mirror of
https://git.postgresql.org/git/postgresql.git
synced 2026-02-13 01:47:05 +08:00
Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
248 lines
5.9 KiB
C
248 lines
5.9 KiB
C
/*-------------------------------------------------------------------------
|
|
* scram-common.c
|
|
* Shared frontend/backend code for SCRAM authentication
|
|
*
|
|
* This contains the common low-level functions needed in both frontend and
|
|
* backend, for implement the Salted Challenge Response Authentication
|
|
* Mechanism (SCRAM), per IETF's RFC 5802.
|
|
*
|
|
* Portions Copyright (c) 2017, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* src/common/scram-common.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#ifndef FRONTEND
|
|
#include "postgres.h"
|
|
#else
|
|
#include "postgres_fe.h"
|
|
#endif
|
|
|
|
/* for htonl */
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#include "common/base64.h"
|
|
#include "common/scram-common.h"
|
|
|
|
#define HMAC_IPAD 0x36
|
|
#define HMAC_OPAD 0x5C
|
|
|
|
/*
|
|
* Calculate HMAC per RFC2104.
|
|
*
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_init(scram_HMAC_ctx *ctx, const uint8 *key, int keylen)
|
|
{
|
|
uint8 k_ipad[SHA256_HMAC_B];
|
|
int i;
|
|
uint8 keybuf[SCRAM_KEY_LEN];
|
|
|
|
/*
|
|
* If the key is longer than the block size (64 bytes for SHA-256), pass
|
|
* it through SHA-256 once to shrink it down.
|
|
*/
|
|
if (keylen > SHA256_HMAC_B)
|
|
{
|
|
pg_sha256_ctx sha256_ctx;
|
|
|
|
pg_sha256_init(&sha256_ctx);
|
|
pg_sha256_update(&sha256_ctx, key, keylen);
|
|
pg_sha256_final(&sha256_ctx, keybuf);
|
|
key = keybuf;
|
|
keylen = SCRAM_KEY_LEN;
|
|
}
|
|
|
|
memset(k_ipad, HMAC_IPAD, SHA256_HMAC_B);
|
|
memset(ctx->k_opad, HMAC_OPAD, SHA256_HMAC_B);
|
|
|
|
for (i = 0; i < keylen; i++)
|
|
{
|
|
k_ipad[i] ^= key[i];
|
|
ctx->k_opad[i] ^= key[i];
|
|
}
|
|
|
|
/* tmp = H(K XOR ipad, text) */
|
|
pg_sha256_init(&ctx->sha256ctx);
|
|
pg_sha256_update(&ctx->sha256ctx, k_ipad, SHA256_HMAC_B);
|
|
}
|
|
|
|
/*
|
|
* Update HMAC calculation
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_update(scram_HMAC_ctx *ctx, const char *str, int slen)
|
|
{
|
|
pg_sha256_update(&ctx->sha256ctx, (const uint8 *) str, slen);
|
|
}
|
|
|
|
/*
|
|
* Finalize HMAC calculation.
|
|
* The hash function used is SHA-256.
|
|
*/
|
|
void
|
|
scram_HMAC_final(uint8 *result, scram_HMAC_ctx *ctx)
|
|
{
|
|
uint8 h[SCRAM_KEY_LEN];
|
|
|
|
pg_sha256_final(&ctx->sha256ctx, h);
|
|
|
|
/* H(K XOR opad, tmp) */
|
|
pg_sha256_init(&ctx->sha256ctx);
|
|
pg_sha256_update(&ctx->sha256ctx, ctx->k_opad, SHA256_HMAC_B);
|
|
pg_sha256_update(&ctx->sha256ctx, h, SCRAM_KEY_LEN);
|
|
pg_sha256_final(&ctx->sha256ctx, result);
|
|
}
|
|
|
|
/*
|
|
* Calculate SaltedPassword.
|
|
*
|
|
* The password should already be normalized by SASLprep.
|
|
*/
|
|
void
|
|
scram_SaltedPassword(const char *password,
|
|
const char *salt, int saltlen, int iterations,
|
|
uint8 *result)
|
|
{
|
|
int password_len = strlen(password);
|
|
uint32 one = htonl(1);
|
|
int i,
|
|
j;
|
|
uint8 Ui[SCRAM_KEY_LEN];
|
|
uint8 Ui_prev[SCRAM_KEY_LEN];
|
|
scram_HMAC_ctx hmac_ctx;
|
|
|
|
/*
|
|
* Iterate hash calculation of HMAC entry using given salt. This is
|
|
* essentially PBKDF2 (see RFC2898) with HMAC() as the pseudorandom
|
|
* function.
|
|
*/
|
|
|
|
/* First iteration */
|
|
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
|
|
scram_HMAC_update(&hmac_ctx, salt, saltlen);
|
|
scram_HMAC_update(&hmac_ctx, (char *) &one, sizeof(uint32));
|
|
scram_HMAC_final(Ui_prev, &hmac_ctx);
|
|
memcpy(result, Ui_prev, SCRAM_KEY_LEN);
|
|
|
|
/* Subsequent iterations */
|
|
for (i = 2; i <= iterations; i++)
|
|
{
|
|
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
|
|
scram_HMAC_update(&hmac_ctx, (const char *) Ui_prev, SCRAM_KEY_LEN);
|
|
scram_HMAC_final(Ui, &hmac_ctx);
|
|
for (j = 0; j < SCRAM_KEY_LEN; j++)
|
|
result[j] ^= Ui[j];
|
|
memcpy(Ui_prev, Ui, SCRAM_KEY_LEN);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate SHA-256 hash for a NULL-terminated string. (The NULL terminator is
|
|
* not included in the hash).
|
|
*/
|
|
void
|
|
scram_H(const uint8 *input, int len, uint8 *result)
|
|
{
|
|
pg_sha256_ctx ctx;
|
|
|
|
pg_sha256_init(&ctx);
|
|
pg_sha256_update(&ctx, input, len);
|
|
pg_sha256_final(&ctx, result);
|
|
}
|
|
|
|
/*
|
|
* Calculate ClientKey.
|
|
*/
|
|
void
|
|
scram_ClientKey(const uint8 *salted_password, uint8 *result)
|
|
{
|
|
scram_HMAC_ctx ctx;
|
|
|
|
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
|
|
scram_HMAC_update(&ctx, "Client Key", strlen("Client Key"));
|
|
scram_HMAC_final(result, &ctx);
|
|
}
|
|
|
|
/*
|
|
* Calculate ServerKey.
|
|
*/
|
|
void
|
|
scram_ServerKey(const uint8 *salted_password, uint8 *result)
|
|
{
|
|
scram_HMAC_ctx ctx;
|
|
|
|
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
|
|
scram_HMAC_update(&ctx, "Server Key", strlen("Server Key"));
|
|
scram_HMAC_final(result, &ctx);
|
|
}
|
|
|
|
|
|
/*
|
|
* Construct a verifier string for SCRAM, stored in pg_authid.rolpassword.
|
|
*
|
|
* The password should already have been processed with SASLprep, if necessary!
|
|
*
|
|
* If iterations is 0, default number of iterations is used. The result is
|
|
* palloc'd or malloc'd, so caller is responsible for freeing it.
|
|
*/
|
|
char *
|
|
scram_build_verifier(const char *salt, int saltlen, int iterations,
|
|
const char *password)
|
|
{
|
|
uint8 salted_password[SCRAM_KEY_LEN];
|
|
uint8 stored_key[SCRAM_KEY_LEN];
|
|
uint8 server_key[SCRAM_KEY_LEN];
|
|
char *result;
|
|
char *p;
|
|
int maxlen;
|
|
|
|
if (iterations <= 0)
|
|
iterations = SCRAM_DEFAULT_ITERATIONS;
|
|
|
|
/* Calculate StoredKey and ServerKey */
|
|
scram_SaltedPassword(password, salt, saltlen, iterations,
|
|
salted_password);
|
|
scram_ClientKey(salted_password, stored_key);
|
|
scram_H(stored_key, SCRAM_KEY_LEN, stored_key);
|
|
|
|
scram_ServerKey(salted_password, server_key);
|
|
|
|
/*----------
|
|
* The format is:
|
|
* SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>
|
|
*----------
|
|
*/
|
|
maxlen = strlen("SCRAM-SHA-256") + 1
|
|
+ 10 + 1 /* iteration count */
|
|
+ pg_b64_enc_len(saltlen) + 1 /* Base64-encoded salt */
|
|
+ pg_b64_enc_len(SCRAM_KEY_LEN) + 1 /* Base64-encoded StoredKey */
|
|
+ pg_b64_enc_len(SCRAM_KEY_LEN) + 1; /* Base64-encoded ServerKey */
|
|
|
|
#ifdef FRONTEND
|
|
result = malloc(maxlen);
|
|
if (!result)
|
|
return NULL;
|
|
#else
|
|
result = palloc(maxlen);
|
|
#endif
|
|
|
|
p = result + sprintf(result, "SCRAM-SHA-256$%d:", iterations);
|
|
|
|
p += pg_b64_encode(salt, saltlen, p);
|
|
*(p++) = '$';
|
|
p += pg_b64_encode((char *) stored_key, SCRAM_KEY_LEN, p);
|
|
*(p++) = ':';
|
|
p += pg_b64_encode((char *) server_key, SCRAM_KEY_LEN, p);
|
|
*(p++) = '\0';
|
|
|
|
Assert(p - result <= maxlen);
|
|
|
|
return result;
|
|
}
|