Commit Graph

1598 Commits

Author SHA1 Message Date
bbe0a81db6 Allow configurable LZ4 TOAST compression.
There is now a per-column COMPRESSION option which can be set to pglz
(the default, and the only option in up until now) or lz4. Or, if you
like, you can set the new default_toast_compression GUC to lz4, and
then that will be the default for new table columns for which no value
is specified. We don't have lz4 support in the PostgreSQL code, so
to use lz4 compression, PostgreSQL must be built --with-lz4.

In general, TOAST compression means compression of individual column
values, not the whole tuple, and those values can either be compressed
inline within the tuple or compressed and then stored externally in
the TOAST table, so those properties also apply to this feature.

Prior to this commit, a TOAST pointer has two unused bits as part of
the va_extsize field, and a compessed datum has two unused bits as
part of the va_rawsize field. These bits are unused because the length
of a varlena is limited to 1GB; we now use them to indicate the
compression type that was used. This means we only have bit space for
2 more built-in compresison types, but we could work around that
problem, if necessary, by introducing a new vartag_external value for
any further types we end up wanting to add. Hopefully, it won't be
too important to offer a wide selection of algorithms here, since
each one we add not only takes more coding but also adds a build
dependency for every packager. Nevertheless, it seems worth doing
at least this much, because LZ4 gets better compression than PGLZ
with less CPU usage.

It's possible for LZ4-compressed datums to leak into composite type
values stored on disk, just as it is for PGLZ. It's also possible for
LZ4-compressed attributes to be copied into a different table via SQL
commands such as CREATE TABLE AS or INSERT .. SELECT.  It would be
expensive to force such values to be decompressed, so PostgreSQL has
never done so. For the same reasons, we also don't force recompression
of already-compressed values even if the target table prefers a
different compression method than was used for the source data.  These
architectural decisions are perhaps arguable but revisiting them is
well beyond the scope of what seemed possible to do as part of this
project.  However, it's relatively cheap to recompress as part of
VACUUM FULL or CLUSTER, so this commit adjusts those commands to do
so, if the configured compression method of the table happens not to
match what was used for some column value stored therein.

Dilip Kumar. The original patches on which this work was based were
written by Ildus Kurbangaliev, and those were patches were based on
even earlier work by Nikita Glukhov, but the design has since changed
very substantially, since allow a potentially large number of
compression methods that could be added and dropped on a running
system proved too problematic given some of the architectural issues
mentioned above; the choice of which specific compression method to
add first is now different; and a lot of the code has been heavily
refactored.  More recently, Justin Przyby helped quite a bit with
testing and reviewing and this version also includes some code
contributions from him. Other design input and review from Tomas
Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander
Korotkov, and me.

Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain
Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 15:10:38 -04:00
be45be9c33 Implement GROUP BY DISTINCT
With grouping sets, it's possible that some of the grouping sets are
duplicate.  This is especially common with CUBE and ROLLUP clauses. For
example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to

  GROUP BY GROUPING SETS (
    (a, b, c),
    (a, b, c),
    (a, b, c),
    (a, b),
    (a, b),
    (a, b),
    (a),
    (a),
    (a),
    (c, a),
    (c, a),
    (c, a),
    (c),
    (b, c),
    (b),
    ()
  )

Some of the grouping sets are calculated multiple times, which is mostly
unnecessary.  This commit implements a new GROUP BY DISTINCT feature, as
defined in the SQL standard, which eliminates the duplicate sets.

Author: Vik Fearing
Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra
Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
2021-03-18 18:22:18 +01:00
05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...".
Parallel SELECT can't be utilized for INSERT in the following cases:
- INSERT statement uses the ON CONFLICT DO UPDATE clause
- Target table has a parallel-unsafe: trigger, index expression or
  predicate, column default expression or check constraint
- Target table has a parallel-unsafe domain constraint on any column
- Target table is a partitioned table with a parallel-unsafe partition key
  expression or support function

The planner is updated to perform additional parallel-safety checks for
the cases listed above, for determining whether it is safe to run INSERT
in parallel-mode with an underlying parallel SELECT. The planner will
consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided
nothing unsafe is found from the additional parallel-safety checks, or
from the existing parallel-safety checks for SELECT.

While checking parallel-safety, we need to check it for all the partitions
on the table which can be costly especially when we decide not to use a
parallel plan. So, in a separate patch, we will introduce a GUC and or a
reloption to enable/disable parallelism for Insert statements.

Prior to entering parallel-mode for the execution of INSERT with parallel
SELECT, a TransactionId is acquired and assigned to the current
transaction state. This is necessary to prevent the INSERT from attempting
to assign the TransactionId whilst in parallel-mode, which is not allowed.
This approach has a disadvantage in that if the underlying SELECT does not
return any rows, then the TransactionId is not used, however that
shouldn't happen in practice in many cases.

Author: Greg Nancarrow, Amit Langote, Amit Kapila
Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila
Tested-by: Tang, Haiying
Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
2021-03-10 07:38:58 +05:30
19890a064e Add option to enable two_phase commits via pg_create_logical_replication_slot.
Commit 0aa8a01d04 extends the output plugin API to allow decoding of
prepared xacts and allowed the user to enable/disable the two-phase option
via pg_logical_slot_get_changes(). This can lead to a problem such that
the first time when it gets changes via pg_logical_slot_get_changes()
without two_phase option enabled it will not get the prepared even though
prepare is after consistent snapshot. Now next time during getting changes,
if the two_phase option is enabled it can skip prepare because by that
time start decoding point has been moved. So the user will only get commit
prepared.

Allow to enable/disable this option at the create slot time and default
will be false. It will break the existing slots which is fine in a major
release.

Author: Ajin Cherian
Reviewed-by: Amit Kapila and Vignesh C
Discussion: https://postgr.es/m/d0f60d60-133d-bf8d-bd70-47784d8fabf3@enterprisedb.com
2021-03-03 07:34:11 +05:30
bb437f995d Add TID Range Scans to support efficient scanning ranges of TIDs
This adds a new executor node named TID Range Scan.  The query planner
will generate paths for TID Range scans when quals are discovered on base
relations which search for ranges on the table's ctid column.  These
ranges may be open at either end. For example, WHERE ctid >= '(10,0)';
will return all tuples on page 10 and over.

To support this, two new optional callback functions have been added to
table AM.  scan_set_tidrange is used to set the scan range to just the
given range of TIDs.  scan_getnextslot_tidrange fetches the next tuple
in the given range.

For AMs were scanning ranges of TIDs would not make sense, these functions
can be set to NULL in the TableAmRoutine.  The query planner won't
generate TID Range Scan Paths in that case.

Author: Edmund Horner, David Rowley
Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu
Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
2021-02-27 22:59:36 +13:00
54e51dcde0 Make ExecGetInsertedCols() and friends more robust and improve comments.
If ExecGetInsertedCols(), ExecGetUpdatedCols() or ExecGetExtraUpdatedCols()
were called with a ResultRelInfo that's not in the range table and isn't a
partition routing target, the functions would dereference a NULL pointer,
relinfo->ri_RootResultRelInfo. Such ResultRelInfos are created when firing
RI triggers in tables that are not modified directly. None of the current
callers of these functions pass such relations, so this isn't a live bug,
but let's make them more robust.

Also update comment in ResultRelInfo; after commit 6214e2b228,
ri_RangeTableIndex is zero for ResultRelInfos created for partition tuple
routing.

Noted by Coverity. Backpatch down to v11, like commit 6214e2b228.

Reviewed-by: Tom Lane, Amit Langote
2021-02-15 09:28:08 +02:00
6214e2b228 Fix permission checks on constraint violation errors on partitions.
If a cross-partition UPDATE violates a constraint on the target partition,
and the columns in the new partition are in different physical order than
in the parent, the error message can reveal columns that the user does not
have SELECT permission on. A similar bug was fixed earlier in commit
804b6b6db4.

The cause of the bug is that the callers of the
ExecBuildSlotValueDescription() function got confused when constructing
the list of modified columns. If the tuple was routed from a parent, we
converted the tuple to the parent's format, but the list of modified
columns was grabbed directly from the child's RTE entry.

ExecUpdateLockMode() had a similar issue. That lead to confusion on which
columns are key columns, leading to wrong tuple lock being taken on tables
referenced by foreign keys, when a row is updated with INSERT ON CONFLICT
UPDATE. A new isolation test is added for that corner case.

With this patch, the ri_RangeTableIndex field is no longer set for
partitions that don't have an entry in the range table. Previously, it was
set to the RTE entry of the parent relation, but that was confusing.

NOTE: This modifies the ResultRelInfo struct, replacing the
ri_PartitionRoot field with ri_RootResultRelInfo. That's a bit risky to
backpatch, because it breaks any extensions accessing the field. The
change that ri_RangeTableIndex is not set for partitions could potentially
break extensions, too. The ResultRelInfos are visible to FDWs at least,
and this patch required small changes to postgres_fdw. Nevertheless, this
seem like the least bad option. I don't think these fields widely used in
extensions; I don't think there are FDWs out there that uses the FDW
"direct update" API, other than postgres_fdw. If there is, you will get a
compilation error, so hopefully it is caught quickly.

Backpatch to 11, where support for both cross-partition UPDATEs, and unique
indexes on partitioned tables, were added.

Reviewed-by: Amit Langote
Security: CVE-2021-3393
2021-02-08 11:01:51 +02:00
f003a7522b Remove [Merge]AppendPath.partitioned_rels.
It turns out that the calculation of [Merge]AppendPath.partitioned_rels
in allpaths.c is faulty and sometimes omits relevant non-leaf partitions,
allowing an assertion added by commit a929e17e5a8 to trigger.  Rather
than fix that, it seems better to get rid of those fields altogether.
We don't really need the info until create_plan time, and calculating
it once for the selected plan should be cheaper than calculating it
for each append path we consider.

The preceding two commits did away with all use of the partitioned_rels
values; this commit just mechanically removes the fields and the code
that calculated them.

Discussion: https://postgr.es/m/87sg8tqhsl.fsf@aurora.ydns.eu
Discussion: https://postgr.es/m/CAJKUy5gCXDSmFs2c=R+VGgn7FiYcLCsEFEuDNNLGfoha=pBE_g@mail.gmail.com
2021-02-01 14:43:54 -05:00
3696a600e2 SEARCH and CYCLE clauses
This adds the SQL standard feature that adds the SEARCH and CYCLE
clauses to recursive queries to be able to do produce breadth- or
depth-first search orders and detect cycles.  These clauses can be
rewritten into queries using existing syntax, and that is what this
patch does in the rewriter.

Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
2021-02-01 14:32:51 +01:00
6aaaa76bb4 Allow GRANTED BY clause in normal GRANT and REVOKE statements
The SQL standard allows a GRANTED BY clause on GRANT and
REVOKE (privilege) statements that can specify CURRENT_USER or
CURRENT_ROLE.  In PostgreSQL, both of these are the default behavior.
Since we already have all the parsing support for this for the
GRANT (role) statement, we might as well add basic support for this
for the privilege variant as well.  This allows us to check off SQL
feature T332.  In the future, perhaps more interesting things could be
done with this, too.

Reviewed-by: Simon Riggs <simon@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/f2feac44-b4c5-f38f-3699-2851d6a76dc9@2ndquadrant.com
2021-01-30 09:45:11 +01:00
b663a41363 Implement support for bulk inserts in postgres_fdw
Extends the FDW API to allow batching inserts into foreign tables. That
is usually much more efficient than inserting individual rows, due to
high latency for each round-trip to the foreign server.

It was possible to implement something similar in the regular FDW API,
but it was inconvenient and there were issues with reporting the number
of actually inserted rows etc. This extends the FDW API with two new
functions:

* GetForeignModifyBatchSize - allows the FDW picking optimal batch size

* ExecForeignBatchInsert - inserts a batch of rows at once

Currently, only INSERT queries support batching. Support for DELETE and
UPDATE may be added in the future.

This also implements batching for postgres_fdw. The batch size may be
specified using "batch_size" option both at the server and table level.

The initial patch version was written by me, but it was rewritten and
improved in many ways by Takayuki Tsunakawa.

Author: Takayuki Tsunakawa
Reviewed-by: Tomas Vondra, Amit Langote
Discussion: https://postgr.es/m/20200628151002.7x5laxwpgvkyiu3q@development
2021-01-20 23:57:27 +01:00
c9d5298485 Re-implement pl/pgsql's expression and assignment parsing.
Invent new RawParseModes that allow the core grammar to handle
pl/pgsql expressions and assignments directly, and thereby get rid
of a lot of hackery in pl/pgsql's parser.  This moves a good deal
of knowledge about pl/pgsql into the core code: notably, we have to
invent a CoercionContext that matches pl/pgsql's (rather dubious)
historical behavior for assignment coercions.  That's getting away
from the original idea of pl/pgsql as an arm's-length extension of
the core, but really we crossed that bridge a long time ago.

The main advantage of doing this is that we can now use the core
parser to generate FieldStore and/or SubscriptingRef nodes to handle
assignments to pl/pgsql variables that are records or arrays.  That
fixes a number of cases that had never been implemented in pl/pgsql
assignment, such as nested records and array slicing, and it allows
pl/pgsql assignment to support the datatype-specific subscripting
behaviors introduced in commit c7aba7c14.

There are cosmetic benefits too: when a syntax error occurs in a
pl/pgsql expression, the error report no longer includes the confusing
"SELECT" keyword that used to get prefixed to the expression text.
Also, there seem to be some small speed gains.

Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
2021-01-04 11:52:00 -05:00
ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
c7aba7c14e Support subscripting of arbitrary types, not only arrays.
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means.  Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers.  (This patch provides no such new
features, though; it only lays the foundation for them.)

To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler.  On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines.  (Thus, essentially
no new run-time overhead should be caused by this patch.  Indeed,
there is room to remove some overhead by supplying specialized
execution routines.  This patch does a little bit in that line,
but more could be done.)

Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.

One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER.  For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.

This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.

Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule

Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
2020-12-09 12:40:37 -05:00
a676386b58 Remove operator_precedence_warning.
This GUC was always intended as a temporary solution to help with
finding 9.4-to-9.5 migration issues.  Now that all pre-9.5 branches
are out of support, and 9.5 will be too before v14 is released,
it seems like it's okay to drop it.  Doing so allows removal of
several hundred lines of poorly-tested code in parse_expr.c,
which have been a fertile source of bugs when people did use this.

Discussion: https://postgr.es/m/2234320.1607117945@sss.pgh.pa.us
2020-12-08 16:29:52 -05:00
b5913f6120 Refactor CLUSTER and REINDEX grammar to use DefElem for option lists
This changes CLUSTER and REINDEX so as a parenthesized grammar becomes
possible for options, while unifying the grammar parsing rules for
option lists with the existing ones.

This is a follow-up of the work done in 873ea9e for VACUUM, ANALYZE and
EXPLAIN.  This benefits REINDEX for a potential backend-side filtering
for collatable-sensitive indexes and TABLESPACE, while CLUSTER would
benefit from the latter.

Author: Alexey Kondratov, Justin Pryzby
Discussion: https://postgr.es/m/8a8f5f73-00d3-55f8-7583-1375ca8f6a91@postgrespro.ru
2020-12-03 10:13:21 +09:00
f7f83a55bf Ensure that expandTableLikeClause() re-examines the same table.
As it stood, expandTableLikeClause() re-did the same relation_openrv
call that transformTableLikeClause() had done.  However there are
scenarios where this would not find the same table as expected.
We hold lock on the LIKE source table, so it can't be renamed or
dropped, but another table could appear before it in the search path.
This explains the odd behavior reported in bug #16758 when cloning a
table as a temp table of the same name.  This case worked as expected
before commit 502898192 introduced the need to open the source table
twice, so we should fix it.

To make really sure we get the same table, let's re-open it by OID not
name.  That requires adding an OID field to struct TableLikeClause,
which is a little nervous-making from an ABI standpoint, but as long
as it's at the end I don't think there's any serious risk.

Per bug #16758 from Marc Boeren.  Like the previous patch,
back-patch to all supported branches.

Discussion: https://postgr.es/m/16758-840e84a6cfab276d@postgresql.org
2020-12-01 14:02:27 -05:00
8286223f3d Fix missing outfuncs.c support for IncrementalSortPath.
For debugging purposes, Path nodes are supposed to have outfuncs
support, but this was overlooked in the original incremental sort patch.

While at it, clean up a couple other minor oversights, as well as
bizarre choice of return type for create_incremental_sort_path().
(All the existing callers just cast it to "Path *" immediately, so
they don't care, but some future caller might care.)

outfuncs.c fix by Zhijie Hou, the rest by me

Discussion: https://postgr.es/m/324c4d81d8134117972a5b1f6cdf9560@G08CNEXMBPEKD05.g08.fujitsu.local
2020-11-30 16:33:09 -05:00
660b89928d Properly check index mark/restore in ExecSupportsMarkRestore.
Previously this code assumed that all IndexScan nodes supported
mark/restore, which is not true since it depends on optional index AM
support functions. This could lead to errors about missing support
functions in rare edge cases of mergejoins with no sort keys, where an
unordered non-btree index scan was placed on the inner path without a
protecting Materialize node. (Normally, the fact that merge join
requires ordered input would avoid this error.)

Backpatch all the way since this bug is ancient.

Per report from Eugen Konkov on irc.

Discussion: https://postgr.es/m/87o8jn50be.fsf@news-spur.riddles.org.uk
2020-11-24 21:58:32 +00:00
0a2bc5d61e Move per-agg and per-trans duplicate finding to the planner.
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.

Bump catalog version, because views can contain Aggrefs.

Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
2020-11-24 10:45:00 +02:00
68b1a4877e Fix a few comments that referred to copy.c.
Missed these in the previous commit.
2020-11-23 11:36:13 +02:00
926fa801ac Remove undocumented IS [NOT] OF syntax.
This feature was added a long time ago, in 7c1e67bd5 and eb121ba2c,
but never documented in any user-facing way.  (Documentation added
in 6126d3e70 was commented out almost immediately, in 8272fc3f7.)
That's because, while this syntax is defined by SQL:99, our
implementation is only vaguely related to the standard's semantics.
The standard appears to intend a run-time not parse-time test, and
it definitely intends that the test should understand subtype
relationships.

No one has stepped up to fix that in the intervening years, but
people keep coming across the code and asking why it's not documented.
Let's just get rid of it: if anyone ever wants to make it work per
spec, they can easily recover whatever parts of this code are still
of value from our git history.

If there's anyone out there who's actually using this despite its
undocumented status, they can switch to using pg_typeof() instead,
eg. "pg_typeof(something) = 'mytype'::regtype".  That gives
essentially the same semantics as what our IS OF code did.
(We didn't have that function last time this was discussed, or
we would have ripped out IS OF then.)

Discussion: https://postgr.es/m/CAKFQuwZ2pTc-DSkOiTfjauqLYkNREeNZvWmeg12Q-_69D+sYZA@mail.gmail.com
Discussion: https://postgr.es/m/BAY20-F23E9F2B4DAB3E4E88D3623F99B0@phx.gbl
Discussion: https://postgr.es/m/3E7CF81D.1000203@joeconway.com
2020-11-19 17:39:39 -05:00
92bf7e2d02 Provide the OR REPLACE option for CREATE TRIGGER.
This is mostly straightforward.  However, we disallow replacing
constraint triggers or changing the is-constraint property; perhaps
that can be added later, but the complexity versus benefit tradeoff
doesn't look very good.

Also, no special thought is taken here for whether replacing an
existing trigger should result in changes to queued-but-not-fired
trigger actions.  We just document that if you're surprised by the
results, too bad, don't do that.  (Note that any such pending trigger
activity would have to be within the current session.)

Takamichi Osumi, reviewed at various times by Surafel Temesgen,
Peter Smith, and myself

Discussion: https://postgr.es/m/0DDF369B45A1B44B8A687ED43F06557C010BC362@G01JPEXMBYT03
2020-11-14 17:05:34 -05:00
a378ba49a5 Add pg_nodiscard decorations to some functions
Especially for the list API such as lappend() forgetting to assign the
return value is a common problem.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://www.postgresql.org/message-id/flat/e3753562-99cd-b65f-5aca-687dfd1ec2fc@2ndquadrant.com
2020-11-11 11:00:27 +01:00
40c24bfef9 Improve our ability to regurgitate SQL-syntax function calls.
The SQL spec calls out nonstandard syntax for certain function calls,
for example substring() with numeric position info is supposed to be
spelled "SUBSTRING(string FROM start FOR count)".  We accept many
of these things, but up to now would not print them in the same format,
instead simplifying down to "substring"(string, start, count).
That's long annoyed me because it creates an interoperability
problem: we're gratuitously injecting Postgres-specific syntax into
what might otherwise be a perfectly spec-compliant view definition.
However, the real reason for addressing it right now is to support
a planned change in the semantics of EXTRACT() a/k/a date_part().
When we switch that to returning numeric, we'll have the parser
translate EXTRACT() to some new function name (might as well be
"extract" if you ask me) and then teach ruleutils.c to reverse-list
that per SQL spec.  In this way existing calls to date_part() will
continue to have the old semantics.

To implement this, invent a new CoercionForm value COERCE_SQL_SYNTAX,
and make the parser insert that rather than COERCE_EXPLICIT_CALL when
the input has SQL-spec decoration.  (But if the input has the form of
a plain function call, continue to mark it COERCE_EXPLICIT_CALL, even
if it's calling one of these functions.)  Then ruleutils.c recognizes
COERCE_SQL_SYNTAX as a cue to emit SQL call syntax.  It can know
which decoration to emit using hard-wired knowledge about the
functions that could be called this way.  (While this solution isn't
extensible without manual additions, neither is the grammar, so this
doesn't seem unmaintainable.)  Notice that this solution will
reverse-list a function call with SQL decoration only if it was
entered that way; so dump-and-reload will not by itself produce any
changes in the appearance of views.

This requires adding a CoercionForm field to struct FuncCall.
(I couldn't resist the temptation to rearrange that struct's
field order a tad while I was at it.)  FuncCall doesn't appear
in stored rules, so that change isn't a reason for a catversion
bump, but I did one anyway because the new enum value for
CoercionForm fields could confuse old backend code.

Possible future work:

* Perhaps CoercionForm should now be renamed to DisplayForm,
or something like that, to reflect its more general meaning.
This'd require touching a couple hundred places, so it's not
clear it's worth the code churn.

* The SQLValueFunction node type, which was invented partly for
the same goal of improving SQL-compatibility of view output,
could perhaps be replaced with regular function calls marked
with COERCE_SQL_SYNTAX.  It's unclear if this would be a net
code savings, however.

Discussion: https://postgr.es/m/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
2020-11-04 12:34:50 -05:00
257836a755 Track collation versions for indexes.
Record the current version of dependent collations in pg_depend when
creating or rebuilding an index.  When accessing the index later, warn
that the index may be corrupted if the current version doesn't match.

Thanks to Douglas Doole, Peter Eisentraut, Christoph Berg, Laurenz Albe,
Michael Paquier, Robert Haas, Tom Lane and others for very helpful
discussion.

Author: Thomas Munro <thomas.munro@gmail.com>
Author: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> (earlier versions)
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 01:19:50 +13:00
7d1297df08 Remove pg_collation.collversion.
This model couldn't be extended to cover the default collation, and
didn't have any information about the affected database objects when the
version changed.  Remove, in preparation for a follow-up commit that
will add a new mechanism.

Author: Thomas Munro <thomas.munro@gmail.com>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
2020-11-03 00:44:59 +13:00
a929e17e5a Allow run-time pruning on nested Append/MergeAppend nodes
Previously we only tagged on the required information to allow the
executor to perform run-time partition pruning for Append/MergeAppend
nodes belonging to base relations.  It was thought that nested
Append/MergeAppend nodes were just about always pulled up into the
top-level Append/MergeAppend and that making the run-time pruning info for
any sub Append/MergeAppend nodes was a waste of time.  However, that was
likely badly thought through.

Some examples of cases we're unable to pullup nested Append/MergeAppends
are: 1) Parallel Append nodes with a mix of parallel and non-parallel
paths into a Parallel Append.  2) When planning an ordered Append scan a
sub-partition which is unordered may require a nested MergeAppend path to
ensure sub-partitions don't mix up the order of tuples being fed into the
top-level Append.

Unfortunately, it was not just as simple as removing the lines in
createplan.c which were purposefully not building the run-time pruning
info for anything but RELOPT_BASEREL relations.  The code in
add_paths_to_append_rel() was far too sloppy about which partitioned_rels
it included for the Append/MergeAppend paths.  The original code there
would always assume accumulate_append_subpath() would pull each sub-Append
and sub-MergeAppend path into the top-level path.  While it does not
appear that there were any actual bugs caused by having the additional
partitioned table RT indexes recorded, what it did mean is that later in
planning, when we built the run-time pruning info that we wasted effort
and built PartitionedRelPruneInfos for partitioned tables that we had no
subpaths for the executor to run-time prune.

Here we tighten that up so that partitioned_rels only ever contains the RT
index for partitioned tables which actually have subpaths in the given
Append/MergeAppend.  We can now Assert that every PartitionedRelPruneInfo
has a non-empty present_parts.  That should allow us to catch any weird
corner cases that have been missed.

In passing, it seems there is no longer a good reason to have the
AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList.
We can simply have a List of Relids instead.  This is more compact in
memory and faster to add new members to.  We still know which is the root
level partition as these always have a lower relid than their children.
Previously this field was used for more things, but run-time partition
pruning now remains the only user of it and it has no need for a List of
IntLists.

Here we also get rid of the RelOptInfo partitioned_child_rels field. This
is what was previously used to (sometimes incorrectly) set the
Append/MergeAppend path's partitioned_rels field.  That was the only usage
of that field, so we can happily just remove it.

I also couldn't resist changing some nearby code to make use of the newly
added for_each_from macro so we can skip the first element in the list
without checking if the current item was the first one on each
iteration.

A bug report from Andreas Kretschmer prompted all this work, however,
after some consideration, I'm not personally classing this as a bug fix.
So no backpatch.  In Andreas' test case, it just wasn't that clear that
there was a nested Append since the top-level Append just had a single
sub-path which was pulled up a level, per 8edd0e794.

Author: David Rowley
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
2020-11-02 13:46:56 +13:00
ad77039fad Calculate extraUpdatedCols in query rewriter, not parser.
It's unsafe to do this at parse time because addition of generated
columns to a table would not invalidate stored rules containing
UPDATEs on the table ... but there might now be dependent generated
columns that were not there when the rule was made.  This also fixes
an oversight that rewriteTargetView failed to update extraUpdatedCols
when transforming an UPDATE on an updatable view.  (Since the new
calculation is downstream of that, rewriteTargetView doesn't actually
need to do anything; but before, there was a demonstrable bug there.)

In v13 and HEAD, this leads to easily-visible bugs because (since
commit c6679e4fc) we won't recalculate generated columns that aren't
listed in extraUpdatedCols.  In v12 this bitmap is mostly just used
for trigger-firing decisions, so you'd only notice a problem if a
trigger cared whether a generated column had been updated.

I'd complained about this back in May, but then forgot about it
until bug #16671 from Michael Paul Killian revived the issue.

Back-patch to v12 where this field was introduced.  If existing
stored rules contain any extraUpdatedCols values, they'll be
ignored because the rewriter will overwrite them, so the bug will
be fixed even for existing rules.  (But note that if someone were
to update to 13.1 or 12.5, store some rules with UPDATEs on tables
having generated columns, and then downgrade to a prior minor version,
they might observe issues similar to what this patch fixes.  That
seems unlikely enough to not be worth going to a lot of effort to fix.)

Discussion: https://postgr.es/m/10206.1588964727@sss.pgh.pa.us
Discussion: https://postgr.es/m/16671-2fa55851859fb166@postgresql.org
2020-10-28 13:47:02 -04:00
ad1c36b070 Fix foreign-key selectivity estimation in the presence of constants.
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint.  However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.

We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause.  So we have to cancel that
selectivity out of the estimate.

To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list.  Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate.  (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)

This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.

Per report from Sigrid Ehrenreich.

Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
2020-10-28 11:15:47 -04:00
fb5883da86 Remove PartitionRoutingInfo struct.
The extra indirection neeeded to access its members via its enclosing
ResultRelInfo seems pointless. Move all the fields from
PartitionRoutingInfo to ResultRelInfo.

Author: Amit Langote
Reviewed-by: Alvaro Herrera
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqFViT47Zbr_ASBejiK7iDG8%3DQ1swQ-tjM6caRPQ67pT%3Dw%40mail.gmail.com
2020-10-19 14:42:55 +03:00
6973533650 Revise child-to-root tuple conversion map management.
Store the tuple conversion map to convert a tuple from a child table's
format to the root format in a new ri_ChildToRootMap field in
ResultRelInfo. It is initialized if transition tuple capture for FOR
STATEMENT triggers or INSERT tuple routing on a partitioned table is
needed. Previously, ModifyTable kept the maps in the per-subplan
ModifyTableState->mt_per_subplan_tupconv_maps array, or when tuple
routing was used, in
ResultRelInfo->ri_Partitioninfo->pi_PartitionToRootMap. The new field
replaces both of those.

Now that the child-to-root tuple conversion map is always available in
ResultRelInfo (when needed), remove the TransitionCaptureState.tcs_map
field. The callers of Exec*Trigger() functions no longer need to set or
save it, which is much less confusing and bug-prone. Also, as a future
optimization, this will allow us to delay creating the map for a given
result relation until the relation is actually processed during
execution.

Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqHtCWLdK-LO%3DNEsvOdHx%2B7yv4mE_zYK0i3BH7dXb-wxog%40mail.gmail.com
2020-10-19 14:42:55 +03:00
f49b85d783 Clean up code to resolve the "root target relation" in nodeModifyTable.c
When executing DDL on a partitioned table or on a table with inheritance
children, statement-level triggers must be fired against the table given
in the original statement. The code to look that up was a bit messy and
duplicative. Commit 501ed02cf6 added a helper function,
getASTriggerResultRelInfo() (later renamed to getTargetResultRelInfo())
for it, but for some reason it was only used when firing AFTER STATEMENT
triggers and the code to fire BEFORE STATEMENT triggers duplicated the
logic.

Determine the target relation in ExecInitModifyTable(), and set it always
in ModifyTableState. Code that used to call getTargetResultRelInfo() can
now use ModifyTableState->rootResultRelInfo directly.

Discussion: https://www.postgresql.org/message-id/CA%2BHiwqFViT47Zbr_ASBejiK7iDG8%3DQ1swQ-tjM6caRPQ67pT%3Dw%40mail.gmail.com
2020-10-19 14:42:40 +03:00
a04daa97a4 Remove es_result_relation_info from EState.
Maintaining 'es_result_relation_info' correctly at all times has become
cumbersome, especially with partitioning where each partition gets its
own result relation info. Having to set and reset it across arbitrary
operations has caused bugs in the past.

This changes all the places that used 'es_result_relation_info', to
receive the currently active ResultRelInfo via function parameters
instead.

Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-14 11:41:40 +03:00
178f2d560d Include result relation info in direct modify ForeignScan nodes.
FDWs that can perform an UPDATE/DELETE remotely using the "direct modify"
set of APIs need to access the ResultRelInfo of the target table. That's
currently available in EState.es_result_relation_info, but the next
commit will remove that field.

This commit adds a new resultRelation field in ForeignScan, to store the
target relation's RT index, and the corresponding ResultRelInfo in
ForeignScanState. The FDW's PlanDirectModify callback is expected to set
'resultRelation' along with 'operation'. The core code doesn't need them
for anything, they are for the convenience of FDW's Begin- and
IterateDirectModify callbacks.

Authors: Amit Langote, Etsuro Fujita
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-14 10:58:38 +03:00
1375422c78 Create ResultRelInfos later in InitPlan, index them by RT index.
Instead of allocating all the ResultRelInfos upfront in one big array,
allocate them in ExecInitModifyTable(). es_result_relations is now an
array of ResultRelInfo pointers, rather than an array of structs, and it
is indexed by the RT index.

This simplifies things: we get rid of the separate concept of a "result
rel index", and don't need to set it in setrefs.c anymore. This also
allows follow-up optimizations (not included in this commit yet) to skip
initializing ResultRelInfos for target relations that were not needed at
runtime, and removal of the es_result_relation_info pointer.

The EState arrays of regular result rels and root result rels are merged
into one array. Similarly, the resultRelations and rootResultRelations
lists in PlannedStmt are merged into one. It's not actually clear to me
why they were kept separate in the first place, but now that the
es_result_relations array is indexed by RT index, it certainly seems
pointless.

The PlannedStmt->resultRelations list is now only needed for
ExecRelationIsTargetRelation(). One visible effect of this change is that
ExecRelationIsTargetRelation() will now return 'true' also for the
partition root, if a partitioned table is updated. That seems like a good
thing, although the function isn't used in core code, and I don't see any
reason for an FDW to call it on a partition root.

Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
2020-10-13 12:57:02 +03:00
56fe008996 Add for_each_from, to simplify loops starting from non-first list cells.
We have a dozen or so places that need to iterate over all but the
first cell of a List.  Prior to v13 this was typically written as
	for_each_cell(lc, lnext(list_head(list)))
Commit 1cff1b95a changed these to
	for_each_cell(lc, list, list_second_cell(list))
This patch introduces a new macro for_each_from() which expresses
the start point as a list index, allowing these to be written as
	for_each_from(lc, list, 1)
This is marginally more efficient, since ForEachState.i can be
initialized directly instead of backing into it from a ListCell
address.  It also seems clearer and less typo-prone.

Some of the remaining uses of for_each_cell() look like they could
profitably be changed to for_each_from(), but here I confined myself
to changing uses of list_second_cell().

Also, fix for_each_cell_setup() and for_both_cell_setup() to
const-ify their arguments; that's a simple oversight in 1cff1b95a.

Back-patch into v13, on the grounds that (1) the const-ification
is a minor bug fix, and (2) it's better for back-patching purposes
if we only have two ways to write these loops rather than three.

In HEAD, also remove list_third_cell() and list_fourth_cell(),
which were also introduced in 1cff1b95a, and are unused as of
cc99baa43.  It seems unlikely that any third-party code would
have started to use them already; anyone who has can be directed
to list_nth_cell instead.

Discussion: https://postgr.es/m/CAApHDvpo1zj9KhEpU2cCRZfSM3Q6XGdhzuAS2v79PH7WJBkYVA@mail.gmail.com
2020-09-28 20:33:13 -04:00
cc99baa43e Improve pg_list.h's linitial(), lsecond() and co macros
Prior to this commit, the linitial(), lsecond(), lthird(), lfourth()
macros and their int and Oid list cousins would call their corresponding
inlined function to fetch the cell of interest.  Those inline functions
were kind enough to return NULL if the particular cell did not exist.
Unfortunately, the care that these functions took was of no relevance to
the calling macros as they proceeded to directly dereference the returned
value without any regard to whether that value was NULL or not.  If it had
been, we'd have segfaulted.

Of course, the fact that we would have segfaulted on misuse of these
macros just goes to prove that nobody is relying on the empty or list too
small checks.  So here we just get rid of those checks completely.

The existing inline functions have been left alone as someone may be using
those directly.  We just replace the call within each macro to use
list_nth_cell().

For the llast*() case we require a new list_last_cell() inline function to
get away from the multiple evaluation hazard that we'd get if we fetched
->length on the macro's parameter.

Author: David Rowley
Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/CAApHDvpo1zj9KhEpU2cCRZfSM3Q6XGdhzuAS2v79PH7WJBkYVA@mail.gmail.com
2020-09-28 14:47:19 +13:00
41efb83408 Move resolution of AlternativeSubPlan choices to the planner.
When commit bd3daddaf introduced AlternativeSubPlans, I had some
ambitions towards allowing the choice of subplan to change during
execution.  That has not happened, or even been thought about, in the
ensuing twelve years; so it seems like a failed experiment.  So let's
rip that out and resolve the choice of subplan at the end of planning
(in setrefs.c) rather than during executor startup.  This has a number
of positive benefits:

* Removal of a few hundred lines of executor code, since
AlternativeSubPlans need no longer be supported there.

* Removal of executor-startup overhead (particularly, initialization
of subplans that won't be used).

* Removal of incidental costs of having a larger plan tree, such as
tree-scanning and copying costs in the plancache; not to mention
setrefs.c's own costs of processing the discarded subplans.

* EXPLAIN no longer has to print a weird (and undocumented)
representation of an AlternativeSubPlan choice; it sees only the
subplan actually used.  This should mean less confusion for users.

* Since setrefs.c knows which subexpression of a plan node it's
working on at any instant, it's possible to adjust the estimated
number of executions of the subplan based on that.  For example,
we should usually estimate more executions of a qual expression
than a targetlist expression.  The implementation used here is
pretty simplistic, because we don't want to expend a lot of cycles
on the issue; but it's better than ignoring the point entirely,
as the executor had to.

That last point might possibly result in shifting the choice
between hashed and non-hashed EXISTS subplans in a few cases,
but in general this patch isn't meant to change planner choices.
Since we're doing the resolution so late, it's really impossible
to change any plan choices outside the AlternativeSubPlan itself.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
2020-09-27 12:51:28 -04:00
45b9805706 Allow CURRENT_ROLE where CURRENT_USER is accepted
In the particular case of GRANTED BY, this is specified in the SQL
standard.  Since in PostgreSQL, CURRENT_ROLE is equivalent to
CURRENT_USER, and CURRENT_USER is already supported here, adding
CURRENT_ROLE is trivial.  The other cases are PostgreSQL extensions,
but for the same reason it also makes sense there.

Reviewed-by: Vik Fearing <vik@postgresfriends.org>
Reviewed-by: Asif Rehman <asifr.rehman@gmail.com>
Reviewed-by: Alvaro Herrera <alvherre@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/f2feac44-b4c5-f38f-3699-2851d6a76dc9%402ndquadrant.com
2020-09-17 11:40:08 +02:00
2000b6c10a Don't fetch partition check expression during InitResultRelInfo.
Since there is only one place that actually needs the partition check
expression, namely ExecPartitionCheck, it's better to fetch it from
the relcache there.  In this way we will never fetch it at all if
the query never has use for it, and we still fetch it just once when
we do need it.

The reason for taking an interest in this is that if the relcache
doesn't already have the check expression cached, fetching it
requires obtaining AccessShareLock on the partition root.  That
means that operations that look like they should only touch the
partition itself will also take a lock on the root.  In particular
we observed that TRUNCATE on a partition may take a lock on the
partition's root, contributing to a deadlock situation in parallel
pg_restore.

As written, this patch does have a small cost, which is that we
are microscopically reducing efficiency for the case where a partition
has an empty check expression.  ExecPartitionCheck will be called,
and will go through the motions of setting up and checking an empty
qual, where before it would not have been called at all.  We could
avoid that by adding a separate boolean flag to track whether there
is a partition expression to test.  However, this case only arises
for a default partition with no siblings, which surely is not an
interesting case in practice.  Hence adding complexity for it
does not seem like a good trade-off.

Amit Langote, per a suggestion by me

Discussion: https://postgr.es/m/VI1PR03MB31670CA1BD9625C3A8C5DD05EB230@VI1PR03MB3167.eurprd03.prod.outlook.com
2020-09-16 14:28:18 -04:00
844c05abc3 Remove variable "concurrent" from ReindexStmt
This node already handles multiple options using a bitmask, so having a
separate boolean flag is not necessary.  This simplifies the code a bit
with less arguments to give to the reindex routines, by replacing the
boolean with an equivalent bitmask value.

Reviewed-by: Julien Rouhaud
Discussion: https://postgr.es/m/20200902110326.GA14963@paquier.xyz
2020-09-04 10:43:32 +09:00
01767533e3 Fix thinko with definition of REINDEXOPT_MISSING_OK
This had no direct consequences, but let's be consistent and it would be
confusing when adding new flags.  Oversight in 1d65416.

Reported-by: Justin Pryzby
Discussion: https://postgr.es/m/20200902024148.GB20149@telsasoft.com
2020-09-02 14:56:59 +09:00
1d65416661 Improve handling of dropped relations for REINDEX DATABASE/SCHEMA/SYSTEM
When multiple relations are reindexed, a scan of pg_class is done first
to build the list of relations to work on.  However the REINDEX logic
has never checked if a relation listed still exists when beginning the
work on it, causing for example sudden cache lookup failures.

This commit adds safeguards against dropped relations for REINDEX,
similarly to VACUUM or CLUSTER where we try to open the relation,
ignoring it if it is missing.  A new option is added to the REINDEX
routines to control if a missed relation is OK to ignore or not.

An isolation test, based on REINDEX SCHEMA, is added for the concurrent
and non-concurrent cases.

Author: Michael Paquier
Reviewed-by: Anastasia Lubennikova
Discussion: https://postgr.es/m/20200813043805.GE11663@paquier.xyz
2020-09-02 09:08:12 +09:00
5028981923 Fix handling of CREATE TABLE LIKE with inheritance.
If a CREATE TABLE command uses both LIKE and traditional inheritance,
Vars in CHECK constraints and expression indexes that are absorbed
from a LIKE parent table tended to get mis-numbered, resulting in
wrong answers and/or bizarre error messages (though probably not any
actual crashes, thanks to validation occurring in the executor).

In v12 and up, the same could happen to Vars in GENERATED expressions,
even in cases with no LIKE clause but multiple traditional-inheritance
parents.

The cause of the problem for LIKE is that parse_utilcmd.c supposed
it could renumber such Vars correctly during transformCreateStmt(),
which it cannot since we have not yet accounted for columns added via
inheritance.  Fix that by postponing processing of LIKE INCLUDING
CONSTRAINTS, DEFAULTS, GENERATED, INDEXES till after we've performed
DefineRelation().

The error with GENERATED and multiple inheritance is a simple oversight
in MergeAttributes(); it knows it has to renumber Vars in inherited
CHECK constraints, but forgot to apply the same processing to inherited
GENERATED expressions (a/k/a defaults).

Per bug #16272 from Tom Gottfried.  The non-GENERATED variants of the
issue are ancient, presumably dating right back to the addition of
CREATE TABLE LIKE; hence back-patch to all supported branches.

Discussion: https://postgr.es/m/16272-6e32da020e9a9381@postgresql.org
2020-08-21 15:00:47 -04:00
2072932407 Suppress unnecessary RelabelType nodes in yet more cases.
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue.  Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.

An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value.  So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.

Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.

Back-patch to v12, like the previous patch.  While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem.  In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.

Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
2020-08-19 14:07:49 -04:00
1e7629d2c9 Be more careful about the shape of hashable subplan clauses.
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan
has the form of one or more OpExprs whose LHS is an expression of the
outer query's, while the RHS is an expression over Params representing
output columns of the subquery.  However, the planner only went as far
as verifying that the clauses were all binary OpExprs.  This works
99.99% of the time, because the clauses have the right shape when
emitted by the parser --- but it's possible for function inlining to
break that, as reported by PegoraroF10.  To fix, teach the planner
to check that the LHS and RHS contain the right things, or more
accurately don't contain the wrong things.  Given that this has been
broken for years without anyone noticing, it seems sufficient to just
give up hashing when it happens, rather than go to the trouble of
commuting the clauses back again (which wouldn't necessarily work
anyway).

While poking at that, I also noticed that nodeSubplan.c had a baked-in
assumption that the number of hash clauses is identical to the number
of subquery output columns.  Again, that's fine as far as parser output
goes, but it's not hard to break it via function inlining.  There seems
little reason for that assumption though --- AFAICS, the only thing
it's buying us is not having to store the number of hash clauses
explicitly.  Adding code to the planner to reject such cases would take
more code than getting nodeSubplan.c to cope, so I fixed it that way.

This has been broken for as long as we've had hashable SubPlans,
so back-patch to all supported branches.

Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
2020-08-14 22:14:03 -04:00
6ee3b5fb99 Use int64 instead of long in incremental sort code
Windows 64bit has 4-byte long values which is not suitable for tracking
disk space usage in the incremental sort code. Let's just make all these
fields int64s.

Author: James Coleman
Discussion: https://postgr.es/m/CAApHDvpky%2BUhof8mryPf5i%3D6e6fib2dxHqBrhp0Qhu0NeBhLJw%40mail.gmail.com
Backpatch-through: 13, where the incremental sort code was added
2020-08-02 14:24:46 +12:00
2302302236 HashAgg: before spilling tuples, set unneeded columns to NULL.
This is a replacement for 4cad2534. Instead of projecting all tuples
going into a HashAgg, only remove unnecessary attributes when actually
spilling. This avoids the regression for the in-memory case.

Discussion: https://postgr.es/m/a2fb7dfeb4f50aa0a123e42151ee3013933cb802.camel%40j-davis.com
Backpatch-through: 13
2020-07-12 22:59:32 -07:00
cc35d8933a Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodes
"relkind" normally refers to the char field from pg_class.  However, in
the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used
for a field of type enum ObjectType, that could refer to other object
types than those possible for a relkind.  Such fields being usually
named "objtype", switch the name in both structures to make things more
consistent.  Note that this led to some confusion in functions that
also operate on a RangeTableEntry object, which also has a field named
"relkind".

This naming goes back to commit 09d4e96, where only OBJECT_TABLE and
OBJECT_INDEX were used.  This got extended later to use as well
OBJECT_TYPE with e440e12, not really a relation kind.

Author: Mark Dilger
Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier
Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
2020-07-11 13:32:28 +09:00