accounts for various reports of replication
failures with "PANIC: WAL contains references to invalid pages". To
fix, add a ReadBufferMode value that instructs XLogReadBufferExtended
not to complain when we're doing this.
* btree_xlog_vacuum performed the extra locking if standbyState ==
STANDBY_SNAPSHOT_READY, but that's not the correct test: we won't open up
for hot standby queries until the database has reached consistency, and
we don't want to do the extra locking till then either, for fear of reading
corrupted pages (which bufmgr.c would complain about). Fix by exporting a
new function from xlog.c that will report whether we're actually in hot
standby replay mode.
* To ensure full coverage of the index in the replay scan, btvacuumscan
would emit a dummy WAL record for the last page of the index, if no
vacuuming work had been done on that page. However, if the last page
of the index is all-zero, that would result in corruption of said page,
since the functions called on it weren't prepared to handle that case.
There's no need to lock any such pages, so change the logic to target
the last normal leaf page instead.
The first two of these bugs were diagnosed by Andres Freund, the other one
by me. Fixes based on ideas from Heikki Linnakangas and myself.
This has been wrong since Hot Standby was introduced, so back-patch to 9.0.
The backpatch of a95335b544d9c8377e9dc7a399d8e9a155895f82 to 9.2, 9.1
and 9.0 was incomplete, missing changes to xlog.c, primarily the call
to TrimMultiXact(). Testing presumably didn't show a problem without
these changes because TrimMultiXact() performs defense-in-depth work,
which is not strictly necessary.
It also missed moving StartupMultiXact() which would have been
problematic if a restartpoing happened in exactly the wrong moment,
causing a transient error.
Andres Freund
When acquiring a lock in fast-path mode, we must reset the locallock
object's lock and proclock fields to NULL. They are not necessarily that
way to start with, because the locallock could be left over from a failed
lock acquisition attempt earlier in the transaction. Failure to do this
led to all sorts of interesting misbehaviors when LockRelease tried to
clean up no-longer-related lock and proclock objects in shared memory.
Per report from Dan Wood.
In passing, modify LockRelease to elog not just Assert if it doesn't find
lock and proclock objects for a formerly fast-path lock, matching the code
in FastPathGetRelationLockEntry and LockRefindAndRelease. This isn't a
bug but it will help in diagnosing any future bugs in this area.
Also, modify FastPathTransferRelationLocks and FastPathGetRelationLockEntry
to break out of their loops over the fastpath array once they've found the
sole matching entry. This was inconsistently done in some search loops
and not others.
Improve assorted related comments, too.
Back-patch to 9.2 where the fast-path mechanism was introduced.
The previous coding labeled expressions such as pg_index.indkey[1:3] as
being of int2vector type; which is not right because the subscript bounds
of such a result don't, in general, satisfy the restrictions of int2vector.
To fix, implicitly promote the result of slicing int2vector to int2[],
or oidvector to oid[]. This is similar to what we've done with domains
over arrays, which is a good analogy because these types are very much
like restricted domains of the corresponding regular-array types.
A side-effect is that we now also forbid array-element updates on such
columns, eg while "update pg_index set indkey[4] = 42" would have worked
before if you were superuser (and corrupted your catalogs irretrievably,
no doubt) it's now disallowed. This seems like a good thing since, again,
some choices of subscripting would've led to results not satisfying the
restrictions of int2vector. The case of an array-slice update was
rejected before, though with a different error message than you get now.
We could make these cases work in future if we added a cast from int2[]
to int2vector (with a cast function checking the subscript restrictions)
but it seems unlikely that there's any value in that.
Per report from Ronan Dunklau. Back-patch to all supported branches
because of the crash risks involved.
Bug #8591 from Claudio Freire demonstrates that get_eclass_for_sort_expr
must be able to compute valid em_nullable_relids for any new equivalence
class members it creates. I'd worried about this in the commit message
for db9f0e1d9a4a0842c814a464cdc9758c3f20b96c, but claimed that it wasn't a
problem because multi-member ECs should already exist when it runs. That
is transparently wrong, though, because this function is also called by
initialize_mergeclause_eclasses, which runs during deconstruct_jointree.
The example given in the bug report (which the new regression test item
is based upon) fails because the COALESCE() expression is first seen by
initialize_mergeclause_eclasses rather than process_equivalence.
Fixing this requires passing the appropriate nullable_relids set to
get_eclass_for_sort_expr, and it requires new code to compute that set
for top-level expressions such as ORDER BY, GROUP BY, etc. We store
the top-level nullable_relids in a new field in PlannerInfo to avoid
computing it many times. In the back branches, I've added the new
field at the end of the struct to minimize ABI breakage for planner
plugins. There doesn't seem to be a good alternative to changing
get_eclass_for_sort_expr's API signature, though. There probably aren't
any third-party extensions calling that function directly; moreover,
if there are, they probably need to think about what to pass for
nullable_relids anyway.
Back-patch to 9.2, like the previous patch in this area.
If a page is deleted, and reused for something else, just as a search is
following a rightlink to it from its left sibling, the search would continue
scanning whatever the new contents of the page are. That could lead to
incorrect query results, or even something more curious if the page is
reused for a different kind of a page.
To fix, modify the search algorithm to lock the next page before releasing
the previous one, and refrain from deleting pages from the leftmost branch
of the tree.
Add a new Concurrency section to the README, explaining why this works.
There is a lot more one could say about concurrency in GIN, but that's for
another patch.
Backpatch to all supported versions.
Before jamming a desired targetlist into a plan node, one really ought to
make sure the plan node can handle projections, and insert a buffering
Result plan node if not. planagg.c forgot to do this, which is a hangover
from the days when it only dealt with IndexScan plan types. MergeAppend
doesn't project though, not to mention that it gets unhappy if you remove
its possibly-resjunk sort columns. The code accidentally failed to fail
for cases in which the min/max argument was a simple Var, because the new
targetlist would be equivalent to the original "flat" tlist anyway.
For any more complex case, it's been broken since 9.1 where we introduced
the ability to optimize min/max using MergeAppend, as reported by Raphael
Bauduin. Fix by duplicating the logic from grouping_planner that decides
whether we need a Result node.
In 9.2 and 9.1, this requires back-porting the tlist_same_exprs() function
introduced in commit 4387cf956b9eb13aad569634e0c4df081d76e2e3, else we'd
uselessly add a Result node in cases that worked before. It's rather
tempting to back-patch that whole commit so that we can avoid extra Result
nodes in mainline cases too; but I'll refrain, since that code hasn't
really seen all that much field testing yet.
Formerly, when using a SQL-spec timezone setting with a fixed GMT offset
(called a "brute force" timezone in the code), the session_timezone
variable was not updated to match the nominal timezone; rather, all code
was expected to ignore session_timezone if HasCTZSet was true. This is
of course obviously fragile, though a search of the code finds only
timeofday() failing to honor the rule. A bigger problem was that
DetermineTimeZoneOffset() supposed that if its pg_tz parameter was
pointer-equal to session_timezone, then HasCTZSet should override the
parameter. This would cause datetime input containing an explicit zone
name to be treated as referencing the brute-force zone instead, if the
zone name happened to match the session timezone that had prevailed
before installing the brute-force zone setting (as reported in bug #8572).
The same malady could affect AT TIME ZONE operators.
To fix, set up session_timezone so that it matches the brute-force zone
specification, which we can do using the POSIX timezone definition syntax
"<abbrev>offset", and get rid of the bogus lookaside check in
DetermineTimeZoneOffset(). Aside from fixing the erroneous behavior in
datetime parsing and AT TIME ZONE, this will cause the timeofday() function
to print its result in the user-requested time zone rather than some
previously-set zone. It might also affect results in third-party
extensions, if there are any that make use of session_timezone without
considering HasCTZSet, but in all cases the new behavior should be saner
than before.
Back-patch to all supported branches.
If a tuple was frozen while its predicate locks mattered,
read-write dependencies could be missed, resulting in failure to
detect conflicts which could lead to anomalies in committed
serializable transactions.
This field was added to the tag when we still thought that it was
necessary to carry locks forward to a new version of an updated
row. That was later proven to be unnecessary, which allowed
simplification of the code, but elimination of xmin from the tag
was missed at the time.
Per report and analysis by Heikki Linnakangas.
Backpatch to 9.1.
This change will only apply to mingw compilers, and has been found
necessary by late versions of the mingw-w64 compiler. It's the same as
what is done elsewhere for the Microsoft compilers.
Backpatch of commit 73838b5251e.
Problem reported by Michael Cronenworth, although not his patch.
It's possible that inlining of SQL functions (or perhaps other changes?)
has exposed typmod information not known at parse time. In such cases,
Vars generated by query_planner might have valid typmod values while the
original grouping columns only have typmod -1. This isn't a semantic
problem since the behavior of grouping only depends on type not typmod,
but it breaks locate_grouping_columns' use of tlist_member to locate the
matching entry in query_planner's result tlist.
We can fix this without an excessive amount of new code or complexity by
relying on the fact that locate_grouping_columns only gets called when
make_subplanTargetList has set need_tlist_eval == false, and that can only
happen if all the grouping columns are simple Vars. Therefore we only need
to search the sub_tlist for a matching Var, and we can reasonably define a
"match" as being a match of the Var identity fields
varno/varattno/varlevelsup. The code still Asserts that vartype matches,
but ignores vartypmod.
Per bug #8393 from Evan Martin. The added regression test case is
basically the same as his example. This has been broken for a very long
time, so back-patch to all supported branches.
It's possible to drop a column from an input table of a JOIN clause in a
view, if that column is nowhere actually referenced in the view. But it
will still be there in the JOIN clause's joinaliasvars list. We used to
replace such entries with NULL Const nodes, which is handy for generation
of RowExpr expansion of a whole-row reference to the view. The trouble
with that is that it can't be distinguished from the situation after
subquery pull-up of a constant subquery output expression below the JOIN.
Instead, replace such joinaliasvars with null pointers (empty expression
trees), which can't be confused with pulled-up expressions. expandRTE()
still emits the old convention, though, for convenience of RowExpr
generation and to reduce the risk of breaking extension code.
In HEAD and 9.3, this patch also fixes a problem with some new code in
ruleutils.c that was failing to cope with implicitly-casted joinaliasvars
entries, as per recent report from Feike Steenbergen. That oversight was
because of an inadequate description of the data structure in parsenodes.h,
which I've now corrected. There were some pre-existing oversights of the
same ilk elsewhere, which I believe are now all fixed.
In some cases with higher numbers of subtransactions
it was possible for us to incorrectly initialize
subtrans leading to complaints of missing pages.
Bug report by Sergey Konoplev
Analysis and fix by Andres Freund
SP-GiST's original scheme for avoiding deadlocks during concurrent index
insertions doesn't work, as per report from Hailong Li, and there isn't any
evident way to make it work completely. We could possibly lock individual
inner tuples instead of their whole pages, but preliminary experimentation
suggests that the performance penalty would be huge. Instead, if we fail
to get a buffer lock while descending the tree, just restart the tree
descent altogether. We keep the old tuple positioning rules, though, in
hopes of reducing the number of cases where this can happen.
Teodor Sigaev, somewhat edited by Tom Lane
Use the same gcc atomic functions as we do on newer ARM chips.
(Basically this is a copy and paste of the __arm__ code block,
but omitting the SWPB option since that definitely won't work.)
Back-patch to 9.2. The patch would work further back, but we'd also
need to update config.guess/config.sub in older branches to make them
build out-of-the-box, and there hasn't been demand for it.
Mark Salter
This patch gets rid of the concept of, and infrastructure for,
non-canonical PathKeys; we now only ever create canonical pathkey lists.
The need for non-canonical pathkeys came from the desire to have
grouping_planner initialize query_pathkeys and related pathkey lists before
calling query_planner. However, since query_planner didn't actually *do*
anything with those lists before they'd been made canonical, we can get rid
of the whole mess by just not creating the lists at all until the point
where we formerly canonicalized them.
There are several ways in which we could implement that without making
query_planner itself deal with grouping/sorting features (which are
supposed to be the province of grouping_planner). I chose to add a
callback function to query_planner's API; other alternatives would have
required adding more fields to PlannerInfo, which while not bad in itself
would create an ABI break for planner-related plugins in the 9.2 release
series. This still breaks ABI for anything that calls query_planner
directly, but it seems somewhat unlikely that there are any such plugins.
I had originally conceived of this change as merely a step on the way to
fixing bug #8049 from Teun Hoogendoorn; but it turns out that this fixes
that bug all by itself, as per the added regression test. The reason is
that now get_eclass_for_sort_expr is adding the ORDER BY expression at the
end of EquivalenceClass creation not the start, and so anything that is in
a multi-member EquivalenceClass has already been created with correct
em_nullable_relids. I am suspicious that there are related scenarios in
which we still need to teach get_eclass_for_sort_expr to compute correct
nullable_relids, but am not eager to risk destabilizing either 9.2 or 9.3
to fix bugs that are only hypothetical. So for the moment, do this and
stop here.
Back-patch to 9.2 but not to earlier branches, since they don't exhibit
this bug for lack of join-clause-movement logic that depends on
em_nullable_relids being correct. (We might have to revisit that choice
if any related bugs turn up.) In 9.2, don't change the signature of
make_pathkeys_for_sortclauses nor remove canonicalize_pathkeys, so as
not to risk more plugin breakage than we have to.
An oversight in commit e710b65c1c56ca7b91f662c63d37ff2e72862a94 allowed
database names beginning with "-" to be treated as though they were secure
command-line switches; and this switch processing occurs before client
authentication, so that even an unprivileged remote attacker could exploit
the bug, needing only connectivity to the postmaster's port. Assorted
exploits for this are possible, some requiring a valid database login,
some not. The worst known problem is that the "-r" switch can be invoked
to redirect the process's stderr output, so that subsequent error messages
will be appended to any file the server can write. This can for example be
used to corrupt the server's configuration files, so that it will fail when
next restarted. Complete destruction of database tables is also possible.
Fix by keeping the database name extracted from a startup packet fully
separate from command-line switches, as had already been done with the
user name field.
The Postgres project thanks Mitsumasa Kondo for discovering this bug,
Kyotaro Horiguchi for drafting the fix, and Noah Misch for recognizing
the full extent of the danger.
Security: CVE-2013-1899
The pg_start_backup() and pg_stop_backup() functions checked the privileges
of the initially-authenticated user rather than the current user, which is
wrong. For example, a user-defined index function could successfully call
these functions when executed by ANALYZE within autovacuum. This could
allow an attacker with valid but low-privilege database access to interfere
with creation of routine backups. Reported and fixed by Noah Misch.
Security: CVE-2013-1901
formatting.c used locale-dependent case folding rules in some code paths
where the result isn't supposed to be locale-dependent, for example
to_char(timestamp, 'DAY'). Since the source data is always just ASCII
in these cases, that usually didn't matter ... but it does matter in
Turkish locales, which have unusual treatment of "i" and "I". To confuse
matters even more, the misbehavior was only visible in UTF8 encoding,
because in single-byte encodings we used pg_toupper/pg_tolower which
don't have locale-specific behavior for ASCII characters. Fix by providing
intentionally ASCII-only case-folding functions and using these where
appropriate. Per bug #7913 from Adnan Dursun. Back-patch to all active
branches, since it's been like this for a long time.
fmgr_sql had been designed on the assumption that the FmgrInfo it's called
with has only query lifespan. This is demonstrably unsafe in connection
with range types, as shown in bug #7881 from Andrew Gierth. Fix things
so that we re-generate the function's cache data if the (sub)transaction
it was made in is no longer active.
Back-patch to 9.2. This might be needed further back, but it's not clear
whether the case can realistically arise without range types, so for now
I'll desist from back-patching further.
Improve comments, rename some variables and functions, slightly simplify
a couple of APIs, in an attempt to make this code readable by people other
than its original author.
Even though this is essentially just cosmetic, back-patch to all active
branches, because otherwise it's going to make back-patching future fixes
in this file very painful.
When considering a non-last column in a multi-column GiST index,
gistsplit.c tries to improve on the split chosen by the opclass-specific
pickSplit function by considering penalties for the next column. However,
there were two bugs in this code: it failed to recompute the union keys for
the leftmost index columns, even though these might well change after
reassigning tuples; and it included the old union keys in the recomputation
for the columns it did recompute, so that those keys couldn't get smaller
even if they should. The first problem could result in an invalid index
in which searches wouldn't find index entries that are in fact present;
the second would make the index less efficient to search.
Both of these errors were caused by misuse of gistMakeUnionItVec, whose
API was designed in a way that just begged such errors to be made. There
is no situation in which it's safe or useful to compute the union keys for
a subset of the index columns, and there is no caller that wants any
previous union keys to be included in the computation; so the undocumented
choice to treat the union keys as in/out rather than pure output parameters
is a waste of code as well as being dangerous.
Hence, rather than just making a minimal patch, I've changed the API of
gistMakeUnionItVec to remove the "startkey" parameter (it now always
processes all index columns) and treat the attr/isnull arrays as purely
output parameters.
In passing, also get rid of a couple of unnecessary and dangerous uses
of static variables in gistutil.c. It's remarkable that the one in
gistMakeUnionKey hasn't given us portability troubles before now, because
in addition to posing a re-entrancy hazard, it was unsafely assuming that
a static char[] array would have at least Datum alignment.
Per investigation of a trouble report from Tomas Vondra. (There are also
some bugs in contrib/btree_gist to be fixed, but that seems like material
for a separate patch.) Back-patch to all supported branches.
exec_simple_check_plan and exec_eval_simple_expr attempted to call
GetCachedPlan directly. This meant that if an error was thrown during
planning, the resulting context traceback would not include the line
normally contributed by _SPI_error_callback. This is already inconsistent,
but just to be really odd, a re-execution of the very same expression
*would* show the additional context line, because we'd already have cached
the plan and marked the expression as non-simple.
The problem is easy to demonstrate in 9.2 and HEAD because planning of a
cached plan doesn't occur at all until GetCachedPlan is done. In earlier
versions, it could only be an issue if initial planning had succeeded, then
a replan was forced (already somewhat improbable for a simple expression),
and the replan attempt failed. Since the issue is mainly cosmetic in older
branches anyway, it doesn't seem worth the risk of trying to fix it there.
It is worth fixing in 9.2 since the instability of the context printout can
affect the results of GET STACKED DIAGNOSTICS, as per a recent discussion
on pgsql-novice.
To fix, introduce a SPI function that wraps GetCachedPlan while installing
the correct callback function. Use this instead of calling GetCachedPlan
directly from plpgsql.
Also introduce a wrapper function for extracting a SPI plan's
CachedPlanSource list. This lets us stop including spi_priv.h in
pl_exec.c, which was never a very good idea from a modularity standpoint.
In passing, fix a similar inconsistency that could occur in SPI_cursor_open,
which was also calling GetCachedPlan without setting up a context callback.
This ensures that mapping of non-ascii prompts
to the correct code page occurs.
Bug report and original patch from Alexander Law,
reviewed and reworked by Noah Misch.
Backpatch to all live branches.
In situations where there are over 8MB of empty pages at the end of
a table, the truncation work for trailing empty pages takes longer
than deadlock_timeout, and there is frequent access to the table by
processes other than autovacuum, there was a problem with the
autovacuum worker process being canceled by the deadlock checking
code. The truncation work done by autovacuum up that point was
lost, and the attempt tried again by a later autovacuum worker. The
attempts could continue indefinitely without making progress,
consuming resources and blocking other processes for up to
deadlock_timeout each time.
This patch has the autovacuum worker checking whether it is
blocking any other thread at 20ms intervals. If such a condition
develops, the autovacuum worker will persist the work it has done
so far, release its lock on the table, and sleep in 50ms intervals
for up to 5 seconds, hoping to be able to re-acquire the lock and
try again. If it is unable to get the lock in that time, it moves
on and a worker will try to continue later from the point this one
left off.
While this patch doesn't change the rules about when and what to
truncate, it does cause the truncation to occur sooner, with less
blocking, and with the consumption of fewer resources when there is
contention for the table's lock.
The only user-visible change other than improved performance is
that the table size during truncation may change incrementally
instead of just once.
Backpatched to 9.0 from initial master commit at
b19e4250b45e91c9cbdd18d35ea6391ab5961c8d -- before that the
differences are too large to be clearly safe.
Jan Wieck
SPI_execute() and related functions create a CachedPlan, execute it once,
and immediately discard it, so that the functionality offered by
plancache.c is of no value in this code path. And performance measurements
show that the extra data copying and invalidation checking done by
plancache.c slows down simple queries by 10% or more compared to 9.1.
However, enough of the SPI code is shared with functions that do need plan
caching that it seems impractical to bypass plancache.c altogether.
Instead, let's invent a variant version of cached plans that preserves
99% of the API but doesn't offer any of the actual functionality, nor the
overhead. This puts SPI_execute() performance back on par, or maybe even
slightly better, than it was before. This change should resolve recent
complaints of performance degradation from Dong Ye, Pavel Stehule, and
others.
By avoiding data copying, this change also reduces the amount of memory
needed to execute many-statement SPI_execute() strings, as for instance in
a recent complaint from Tomas Vondra.
An additional benefit of this change is that multi-statement SPI_execute()
query strings are now processed fully serially, that is we complete
execution of earlier statements before running parse analysis and planning
on following ones. This eliminates a long-standing POLA violation, in that
DDL that affects the behavior of a later statement will now behave as
expected.
Back-patch to 9.2, since this was a performance regression compared to 9.1.
(In 9.2, place the added struct fields so as to avoid changing the offsets
of existing fields.)
Heikki Linnakangas and Tom Lane
If you take a base backup from a standby server with "pg_basebackup -X
fetch", and the timeline switches while the backup is being taken, the
backup used to fail with an error "requested WAL segment %s has already
been removed". This is because the server-side code that sends over the
required WAL files would not construct the WAL filename with the correct
timeline after a switch.
Fix that by using readdir() to scan pg_xlog for all the WAL segments in the
range, regardless of timeline.
Also, include all timeline history files in the backup, if taken with
"-X fetch". That fixes another related bug: If a timeline switch happened
just before the backup was initiated in a standby, the WAL segment
containing the initial checkpoint record contains WAL from the older
timeline too. Recovery will not accept that without a timeline history file
that lists the older timeline.
Backpatch to 9.2. Versions prior to that were not affected as you could not
take a base backup from a standby before 9.2.
transformExpr() is required to cope with already-transformed expression
trees, for various ugly-but-not-quite-worth-cleaning-up reasons. However,
some of its newer subroutines hadn't gotten the memo. This accounts for
bug #7763 from Norbert Buchmuller: transformRowExpr() was overwriting the
previously determined type of a RowExpr during CREATE TABLE LIKE INCLUDING
INDEXES. Additional investigation showed that transformXmlExpr had the
same kind of problem, but all the other cases seem to be safe.
Andres Freund and Tom Lane
During crash recovery, we remove disk files belonging to temporary tables,
but the system catalog entries for such tables are intentionally not
cleaned up right away. Instead, the first backend that uses a temp schema
is expected to clean out any leftover objects therein. This approach
requires that we be careful to ignore leftover temp tables (since any
actual access attempt would fail), *even if their BackendId matches our
session*, if we have not yet established use of the session's corresponding
temp schema. That worked fine in the past, but was broken by commit
debcec7dc31a992703911a9953e299c8d730c778 which incorrectly removed the
rd_islocaltemp relcache flag. Put it back, and undo various changes
that substituted tests like "rel->rd_backend == MyBackendId" for use
of a state-aware flag. Per trouble report from Heikki Linnakangas.
Back-patch to 9.1 where the erroneous change was made. In the back
branches, be careful to add rd_islocaltemp in a spot in the struct that
was alignment padding before, so as not to break existing add-on code.
This reverts commit c11130690d6dca64267201a169cfb38c1adec5ef in favor of
actually fixing the problem: namely, that we should never have been
modifying the checkpoint record's nextXid at this point to begin with.
The nextXid should match the state as of the checkpoint's logical WAL
position (ie the redo point), not the state as of its physical position.
It's especially bogus to advance it in some wal_levels and not others.
In any case there is no need for the checkpoint record to carry the
same nextXid shown in the XLOG_RUNNING_XACTS record just emitted by
LogStandbySnapshot, as any replay operation will already have adopted
that value as current.
This fixes bug #7710 from Tarvi Pillessaar, and probably also explains bug
#6291 from Daniel Farina, in that if a checkpoint were in progress at the
instant of XID wraparound, the epoch bump would be lost as reported.
(And, of course, these days there's at least a 50-50 chance of a checkpoint
being in progress at any given instant.)
Diagnosed by me and independently by Andres Freund. Back-patch to all
branches supporting hot standby.
The length of a socket path name is constrained by the size of struct
sockaddr_un, and there's not a lot we can do about it since that is a
kernel API. However, it would be a good thing if we produced an
intelligible error message when the user specifies a socket path that's too
long --- and getaddrinfo's standard API is too impoverished to do this in
the natural way. So insert explicit tests at the places where we construct
a socket path name. Now you'll get an error that makes sense and even
tells you what the limit is, rather than something generic like
"Non-recoverable failure in name resolution".
Per trouble report from Jeremy Drake and a fix idea from Andrew Dunstan.
Commit 8cb53654dbdb4c386369eb988062d0bbb6de725e, which introduced DROP
INDEX CONCURRENTLY, managed to break CREATE INDEX CONCURRENTLY via a poor
choice of catalog state representation. The pg_index state for an index
that's reached the final pre-drop stage was the same as the state for an
index just created by CREATE INDEX CONCURRENTLY. This meant that the
(necessary) change to make RelationGetIndexList ignore about-to-die indexes
also made it ignore freshly-created indexes; which is catastrophic because
the latter do need to be considered in HOT-safety decisions. Failure to
do so leads to incorrect index entries and subsequently wrong results from
queries depending on the concurrently-created index.
To fix, make the final state be indisvalid = true and indisready = false,
which is otherwise nonsensical. This is pretty ugly but we can't add
another column without forcing initdb, and it's too late for that in 9.2.
(There's a cleaner fix in HEAD.)
In addition, change CREATE/DROP INDEX CONCURRENTLY so that the pg_index
flag changes they make without exclusive lock on the index are made via
heap_inplace_update() rather than a normal transactional update. The
latter is not very safe because moving the pg_index tuple could result in
concurrent SnapshotNow scans finding it twice or not at all, thus possibly
resulting in index corruption. This is a pre-existing bug in CREATE INDEX
CONCURRENTLY, which was copied into the DROP code.
In addition, fix various places in the code that ought to check to make
sure that the indexes they are manipulating are valid and/or ready as
appropriate. These represent bugs that have existed since 8.2, since
a failed CREATE INDEX CONCURRENTLY could leave a corrupt or invalid
index behind, and we ought not try to do anything that might fail with
such an index.
Also fix RelationReloadIndexInfo to ensure it copies all the pg_index
columns that are allowed to change after initial creation. Previously we
could have been left with stale values of some fields in an index relcache
entry. It's not clear whether this actually had any user-visible
consequences, but it's at least a bug waiting to happen.
In addition, do some code and docs review for DROP INDEX CONCURRENTLY;
some cosmetic code cleanup but mostly addition and revision of comments.
Portions of this need to be back-patched even further, but I'll work
on that separately.
Problem reported by Amit Kapila, diagnosis by Pavan Deolasee,
fix by Tom Lane and Andres Freund.
This reverts commit d573e239f03506920938bf0be56c868d9c3416da, "Take fewer
snapshots". While that seemed like a good idea at the time, it caused
execution to use a snapshot that had been acquired before locking any of
the tables mentioned in the query. This created user-visible anomalies
that were not present in any prior release of Postgres, as reported by
Tomas Vondra. While this whole area could do with a redesign (since there
are related cases that have anomalies anyway), it doesn't seem likely that
any future patch would be reasonably back-patchable; and we don't want 9.2
to exhibit a behavior that's subtly unlike either past or future releases.
Hence, revert to prior code while we rethink the problem.
In a query such as "SELECT DISTINCT min(x) FROM tab", the DISTINCT is
pretty useless (there being only one output row), but nonetheless it
shouldn't fail. But it could fail if "tab" is an inheritance parent,
because planagg.c's code for fixing up equivalence classes after making the
index-optimized MIN/MAX transformation wasn't prepared to find child-table
versions of the aggregate expression. The least ugly fix seems to be
to add an option to mutate_eclass_expressions() to skip child-table
equivalence class members, which aren't used anymore at this stage of
planning so it's not really necessary to fix them. Since child members
are ignored in many cases already, it seems plausible for
mutate_eclass_expressions() to have an option to ignore them too.
Per bug #7703 from Maxim Boguk.
Back-patch to 9.1. Although the same code exists before that, it cannot
encounter child-table aggregates AFAICS, because the index optimization
transformation cannot succeed on inheritance trees before 9.1 (for lack
of MergeAppend).
Most of the replay functions for WAL record types that modify more than
one page failed to ensure that those pages were locked correctly to ensure
that concurrent queries could not see inconsistent page states. This is
a hangover from coding decisions made long before Hot Standby was added,
when it was hardly necessary to acquire buffer locks during WAL replay
at all, let alone hold them for carefully-chosen periods.
The key problem was that RestoreBkpBlocks was written to hold lock on each
page restored from a full-page image for only as long as it took to update
that page. This was guaranteed to break any WAL replay function in which
there was any update-ordering constraint between pages, because even if the
nominal order of the pages is the right one, any mixture of full-page and
non-full-page updates in the same record would result in out-of-order
updates. Moreover, it wouldn't work for situations where there's a
requirement to maintain lock on one page while updating another. Failure
to honor an update ordering constraint in this way is thought to be the
cause of bug #7648 from Daniel Farina: what seems to have happened there
is that a btree page being split was rewritten from a full-page image
before the new right sibling page was written, and because lock on the
original page was not maintained it was possible for hot standby queries to
try to traverse the page's right-link to the not-yet-existing sibling page.
To fix, get rid of RestoreBkpBlocks as such, and instead create a new
function RestoreBackupBlock that restores just one full-page image at a
time. This function can be invoked by WAL replay functions at the points
where they would otherwise perform non-full-page updates; in this way, the
physical order of page updates remains the same no matter which pages are
replaced by full-page images. We can then further adjust the logic in
individual replay functions if it is necessary to hold buffer locks
for overlapping periods. A side benefit is that we can simplify the
handling of concurrency conflict resolution by moving that code into the
record-type-specfic functions; there's no more need to contort the code
layout to keep conflict resolution in front of the RestoreBkpBlocks call.
In connection with that, standardize on zero-based numbering rather than
one-based numbering for referencing the full-page images. In HEAD, I
removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are
still there in the header files in previous branches, but are no longer
used by the code.
In addition, fix some other bugs identified in the course of making these
changes:
spgRedoAddNode could fail to update the parent downlink at all, if the
parent tuple is in the same page as either the old or new split tuple and
we're not doing a full-page image: it would get fooled by the LSN having
been advanced already. This would result in permanent index corruption,
not just transient failure of concurrent queries.
Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old
tail page as a candidate for a full-page image; in the worst case this
could result in torn-page corruption.
heap_xlog_freeze() was inconsistent about using a cleanup lock or plain
exclusive lock: it did the former in the normal path but the latter for a
full-page image. A plain exclusive lock seems sufficient, so change to
that.
Also, remove gistRedoPageDeleteRecord(), which has been dead code since
VACUUM FULL was rewritten.
Back-patch to 9.0, where hot standby was introduced. Note however that 9.0
had a significantly different WAL-logging scheme for GIST index updates,
and it doesn't appear possible to make that scheme safe for concurrent hot
standby queries, because it can leave inconsistent states in the index even
between WAL records. Given the lack of complaints from the field, we won't
work too hard on fixing that branch.
If the sleep is interrupted by a signal, we must recompute the remaining
time to wait; otherwise, a steady stream of non-wait-terminating interrupts
could delay return from WaitLatch indefinitely. This has been shown to be
a problem for the autovacuum launcher, and there may well be other places
now or in the future with similar issues. So we'd better make the function
robust, even though this'll add at least one gettimeofday call per wait.
Back-patch to 9.2. We might eventually need to fix 9.1 as well, but the
code is quite different there, and the usage of WaitLatch in 9.1 is so
limited that it's not clearly important to do so.
Reported and diagnosed by Jeff Janes, though I rewrote his patch rather
heavily.
This case got broken in 8.4 by the addition of an error check that
complains if ALTER TABLE ONLY is used on a table that has children.
We do use ONLY for this situation, but it's okay because the necessary
recursion occurs at a higher level. So we need to have a separate
flag to suppress recursion without making the error check.
Reported and patched by Pavan Deolasee, with some editorial adjustments by
me. Back-patch to 8.4, since this is a regression of functionality that
worked in earlier branches.
In its original conception, it was leaving some objects into the old
schema, but without their proper pg_depend entries; this meant that the
old schema could be dropped, causing future pg_dump calls to fail on the
affected database. This was originally reported by Jeff Frost as #6704;
there have been other complaints elsewhere that can probably be traced
to this bug.
To fix, be more consistent about altering a table's subsidiary objects
along the table itself; this requires some restructuring in how tables
are relocated when altering an extension -- hence the new
AlterTableNamespaceInternal routine which encapsulates it for both the
ALTER TABLE and the ALTER EXTENSION cases.
There was another bug lurking here, which was unmasked after fixing the
previous one: certain objects would be reached twice via the dependency
graph, and the second attempt to move them would cause the entire
operation to fail. Per discussion, it seems the best fix for this is to
do more careful tracking of objects already moved: we now maintain a
list of moved objects, to avoid attempting to do it twice for the same
object.
Authors: Alvaro Herrera, Dimitri Fontaine
Reviewed by Tom Lane
If a potential equivalence clause references a variable from the nullable
side of an outer join, the planner needs to take care that derived clauses
are not pushed to below the outer join; else they may use the wrong value
for the variable. (The problem arises only with non-strict clauses, since
if an upper clause can be proven strict then the outer join will get
simplified to a plain join.) The planner attempted to prevent this type
of error by checking that potential equivalence clauses aren't
outerjoin-delayed as a whole, but actually we have to check each side
separately, since the two sides of the clause will get moved around
separately if it's treated as an equivalence. Bugs of this type can be
demonstrated as far back as 7.4, even though releases before 8.3 had only
a very ad-hoc notion of equivalence clauses.
In addition, we neglected to account for the possibility that such clauses
might have nonempty nullable_relids even when not outerjoin-delayed; so the
equivalence-class machinery lacked logic to compute correct nullable_relids
values for clauses it constructs. This oversight was harmless before 9.2
because we were only using RestrictInfo.nullable_relids for OR clauses;
but as of 9.2 it could result in pushing constructed equivalence clauses
to incorrect places. (This accounts for bug #7604 from Bill MacArthur.)
Fix the first problem by adding a new test check_equivalence_delay() in
distribute_qual_to_rels, and fix the second one by adding code in
equivclass.c and called functions to set correct nullable_relids for
generated clauses. Although I believe the second part of this is not
currently necessary before 9.2, I chose to back-patch it anyway, partly to
keep the logic similar across branches and partly because it seems possible
we might find other reasons why we need valid values of nullable_relids in
the older branches.
Add regression tests illustrating these problems. In 9.0 and up, also
add test cases checking that we can push constants through outer joins,
since we've broken that optimization before and I nearly broke it again
with an overly simplistic patch for this problem.