Files
postgresql/src/backend/executor/nodeTidscan.c
Andres Freund 1ef6bd2954 Don't require return slots for nodes without projection.
In a lot of nodes the return slot is not required. That can either be
because the node doesn't do any projection (say an Append node), or
because the node does perform projections but the projection is
optimized away because the projection would yield an identical row.

Slots aren't that small, especially for wide rows, so it's worthwhile
to avoid creating them.  It's not possible to just skip creating the
slot - it's currently used to determine the tuple descriptor returned
by ExecGetResultType().  So separate the determination of the result
type from the slot creation.  The work previously done internally
ExecInitResultTupleSlotTL() can now also be done separately with
ExecInitResultTypeTL() and ExecInitResultSlot().  That way nodes that
aren't guaranteed to need a result slot, can use
ExecInitResultTypeTL() to determine the result type of the node, and
ExecAssignScanProjectionInfo() (via
ExecConditionalAssignProjectionInfo()) determines that a result slot
is needed, it is created with ExecInitResultSlot().

Besides the advantage of avoiding to create slots that then are
unused, this is necessary preparation for later patches around tuple
table slot abstraction. In particular separating the return descriptor
and slot is a prerequisite to allow JITing of tuple deforming with
knowledge of the underlying tuple format, and to avoid unnecessarily
creating JITed tuple deforming for virtual slots.

This commit removes a redundant argument from
ExecInitResultTupleSlotTL(). While this commit touches a lot of the
relevant lines anyway, it'd normally still not worthwhile to cause
breakage, except that aforementioned later commits will touch *all*
ExecInitResultTupleSlotTL() callers anyway (but fits worse
thematically).

Author: Andres Freund
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-09 17:19:39 -08:00

567 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* nodeTidscan.c
* Routines to support direct tid scans of relations
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeTidscan.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
*
* ExecTidScan scans a relation using tids
* ExecInitTidScan creates and initializes state info.
* ExecReScanTidScan rescans the tid relation.
* ExecEndTidScan releases all storage.
*/
#include "postgres.h"
#include "access/sysattr.h"
#include "catalog/pg_type.h"
#include "executor/execdebug.h"
#include "executor/nodeTidscan.h"
#include "miscadmin.h"
#include "optimizer/clauses.h"
#include "storage/bufmgr.h"
#include "utils/array.h"
#include "utils/rel.h"
#define IsCTIDVar(node) \
((node) != NULL && \
IsA((node), Var) && \
((Var *) (node))->varattno == SelfItemPointerAttributeNumber && \
((Var *) (node))->varlevelsup == 0)
/* one element in tss_tidexprs */
typedef struct TidExpr
{
ExprState *exprstate; /* ExprState for a TID-yielding subexpr */
bool isarray; /* if true, it yields tid[] not just tid */
CurrentOfExpr *cexpr; /* alternatively, we can have CURRENT OF */
} TidExpr;
static void TidExprListCreate(TidScanState *tidstate);
static void TidListEval(TidScanState *tidstate);
static int itemptr_comparator(const void *a, const void *b);
static TupleTableSlot *TidNext(TidScanState *node);
/*
* Extract the qual subexpressions that yield TIDs to search for,
* and compile them into ExprStates if they're ordinary expressions.
*
* CURRENT OF is a special case that we can't compile usefully;
* just drop it into the TidExpr list as-is.
*/
static void
TidExprListCreate(TidScanState *tidstate)
{
TidScan *node = (TidScan *) tidstate->ss.ps.plan;
ListCell *l;
tidstate->tss_tidexprs = NIL;
tidstate->tss_isCurrentOf = false;
foreach(l, node->tidquals)
{
Expr *expr = (Expr *) lfirst(l);
TidExpr *tidexpr = (TidExpr *) palloc0(sizeof(TidExpr));
if (is_opclause(expr))
{
Node *arg1;
Node *arg2;
arg1 = get_leftop(expr);
arg2 = get_rightop(expr);
if (IsCTIDVar(arg1))
tidexpr->exprstate = ExecInitExpr((Expr *) arg2,
&tidstate->ss.ps);
else if (IsCTIDVar(arg2))
tidexpr->exprstate = ExecInitExpr((Expr *) arg1,
&tidstate->ss.ps);
else
elog(ERROR, "could not identify CTID variable");
tidexpr->isarray = false;
}
else if (expr && IsA(expr, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saex = (ScalarArrayOpExpr *) expr;
Assert(IsCTIDVar(linitial(saex->args)));
tidexpr->exprstate = ExecInitExpr(lsecond(saex->args),
&tidstate->ss.ps);
tidexpr->isarray = true;
}
else if (expr && IsA(expr, CurrentOfExpr))
{
CurrentOfExpr *cexpr = (CurrentOfExpr *) expr;
tidexpr->cexpr = cexpr;
tidstate->tss_isCurrentOf = true;
}
else
elog(ERROR, "could not identify CTID expression");
tidstate->tss_tidexprs = lappend(tidstate->tss_tidexprs, tidexpr);
}
/* CurrentOfExpr could never appear OR'd with something else */
Assert(list_length(tidstate->tss_tidexprs) == 1 ||
!tidstate->tss_isCurrentOf);
}
/*
* Compute the list of TIDs to be visited, by evaluating the expressions
* for them.
*
* (The result is actually an array, not a list.)
*/
static void
TidListEval(TidScanState *tidstate)
{
ExprContext *econtext = tidstate->ss.ps.ps_ExprContext;
BlockNumber nblocks;
ItemPointerData *tidList;
int numAllocTids;
int numTids;
ListCell *l;
/*
* We silently discard any TIDs that are out of range at the time of scan
* start. (Since we hold at least AccessShareLock on the table, it won't
* be possible for someone to truncate away the blocks we intend to
* visit.)
*/
nblocks = RelationGetNumberOfBlocks(tidstate->ss.ss_currentRelation);
/*
* We initialize the array with enough slots for the case that all quals
* are simple OpExprs or CurrentOfExprs. If there are any
* ScalarArrayOpExprs, we may have to enlarge the array.
*/
numAllocTids = list_length(tidstate->tss_tidexprs);
tidList = (ItemPointerData *)
palloc(numAllocTids * sizeof(ItemPointerData));
numTids = 0;
foreach(l, tidstate->tss_tidexprs)
{
TidExpr *tidexpr = (TidExpr *) lfirst(l);
ItemPointer itemptr;
bool isNull;
if (tidexpr->exprstate && !tidexpr->isarray)
{
itemptr = (ItemPointer)
DatumGetPointer(ExecEvalExprSwitchContext(tidexpr->exprstate,
econtext,
&isNull));
if (!isNull &&
ItemPointerIsValid(itemptr) &&
ItemPointerGetBlockNumber(itemptr) < nblocks)
{
if (numTids >= numAllocTids)
{
numAllocTids *= 2;
tidList = (ItemPointerData *)
repalloc(tidList,
numAllocTids * sizeof(ItemPointerData));
}
tidList[numTids++] = *itemptr;
}
}
else if (tidexpr->exprstate && tidexpr->isarray)
{
Datum arraydatum;
ArrayType *itemarray;
Datum *ipdatums;
bool *ipnulls;
int ndatums;
int i;
arraydatum = ExecEvalExprSwitchContext(tidexpr->exprstate,
econtext,
&isNull);
if (isNull)
continue;
itemarray = DatumGetArrayTypeP(arraydatum);
deconstruct_array(itemarray,
TIDOID, sizeof(ItemPointerData), false, 's',
&ipdatums, &ipnulls, &ndatums);
if (numTids + ndatums > numAllocTids)
{
numAllocTids = numTids + ndatums;
tidList = (ItemPointerData *)
repalloc(tidList,
numAllocTids * sizeof(ItemPointerData));
}
for (i = 0; i < ndatums; i++)
{
if (!ipnulls[i])
{
itemptr = (ItemPointer) DatumGetPointer(ipdatums[i]);
if (ItemPointerIsValid(itemptr) &&
ItemPointerGetBlockNumber(itemptr) < nblocks)
tidList[numTids++] = *itemptr;
}
}
pfree(ipdatums);
pfree(ipnulls);
}
else
{
ItemPointerData cursor_tid;
Assert(tidexpr->cexpr);
if (execCurrentOf(tidexpr->cexpr, econtext,
RelationGetRelid(tidstate->ss.ss_currentRelation),
&cursor_tid))
{
if (numTids >= numAllocTids)
{
numAllocTids *= 2;
tidList = (ItemPointerData *)
repalloc(tidList,
numAllocTids * sizeof(ItemPointerData));
}
tidList[numTids++] = cursor_tid;
}
}
}
/*
* Sort the array of TIDs into order, and eliminate duplicates.
* Eliminating duplicates is necessary since we want OR semantics across
* the list. Sorting makes it easier to detect duplicates, and as a bonus
* ensures that we will visit the heap in the most efficient way.
*/
if (numTids > 1)
{
int lastTid;
int i;
/* CurrentOfExpr could never appear OR'd with something else */
Assert(!tidstate->tss_isCurrentOf);
qsort((void *) tidList, numTids, sizeof(ItemPointerData),
itemptr_comparator);
lastTid = 0;
for (i = 1; i < numTids; i++)
{
if (!ItemPointerEquals(&tidList[lastTid], &tidList[i]))
tidList[++lastTid] = tidList[i];
}
numTids = lastTid + 1;
}
tidstate->tss_TidList = tidList;
tidstate->tss_NumTids = numTids;
tidstate->tss_TidPtr = -1;
}
/*
* qsort comparator for ItemPointerData items
*/
static int
itemptr_comparator(const void *a, const void *b)
{
const ItemPointerData *ipa = (const ItemPointerData *) a;
const ItemPointerData *ipb = (const ItemPointerData *) b;
BlockNumber ba = ItemPointerGetBlockNumber(ipa);
BlockNumber bb = ItemPointerGetBlockNumber(ipb);
OffsetNumber oa = ItemPointerGetOffsetNumber(ipa);
OffsetNumber ob = ItemPointerGetOffsetNumber(ipb);
if (ba < bb)
return -1;
if (ba > bb)
return 1;
if (oa < ob)
return -1;
if (oa > ob)
return 1;
return 0;
}
/* ----------------------------------------------------------------
* TidNext
*
* Retrieve a tuple from the TidScan node's currentRelation
* using the tids in the TidScanState information.
*
* ----------------------------------------------------------------
*/
static TupleTableSlot *
TidNext(TidScanState *node)
{
EState *estate;
ScanDirection direction;
Snapshot snapshot;
Relation heapRelation;
HeapTuple tuple;
TupleTableSlot *slot;
Buffer buffer = InvalidBuffer;
ItemPointerData *tidList;
int numTids;
bool bBackward;
/*
* extract necessary information from tid scan node
*/
estate = node->ss.ps.state;
direction = estate->es_direction;
snapshot = estate->es_snapshot;
heapRelation = node->ss.ss_currentRelation;
slot = node->ss.ss_ScanTupleSlot;
/*
* First time through, compute the list of TIDs to be visited
*/
if (node->tss_TidList == NULL)
TidListEval(node);
tidList = node->tss_TidList;
numTids = node->tss_NumTids;
/*
* We use node->tss_htup as the tuple pointer; note this can't just be a
* local variable here, as the scan tuple slot will keep a pointer to it.
*/
tuple = &(node->tss_htup);
/*
* Initialize or advance scan position, depending on direction.
*/
bBackward = ScanDirectionIsBackward(direction);
if (bBackward)
{
if (node->tss_TidPtr < 0)
{
/* initialize for backward scan */
node->tss_TidPtr = numTids - 1;
}
else
node->tss_TidPtr--;
}
else
{
if (node->tss_TidPtr < 0)
{
/* initialize for forward scan */
node->tss_TidPtr = 0;
}
else
node->tss_TidPtr++;
}
while (node->tss_TidPtr >= 0 && node->tss_TidPtr < numTids)
{
tuple->t_self = tidList[node->tss_TidPtr];
/*
* For WHERE CURRENT OF, the tuple retrieved from the cursor might
* since have been updated; if so, we should fetch the version that is
* current according to our snapshot.
*/
if (node->tss_isCurrentOf)
heap_get_latest_tid(heapRelation, snapshot, &tuple->t_self);
if (heap_fetch(heapRelation, snapshot, tuple, &buffer, false, NULL))
{
/*
* Store the scanned tuple in the scan tuple slot of the scan
* state. Eventually we will only do this and not return a tuple.
*/
ExecStoreBufferHeapTuple(tuple, /* tuple to store */
slot, /* slot to store in */
buffer); /* buffer associated with
* tuple */
/*
* At this point we have an extra pin on the buffer, because
* ExecStoreHeapTuple incremented the pin count. Drop our local
* pin.
*/
ReleaseBuffer(buffer);
return slot;
}
/* Bad TID or failed snapshot qual; try next */
if (bBackward)
node->tss_TidPtr--;
else
node->tss_TidPtr++;
CHECK_FOR_INTERRUPTS();
}
/*
* if we get here it means the tid scan failed so we are at the end of the
* scan..
*/
return ExecClearTuple(slot);
}
/*
* TidRecheck -- access method routine to recheck a tuple in EvalPlanQual
*/
static bool
TidRecheck(TidScanState *node, TupleTableSlot *slot)
{
/*
* XXX shouldn't we check here to make sure tuple matches TID list? In
* runtime-key case this is not certain, is it? However, in the WHERE
* CURRENT OF case it might not match anyway ...
*/
return true;
}
/* ----------------------------------------------------------------
* ExecTidScan(node)
*
* Scans the relation using tids and returns
* the next qualifying tuple in the direction specified.
* We call the ExecScan() routine and pass it the appropriate
* access method functions.
*
* Conditions:
* -- the "cursor" maintained by the AMI is positioned at the tuple
* returned previously.
*
* Initial States:
* -- the relation indicated is opened for scanning so that the
* "cursor" is positioned before the first qualifying tuple.
* -- tidPtr is -1.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecTidScan(PlanState *pstate)
{
TidScanState *node = castNode(TidScanState, pstate);
return ExecScan(&node->ss,
(ExecScanAccessMtd) TidNext,
(ExecScanRecheckMtd) TidRecheck);
}
/* ----------------------------------------------------------------
* ExecReScanTidScan(node)
* ----------------------------------------------------------------
*/
void
ExecReScanTidScan(TidScanState *node)
{
if (node->tss_TidList)
pfree(node->tss_TidList);
node->tss_TidList = NULL;
node->tss_NumTids = 0;
node->tss_TidPtr = -1;
ExecScanReScan(&node->ss);
}
/* ----------------------------------------------------------------
* ExecEndTidScan
*
* Releases any storage allocated through C routines.
* Returns nothing.
* ----------------------------------------------------------------
*/
void
ExecEndTidScan(TidScanState *node)
{
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->ss.ps);
/*
* clear out tuple table slots
*/
if (node->ss.ps.ps_ResultTupleSlot)
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
ExecClearTuple(node->ss.ss_ScanTupleSlot);
}
/* ----------------------------------------------------------------
* ExecInitTidScan
*
* Initializes the tid scan's state information, creates
* scan keys, and opens the base and tid relations.
*
* Parameters:
* node: TidNode node produced by the planner.
* estate: the execution state initialized in InitPlan.
* ----------------------------------------------------------------
*/
TidScanState *
ExecInitTidScan(TidScan *node, EState *estate, int eflags)
{
TidScanState *tidstate;
Relation currentRelation;
/*
* create state structure
*/
tidstate = makeNode(TidScanState);
tidstate->ss.ps.plan = (Plan *) node;
tidstate->ss.ps.state = estate;
tidstate->ss.ps.ExecProcNode = ExecTidScan;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &tidstate->ss.ps);
/*
* mark tid list as not computed yet
*/
tidstate->tss_TidList = NULL;
tidstate->tss_NumTids = 0;
tidstate->tss_TidPtr = -1;
/*
* open the scan relation
*/
currentRelation = ExecOpenScanRelation(estate, node->scan.scanrelid, eflags);
tidstate->ss.ss_currentRelation = currentRelation;
tidstate->ss.ss_currentScanDesc = NULL; /* no heap scan here */
/*
* get the scan type from the relation descriptor.
*/
ExecInitScanTupleSlot(estate, &tidstate->ss,
RelationGetDescr(currentRelation));
/*
* Initialize result type and projection.
*/
ExecInitResultTypeTL(&tidstate->ss.ps);
ExecAssignScanProjectionInfo(&tidstate->ss);
/*
* initialize child expressions
*/
tidstate->ss.ps.qual =
ExecInitQual(node->scan.plan.qual, (PlanState *) tidstate);
TidExprListCreate(tidstate);
/*
* all done.
*/
return tidstate;
}