mirror of
https://git.postgresql.org/git/postgresql.git
synced 2026-02-07 18:57:39 +08:00
* Buffer refcount cleanup (per my "progress report" to pghackers, 9/22). * Add links to backend PROC structs to sinval's array of per-backend info, and use these links for routines that need to check the state of all backends (rather than the slow, complicated search of the ShmemIndex hashtable that was used before). Add databaseOID to PROC structs. * Use this to implement an interlock that prevents DESTROY DATABASE of a database containing running backends. (It's a little tricky to prevent a concurrently-starting backend from getting in there, since the new backend is not able to lock anything at the time it tries to look up its database in pg_database. My solution is to recheck that the DB is OK at the end of InitPostgres. It may not be a 100% solution, but it's a lot better than no interlock at all...) * In ALTER TABLE RENAME, flush buffers for the relation before doing the rename of the physical files, to ensure we don't get failures later from mdblindwrt(). * Update TRUNCATE patch so that it actually compiles against current sources :-(. You should do "make clean all" after pulling these changes.
1108 lines
30 KiB
C
1108 lines
30 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeIndexscan.c
|
|
* Routines to support indexes and indexed scans of relations
|
|
*
|
|
* Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.43 1999/09/24 00:24:23 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecInsertIndexTuples inserts tuples into indices on result relation
|
|
*
|
|
* ExecIndexScan scans a relation using indices
|
|
* ExecIndexNext using index to retrieve next tuple
|
|
* ExecInitIndexScan creates and initializes state info.
|
|
* ExecIndexReScan rescans the indexed relation.
|
|
* ExecEndIndexScan releases all storage.
|
|
* ExecIndexMarkPos marks scan position.
|
|
* ExecIndexRestrPos restores scan position.
|
|
*
|
|
* NOTES
|
|
* the code supporting ExecInsertIndexTuples should be
|
|
* collected and merged with the genam stuff.
|
|
*
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/executor.h"
|
|
#include "executor/nodeIndexscan.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "parser/parsetree.h"
|
|
|
|
/* ----------------
|
|
* Misc stuff to move to executor.h soon -cim 6/5/90
|
|
* ----------------
|
|
*/
|
|
#define NO_OP 0
|
|
#define LEFT_OP 1
|
|
#define RIGHT_OP 2
|
|
|
|
static TupleTableSlot *IndexNext(IndexScan *node);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* IndexNext
|
|
*
|
|
* Retrieve a tuple from the IndexScan node's currentRelation
|
|
* using the indices in the IndexScanState information.
|
|
*
|
|
* note: the old code mentions 'Primary indices'. to my knowledge
|
|
* we only support a single secondary index. -cim 9/11/89
|
|
*
|
|
* old comments:
|
|
* retrieve a tuple from relation using the indices given.
|
|
* The indices are used in the order they appear in 'indices'.
|
|
* The indices may be primary or secondary indices:
|
|
* * primary index -- scan the relation 'relID' using keys supplied.
|
|
* * secondary index -- scan the index relation to get the 'tid' for
|
|
* a tuple in the relation 'relID'.
|
|
* If the current index(pointed by 'indexPtr') fails to return a
|
|
* tuple, the next index in the indices is used.
|
|
*
|
|
* bug fix so that it should retrieve on a null scan key.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
IndexNext(IndexScan *node)
|
|
{
|
|
EState *estate;
|
|
CommonScanState *scanstate;
|
|
IndexScanState *indexstate;
|
|
ScanDirection direction;
|
|
Snapshot snapshot;
|
|
IndexScanDescPtr scanDescs;
|
|
IndexScanDesc scandesc;
|
|
Relation heapRelation;
|
|
RetrieveIndexResult result;
|
|
HeapTuple tuple;
|
|
TupleTableSlot *slot;
|
|
Buffer buffer = InvalidBuffer;
|
|
int numIndices;
|
|
|
|
bool bBackward;
|
|
int indexNumber;
|
|
|
|
/* ----------------
|
|
* extract necessary information from index scan node
|
|
* ----------------
|
|
*/
|
|
estate = node->scan.plan.state;
|
|
direction = estate->es_direction;
|
|
if (ScanDirectionIsBackward(node->indxorderdir))
|
|
{
|
|
if (ScanDirectionIsForward(direction))
|
|
direction = BackwardScanDirection;
|
|
else if (ScanDirectionIsBackward(direction))
|
|
direction = ForwardScanDirection;
|
|
}
|
|
snapshot = estate->es_snapshot;
|
|
scanstate = node->scan.scanstate;
|
|
indexstate = node->indxstate;
|
|
scanDescs = indexstate->iss_ScanDescs;
|
|
heapRelation = scanstate->css_currentRelation;
|
|
numIndices = indexstate->iss_NumIndices;
|
|
slot = scanstate->css_ScanTupleSlot;
|
|
|
|
/*
|
|
* Check if we are evaluating PlanQual for tuple of this relation.
|
|
* Additional checking is not good, but no other way for now. We could
|
|
* introduce new nodes for this case and handle IndexScan --> NewNode
|
|
* switching in Init/ReScan plan...
|
|
*/
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
|
|
{
|
|
int iptr;
|
|
|
|
ExecClearTuple(slot);
|
|
if (estate->es_evTupleNull[node->scan.scanrelid - 1])
|
|
return slot; /* return empty slot */
|
|
|
|
/* probably ought to use ExecStoreTuple here... */
|
|
slot->val = estate->es_evTuple[node->scan.scanrelid - 1];
|
|
slot->ttc_shouldFree = false;
|
|
|
|
for (iptr = 0; iptr < numIndices; iptr++)
|
|
{
|
|
scanstate->cstate.cs_ExprContext->ecxt_scantuple = slot;
|
|
if (ExecQual(nth(iptr, node->indxqualorig),
|
|
scanstate->cstate.cs_ExprContext))
|
|
break;
|
|
}
|
|
if (iptr == numIndices) /* would not be returned by indices */
|
|
slot->val = NULL;
|
|
|
|
/* Flag for the next call that no more tuples */
|
|
estate->es_evTupleNull[node->scan.scanrelid - 1] = true;
|
|
return (slot);
|
|
}
|
|
|
|
tuple = &(indexstate->iss_htup);
|
|
|
|
/* ----------------
|
|
* ok, now that we have what we need, fetch an index tuple.
|
|
* if scanning this index succeeded then return the
|
|
* appropriate heap tuple.. else return NULL.
|
|
* ----------------
|
|
*/
|
|
bBackward = ScanDirectionIsBackward(direction);
|
|
if (bBackward)
|
|
{
|
|
indexNumber = numIndices - indexstate->iss_IndexPtr - 1;
|
|
if (indexNumber < 0)
|
|
{
|
|
indexNumber = 0;
|
|
indexstate->iss_IndexPtr = numIndices - 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((indexNumber = indexstate->iss_IndexPtr) < 0)
|
|
{
|
|
indexNumber = 0;
|
|
indexstate->iss_IndexPtr = 0;
|
|
}
|
|
}
|
|
while (indexNumber < numIndices)
|
|
{
|
|
scandesc = scanDescs[indexstate->iss_IndexPtr];
|
|
while ((result = index_getnext(scandesc, direction)) != NULL)
|
|
{
|
|
tuple->t_self = result->heap_iptr;
|
|
heap_fetch(heapRelation, snapshot, tuple, &buffer);
|
|
pfree(result);
|
|
|
|
if (tuple->t_data != NULL)
|
|
{
|
|
bool prev_matches = false;
|
|
int prev_index;
|
|
|
|
/* ----------------
|
|
* store the scanned tuple in the scan tuple slot of
|
|
* the scan state. Eventually we will only do this and not
|
|
* return a tuple. Note: we pass 'false' because tuples
|
|
* returned by amgetnext are pointers onto disk pages and
|
|
* must not be pfree()'d.
|
|
* ----------------
|
|
*/
|
|
ExecStoreTuple(tuple, /* tuple to store */
|
|
slot, /* slot to store in */
|
|
buffer, /* buffer associated with tuple */
|
|
false); /* don't pfree */
|
|
|
|
/*
|
|
* At this point we have an extra pin on the buffer,
|
|
* because ExecStoreTuple incremented the pin count.
|
|
* Drop our local pin.
|
|
*/
|
|
ReleaseBuffer(buffer);
|
|
|
|
/*
|
|
* We must check to see if the current tuple would have
|
|
* been matched by an earlier index, so we don't double
|
|
* report it. We do this by passing the tuple through
|
|
* ExecQual and look for failure with all previous
|
|
* qualifications.
|
|
*/
|
|
for (prev_index = 0; prev_index < indexstate->iss_IndexPtr;
|
|
prev_index++)
|
|
{
|
|
scanstate->cstate.cs_ExprContext->ecxt_scantuple = slot;
|
|
if (ExecQual(nth(prev_index, node->indxqualorig),
|
|
scanstate->cstate.cs_ExprContext))
|
|
{
|
|
prev_matches = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!prev_matches)
|
|
return slot;
|
|
else
|
|
ExecClearTuple(slot);
|
|
}
|
|
}
|
|
if (indexNumber < numIndices)
|
|
{
|
|
indexNumber++;
|
|
if (bBackward)
|
|
indexstate->iss_IndexPtr--;
|
|
else
|
|
indexstate->iss_IndexPtr++;
|
|
}
|
|
}
|
|
/* ----------------
|
|
* if we get here it means the index scan failed so we
|
|
* are at the end of the scan..
|
|
* ----------------
|
|
*/
|
|
return ExecClearTuple(slot);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexScan(node)
|
|
*
|
|
* old comments:
|
|
* Scans the relation using primary or secondary indices and returns
|
|
* the next qualifying tuple in the direction specified.
|
|
* It calls ExecScan() and passes it the access methods which returns
|
|
* the next tuple using the indices.
|
|
*
|
|
* Conditions:
|
|
* -- the "cursor" maintained by the AMI is positioned at the tuple
|
|
* returned previously.
|
|
*
|
|
* Initial States:
|
|
* -- the relation indicated is opened for scanning so that the
|
|
* "cursor" is positioned before the first qualifying tuple.
|
|
* -- all index realtions are opened for scanning.
|
|
* -- indexPtr points to the first index.
|
|
* -- state variable ruleFlag = nil.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecIndexScan(IndexScan *node)
|
|
{
|
|
/* ----------------
|
|
* use IndexNext as access method
|
|
* ----------------
|
|
*/
|
|
return ExecScan(&node->scan, IndexNext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexReScan(node)
|
|
*
|
|
* Recalculates the value of the scan keys whose value depends on
|
|
* information known at runtime and rescans the indexed relation.
|
|
* Updating the scan key was formerly done separately in
|
|
* ExecUpdateIndexScanKeys. Integrating it into ReScan
|
|
* makes rescans of indices and
|
|
* relations/general streams more uniform.
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexReScan(IndexScan *node, ExprContext *exprCtxt, Plan *parent)
|
|
{
|
|
EState *estate;
|
|
IndexScanState *indexstate;
|
|
ScanDirection direction;
|
|
IndexScanDescPtr scanDescs;
|
|
ScanKey *scanKeys;
|
|
IndexScanDesc scan;
|
|
ScanKey skey;
|
|
int numIndices;
|
|
int i;
|
|
|
|
Pointer *runtimeKeyInfo;
|
|
int *numScanKeys;
|
|
List *indxqual;
|
|
List *qual;
|
|
int n_keys;
|
|
ScanKey scan_keys;
|
|
int *run_keys;
|
|
int j;
|
|
Expr *clause;
|
|
Node *scanexpr;
|
|
Datum scanvalue;
|
|
bool isNull;
|
|
bool isDone;
|
|
|
|
indexstate = node->indxstate;
|
|
estate = node->scan.plan.state;
|
|
direction = estate->es_direction;
|
|
numIndices = indexstate->iss_NumIndices;
|
|
scanDescs = indexstate->iss_ScanDescs;
|
|
scanKeys = indexstate->iss_ScanKeys;
|
|
runtimeKeyInfo = (Pointer *) indexstate->iss_RuntimeKeyInfo;
|
|
indxqual = node->indxqual;
|
|
numScanKeys = indexstate->iss_NumScanKeys;
|
|
indexstate->iss_IndexPtr = -1;
|
|
if (ScanDirectionIsBackward(node->indxorderdir))
|
|
indexstate->iss_IndexPtr = numIndices;
|
|
|
|
/* If this is re-scanning of PlanQual ... */
|
|
if (estate->es_evTuple != NULL &&
|
|
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
|
|
{
|
|
estate->es_evTupleNull[node->scan.scanrelid - 1] = false;
|
|
return;
|
|
}
|
|
|
|
/* it's possible in subselects */
|
|
if (exprCtxt == NULL)
|
|
exprCtxt = node->scan.scanstate->cstate.cs_ExprContext;
|
|
|
|
node->scan.scanstate->cstate.cs_ExprContext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
|
|
|
|
/*
|
|
* get the index qualifications and recalculate the appropriate values
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
qual = nth(i, indxqual);
|
|
n_keys = numScanKeys[i];
|
|
scan_keys = (ScanKey) scanKeys[i];
|
|
|
|
if (runtimeKeyInfo)
|
|
{
|
|
run_keys = (int *) runtimeKeyInfo[i];
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
|
|
/*
|
|
* If we have a run-time key, then extract the run-time
|
|
* expression and evaluate it with respect to the current
|
|
* outer tuple. We then stick the result into the scan
|
|
* key.
|
|
*/
|
|
if (run_keys[j] != NO_OP)
|
|
{
|
|
clause = nth(j, qual);
|
|
scanexpr = (run_keys[j] == RIGHT_OP) ?
|
|
(Node *) get_rightop(clause) : (Node *) get_leftop(clause);
|
|
|
|
/*
|
|
* pass in isDone but ignore it. We don't iterate in
|
|
* quals
|
|
*/
|
|
scanvalue = (Datum)
|
|
ExecEvalExpr(scanexpr, exprCtxt, &isNull, &isDone);
|
|
scan_keys[j].sk_argument = scanvalue;
|
|
if (isNull)
|
|
scan_keys[j].sk_flags |= SK_ISNULL;
|
|
else
|
|
scan_keys[j].sk_flags &= ~SK_ISNULL;
|
|
}
|
|
}
|
|
}
|
|
scan = scanDescs[i];
|
|
skey = scanKeys[i];
|
|
index_rescan(scan, direction, skey);
|
|
}
|
|
/* ----------------
|
|
* perhaps return something meaningful
|
|
* ----------------
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndIndexScan
|
|
*
|
|
* old comments
|
|
* Releases any storage allocated through C routines.
|
|
* Returns nothing.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndIndexScan(IndexScan *node)
|
|
{
|
|
CommonScanState *scanstate;
|
|
IndexScanState *indexstate;
|
|
Pointer *runtimeKeyInfo;
|
|
ScanKey *scanKeys;
|
|
List *indxqual;
|
|
int *numScanKeys;
|
|
int numIndices;
|
|
int i;
|
|
|
|
scanstate = node->scan.scanstate;
|
|
indexstate = node->indxstate;
|
|
indxqual = node->indxqual;
|
|
runtimeKeyInfo = (Pointer *) indexstate->iss_RuntimeKeyInfo;
|
|
|
|
/* ----------------
|
|
* extract information from the node
|
|
* ----------------
|
|
*/
|
|
numIndices = indexstate->iss_NumIndices;
|
|
scanKeys = indexstate->iss_ScanKeys;
|
|
numScanKeys = indexstate->iss_NumScanKeys;
|
|
|
|
/* ----------------
|
|
* Free the projection info and the scan attribute info
|
|
*
|
|
* Note: we don't ExecFreeResultType(scanstate)
|
|
* because the rule manager depends on the tupType
|
|
* returned by ExecMain(). So for now, this
|
|
* is freed at end-transaction time. -cim 6/2/91
|
|
* ----------------
|
|
*/
|
|
ExecFreeProjectionInfo(&scanstate->cstate);
|
|
|
|
/* ----------------
|
|
* close the heap and index relations
|
|
* ----------------
|
|
*/
|
|
ExecCloseR((Plan *) node);
|
|
|
|
/* ----------------
|
|
* free the scan keys used in scanning the indices
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
if (scanKeys[i] != NULL)
|
|
pfree(scanKeys[i]);
|
|
}
|
|
pfree(scanKeys);
|
|
pfree(numScanKeys);
|
|
|
|
if (runtimeKeyInfo)
|
|
{
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
List *qual;
|
|
int n_keys;
|
|
|
|
qual = nth(i, indxqual);
|
|
n_keys = length(qual);
|
|
if (n_keys > 0)
|
|
pfree(runtimeKeyInfo[i]);
|
|
}
|
|
pfree(runtimeKeyInfo);
|
|
}
|
|
|
|
/* ----------------
|
|
* clear out tuple table slots
|
|
* ----------------
|
|
*/
|
|
ExecClearTuple(scanstate->cstate.cs_ResultTupleSlot);
|
|
ExecClearTuple(scanstate->css_ScanTupleSlot);
|
|
/* ExecClearTuple(scanstate->css_RawTupleSlot); */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexMarkPos
|
|
*
|
|
* old comments
|
|
* Marks scan position by marking the current index.
|
|
* Returns nothing.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexMarkPos(IndexScan *node)
|
|
{
|
|
IndexScanState *indexstate;
|
|
IndexScanDescPtr indexScanDescs;
|
|
IndexScanDesc scanDesc;
|
|
int indexPtr;
|
|
|
|
indexstate = node->indxstate;
|
|
indexPtr = indexstate->iss_MarkIndexPtr = indexstate->iss_IndexPtr;
|
|
indexScanDescs = indexstate->iss_ScanDescs;
|
|
scanDesc = indexScanDescs[indexPtr];
|
|
|
|
#ifdef NOT_USED
|
|
IndexScanMarkPosition(scanDesc);
|
|
#endif
|
|
index_markpos(scanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecIndexRestrPos
|
|
*
|
|
* old comments
|
|
* Restores scan position by restoring the current index.
|
|
* Returns nothing.
|
|
*
|
|
* XXX Assumes previously marked scan position belongs to current index
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecIndexRestrPos(IndexScan *node)
|
|
{
|
|
IndexScanState *indexstate;
|
|
IndexScanDescPtr indexScanDescs;
|
|
IndexScanDesc scanDesc;
|
|
int indexPtr;
|
|
|
|
indexstate = node->indxstate;
|
|
indexPtr = indexstate->iss_IndexPtr = indexstate->iss_MarkIndexPtr;
|
|
indexScanDescs = indexstate->iss_ScanDescs;
|
|
scanDesc = indexScanDescs[indexPtr];
|
|
|
|
#ifdef NOT_USED
|
|
IndexScanRestorePosition(scanDesc);
|
|
#endif
|
|
index_restrpos(scanDesc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitIndexScan
|
|
*
|
|
* Initializes the index scan's state information, creates
|
|
* scan keys, and opens the base and index relations.
|
|
*
|
|
* Note: index scans have 2 sets of state information because
|
|
* we have to keep track of the base relation and the
|
|
* index relations.
|
|
*
|
|
* old comments
|
|
* Creates the run-time state information for the node and
|
|
* sets the relation id to contain relevant decriptors.
|
|
*
|
|
* Parameters:
|
|
* node: IndexNode node produced by the planner.
|
|
* estate: the execution state initialized in InitPlan.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
bool
|
|
ExecInitIndexScan(IndexScan *node, EState *estate, Plan *parent)
|
|
{
|
|
IndexScanState *indexstate;
|
|
CommonScanState *scanstate;
|
|
List *indxqual;
|
|
List *indxid;
|
|
int i;
|
|
int numIndices;
|
|
int indexPtr;
|
|
ScanKey *scanKeys;
|
|
int *numScanKeys;
|
|
RelationPtr relationDescs;
|
|
IndexScanDescPtr scanDescs;
|
|
Pointer *runtimeKeyInfo;
|
|
bool have_runtime_keys;
|
|
List *rangeTable;
|
|
RangeTblEntry *rtentry;
|
|
Index relid;
|
|
Oid reloid;
|
|
|
|
Relation currentRelation;
|
|
HeapScanDesc currentScanDesc;
|
|
ScanDirection direction;
|
|
int baseid;
|
|
|
|
List *execParam = NULL;
|
|
|
|
/* ----------------
|
|
* assign execution state to node
|
|
* ----------------
|
|
*/
|
|
node->scan.plan.state = estate;
|
|
|
|
/* --------------------------------
|
|
* Part 1) initialize scan state
|
|
*
|
|
* create new CommonScanState for node
|
|
* --------------------------------
|
|
*/
|
|
scanstate = makeNode(CommonScanState);
|
|
/*
|
|
scanstate->ss_ProcOuterFlag = false;
|
|
scanstate->ss_OldRelId = 0;
|
|
*/
|
|
|
|
node->scan.scanstate = scanstate;
|
|
|
|
/* ----------------
|
|
* assign node's base_id .. we don't use AssignNodeBaseid() because
|
|
* the increment is done later on after we assign the index scan's
|
|
* scanstate. see below.
|
|
* ----------------
|
|
*/
|
|
baseid = estate->es_BaseId;
|
|
/* scanstate->csstate.cstate.bnode.base_id = baseid; */
|
|
scanstate->cstate.cs_base_id = baseid;
|
|
|
|
/* ----------------
|
|
* create expression context for node
|
|
* ----------------
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->cstate);
|
|
|
|
#define INDEXSCAN_NSLOTS 3
|
|
/* ----------------
|
|
* tuple table initialization
|
|
* ----------------
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &scanstate->cstate);
|
|
ExecInitScanTupleSlot(estate, scanstate);
|
|
/* ExecInitRawTupleSlot(estate, scanstate); */
|
|
|
|
/* ----------------
|
|
* initialize projection info. result type comes from scan desc
|
|
* below..
|
|
* ----------------
|
|
*/
|
|
ExecAssignProjectionInfo((Plan *) node, &scanstate->cstate);
|
|
|
|
/* --------------------------------
|
|
* Part 2) initialize index scan state
|
|
*
|
|
* create new IndexScanState for node
|
|
* --------------------------------
|
|
*/
|
|
indexstate = makeNode(IndexScanState);
|
|
indexstate->iss_NumIndices = 0;
|
|
indexstate->iss_IndexPtr = -1;
|
|
indexstate->iss_ScanKeys = NULL;
|
|
indexstate->iss_NumScanKeys = NULL;
|
|
indexstate->iss_RuntimeKeyInfo = NULL;
|
|
indexstate->iss_RelationDescs = NULL;
|
|
indexstate->iss_ScanDescs = NULL;
|
|
|
|
node->indxstate = indexstate;
|
|
|
|
/* ----------------
|
|
* assign base id to index scan state also
|
|
* ----------------
|
|
*/
|
|
indexstate->cstate.cs_base_id = baseid;
|
|
baseid++;
|
|
estate->es_BaseId = baseid;
|
|
|
|
/* ----------------
|
|
* get the index node information
|
|
* ----------------
|
|
*/
|
|
indxid = node->indxid;
|
|
indxqual = node->indxqual;
|
|
numIndices = length(indxid);
|
|
indexPtr = -1;
|
|
|
|
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
|
|
|
|
/* ----------------
|
|
* scanKeys is used to keep track of the ScanKey's. This is needed
|
|
* because a single scan may use several indices and each index has
|
|
* its own ScanKey.
|
|
* ----------------
|
|
*/
|
|
numScanKeys = (int *) palloc(numIndices * sizeof(int));
|
|
scanKeys = (ScanKey *) palloc(numIndices * sizeof(ScanKey));
|
|
relationDescs = (RelationPtr) palloc(numIndices * sizeof(Relation));
|
|
scanDescs = (IndexScanDescPtr) palloc(numIndices * sizeof(IndexScanDesc));
|
|
|
|
/* ----------------
|
|
* initialize runtime key info.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = false;
|
|
runtimeKeyInfo = (Pointer *)
|
|
palloc(numIndices * sizeof(Pointer));
|
|
|
|
/* ----------------
|
|
* build the index scan keys from the index qualification
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
int j;
|
|
List *qual;
|
|
int n_keys;
|
|
ScanKey scan_keys;
|
|
int *run_keys;
|
|
|
|
qual = nth(i, indxqual);
|
|
n_keys = length(qual);
|
|
scan_keys = (n_keys <= 0) ? NULL :
|
|
(ScanKey) palloc(n_keys * sizeof(ScanKeyData));
|
|
run_keys = (n_keys <= 0) ? NULL :
|
|
(int *) palloc(n_keys * sizeof(int));
|
|
|
|
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
|
|
|
|
/* ----------------
|
|
* for each opclause in the given qual,
|
|
* convert each qual's opclause into a single scan key
|
|
* ----------------
|
|
*/
|
|
for (j = 0; j < n_keys; j++)
|
|
{
|
|
Expr *clause; /* one part of index qual */
|
|
Oper *op; /* operator used in scan.. */
|
|
Node *leftop; /* expr on lhs of operator */
|
|
Node *rightop;/* expr on rhs ... */
|
|
bits16 flags = 0;
|
|
|
|
int scanvar;/* which var identifies varattno */
|
|
AttrNumber varattno = 0; /* att number used in scan */
|
|
Oid opid; /* operator id used in scan */
|
|
Datum scanvalue = 0; /* value used in scan (if const) */
|
|
|
|
/* ----------------
|
|
* extract clause information from the qualification
|
|
* ----------------
|
|
*/
|
|
clause = nth(j, qual);
|
|
|
|
op = (Oper *) clause->oper;
|
|
if (!IsA(op, Oper))
|
|
elog(ERROR, "ExecInitIndexScan: op not an Oper!");
|
|
|
|
opid = op->opid;
|
|
|
|
/* ----------------
|
|
* Here we figure out the contents of the index qual.
|
|
* The usual case is (var op const) or (const op var)
|
|
* which means we form a scan key for the attribute
|
|
* listed in the var node and use the value of the const.
|
|
*
|
|
* If we don't have a const node, then it means that
|
|
* one of the var nodes refers to the "scan" tuple and
|
|
* is used to determine which attribute to scan, and the
|
|
* other expression is used to calculate the value used in
|
|
* scanning the index.
|
|
*
|
|
* This means our index scan's scan key is a function of
|
|
* information obtained during the execution of the plan
|
|
* in which case we need to recalculate the index scan key
|
|
* at run time.
|
|
*
|
|
* Hence, we set have_runtime_keys to true and then set
|
|
* the appropriate flag in run_keys to LEFT_OP or RIGHT_OP.
|
|
* The corresponding scan keys are recomputed at run time.
|
|
*
|
|
* XXX Although this code *thinks* it can handle an indexqual
|
|
* with the indexkey on either side, in fact it cannot.
|
|
* Indexscans only work with quals that have the indexkey on
|
|
* the left (the planner/optimizer makes sure it never passes
|
|
* anything else). The reason: the scankey machinery has no
|
|
* provision for distinguishing which side of the operator is
|
|
* the indexed attribute and which is the compared-to constant.
|
|
* It just assumes that the attribute is on the left :-(
|
|
*
|
|
* I am leaving this code able to support both ways, even though
|
|
* half of it is dead code, on the off chance that someone will
|
|
* fix the scankey machinery someday --- tgl 8/11/99.
|
|
* ----------------
|
|
*/
|
|
|
|
scanvar = NO_OP;
|
|
|
|
/* ----------------
|
|
* determine information in leftop
|
|
* ----------------
|
|
*/
|
|
leftop = (Node *) get_leftop(clause);
|
|
|
|
Assert(leftop != NULL);
|
|
|
|
if (IsA(leftop, Var) && var_is_rel((Var *) leftop))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a "rel-var", then it means
|
|
* that it is a var node which tells us which
|
|
* attribute to use for our scan key.
|
|
* ----------------
|
|
*/
|
|
varattno = ((Var *) leftop)->varattno;
|
|
scanvar = LEFT_OP;
|
|
}
|
|
else if (is_funcclause(leftop) &&
|
|
var_is_rel(lfirst(((Expr *) leftop)->args)))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a func node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* Since functional indices have only one attribute
|
|
* the attno must always be set to 1.
|
|
* ----------------
|
|
*/
|
|
varattno = 1;
|
|
scanvar = LEFT_OP;
|
|
}
|
|
else if (IsA(leftop, Const))
|
|
{
|
|
/* ----------------
|
|
* if the leftop is a const node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
run_keys[j] = NO_OP;
|
|
scanvalue = ((Const *) leftop)->constvalue;
|
|
}
|
|
else if (IsA(leftop, Param))
|
|
{
|
|
bool isnull;
|
|
|
|
/* ----------------
|
|
* if the leftop is a Param node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
|
|
/* Life was so easy before ... subselects */
|
|
if (((Param *) leftop)->paramkind == PARAM_EXEC)
|
|
{
|
|
have_runtime_keys = true;
|
|
run_keys[j] = LEFT_OP;
|
|
execParam = lappendi(execParam, ((Param *) leftop)->paramid);
|
|
}
|
|
else
|
|
{
|
|
scanvalue = ExecEvalParam((Param *) leftop,
|
|
scanstate->cstate.cs_ExprContext,
|
|
&isnull);
|
|
if (isnull)
|
|
flags |= SK_ISNULL;
|
|
|
|
run_keys[j] = NO_OP;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* ----------------
|
|
* otherwise, the leftop contains information usable
|
|
* at runtime to figure out the value to place in our
|
|
* scan key.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = true;
|
|
run_keys[j] = LEFT_OP;
|
|
scanvalue = Int32GetDatum((int32) true);
|
|
}
|
|
|
|
/* ----------------
|
|
* now determine information in rightop
|
|
* ----------------
|
|
*/
|
|
rightop = (Node *) get_rightop(clause);
|
|
|
|
Assert(rightop != NULL);
|
|
|
|
if (IsA(rightop, Var) && var_is_rel((Var *) rightop))
|
|
{
|
|
/* ----------------
|
|
* here we make sure only one op identifies the
|
|
* scan-attribute...
|
|
* ----------------
|
|
*/
|
|
if (scanvar == LEFT_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"both left and right op's are rel-vars");
|
|
|
|
/* ----------------
|
|
* if the rightop is a "rel-var", then it means
|
|
* that it is a var node which tells us which
|
|
* attribute to use for our scan key.
|
|
* ----------------
|
|
*/
|
|
varattno = ((Var *) rightop)->varattno;
|
|
scanvar = RIGHT_OP;
|
|
}
|
|
else if (is_funcclause(rightop) &&
|
|
var_is_rel(lfirst(((Expr *) rightop)->args)))
|
|
{
|
|
/* ----------------
|
|
* if the rightop is a func node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* Since functional indices have only one attribute
|
|
* the attno must always be set to 1.
|
|
* ----------------
|
|
*/
|
|
if (scanvar == LEFT_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"both left and right ops are rel-vars");
|
|
|
|
varattno = 1;
|
|
scanvar = RIGHT_OP;
|
|
}
|
|
else if (IsA(rightop, Const))
|
|
{
|
|
/* ----------------
|
|
* if the rightop is a const node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
run_keys[j] = NO_OP;
|
|
scanvalue = ((Const *) rightop)->constvalue;
|
|
}
|
|
else if (IsA(rightop, Param))
|
|
{
|
|
bool isnull;
|
|
|
|
/* ----------------
|
|
* if the rightop is a Param node then it means
|
|
* it identifies the value to place in our scan key.
|
|
* ----------------
|
|
*/
|
|
|
|
/* Life was so easy before ... subselects */
|
|
if (((Param *) rightop)->paramkind == PARAM_EXEC)
|
|
{
|
|
have_runtime_keys = true;
|
|
run_keys[j] = RIGHT_OP;
|
|
execParam = lappendi(execParam, ((Param *) rightop)->paramid);
|
|
}
|
|
else
|
|
{
|
|
scanvalue = ExecEvalParam((Param *) rightop,
|
|
scanstate->cstate.cs_ExprContext,
|
|
&isnull);
|
|
if (isnull)
|
|
flags |= SK_ISNULL;
|
|
|
|
run_keys[j] = NO_OP;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* ----------------
|
|
* otherwise, the rightop contains information usable
|
|
* at runtime to figure out the value to place in our
|
|
* scan key.
|
|
* ----------------
|
|
*/
|
|
have_runtime_keys = true;
|
|
run_keys[j] = RIGHT_OP;
|
|
scanvalue = Int32GetDatum((int32) true);
|
|
}
|
|
|
|
/* ----------------
|
|
* now check that at least one op tells us the scan
|
|
* attribute...
|
|
* ----------------
|
|
*/
|
|
if (scanvar == NO_OP)
|
|
elog(ERROR, "ExecInitIndexScan: %s",
|
|
"neither leftop nor rightop refer to scan relation");
|
|
|
|
/* ----------------
|
|
* initialize the scan key's fields appropriately
|
|
* ----------------
|
|
*/
|
|
ScanKeyEntryInitialize(&scan_keys[j],
|
|
flags,
|
|
varattno, /* attribute number to
|
|
* scan */
|
|
(RegProcedure) opid, /* reg proc to use */
|
|
(Datum) scanvalue); /* constant */
|
|
}
|
|
|
|
/* ----------------
|
|
* store the key information into our array.
|
|
* ----------------
|
|
*/
|
|
numScanKeys[i] = n_keys;
|
|
scanKeys[i] = scan_keys;
|
|
runtimeKeyInfo[i] = (Pointer) run_keys;
|
|
}
|
|
|
|
indexstate->iss_NumIndices = numIndices;
|
|
if (ScanDirectionIsBackward(node->indxorderdir))
|
|
indexPtr = numIndices;
|
|
indexstate->iss_IndexPtr = indexPtr;
|
|
indexstate->iss_ScanKeys = scanKeys;
|
|
indexstate->iss_NumScanKeys = numScanKeys;
|
|
|
|
/* ----------------
|
|
* If all of our keys have the form (op var const) , then we have no
|
|
* runtime keys so we store NULL in the runtime key info.
|
|
* Otherwise runtime key info contains an array of pointers
|
|
* (one for each index) to arrays of flags (one for each key)
|
|
* which indicate that the qual needs to be evaluated at runtime.
|
|
* -cim 10/24/89
|
|
* ----------------
|
|
*/
|
|
if (have_runtime_keys)
|
|
indexstate->iss_RuntimeKeyInfo = (Pointer) runtimeKeyInfo;
|
|
else
|
|
indexstate->iss_RuntimeKeyInfo = NULL;
|
|
|
|
/* ----------------
|
|
* get the range table and direction information
|
|
* from the execution state (these are needed to
|
|
* open the relations).
|
|
* ----------------
|
|
*/
|
|
rangeTable = estate->es_range_table;
|
|
direction = estate->es_direction;
|
|
|
|
/* ----------------
|
|
* open the base relation
|
|
* ----------------
|
|
*/
|
|
relid = node->scan.scanrelid;
|
|
rtentry = rt_fetch(relid, rangeTable);
|
|
reloid = rtentry->relid;
|
|
|
|
ExecOpenScanR(reloid, /* relation */
|
|
0, /* nkeys */
|
|
(ScanKey) NULL, /* scan key */
|
|
0, /* is index */
|
|
direction, /* scan direction */
|
|
estate->es_snapshot, /* */
|
|
¤tRelation, /* return: rel desc */
|
|
(Pointer *) ¤tScanDesc); /* return: scan desc */
|
|
|
|
scanstate->css_currentRelation = currentRelation;
|
|
scanstate->css_currentScanDesc = currentScanDesc;
|
|
|
|
|
|
/* ----------------
|
|
* get the scan type from the relation descriptor.
|
|
* ----------------
|
|
*/
|
|
ExecAssignScanType(scanstate, RelationGetDescr(currentRelation));
|
|
ExecAssignResultTypeFromTL((Plan *) node, &scanstate->cstate);
|
|
|
|
/* ----------------
|
|
* index scans don't have subtrees..
|
|
* ----------------
|
|
*/
|
|
/* scanstate->ss_ProcOuterFlag = false; */
|
|
|
|
/* ----------------
|
|
* open the index relations and initialize
|
|
* relation and scan descriptors.
|
|
* ----------------
|
|
*/
|
|
for (i = 0; i < numIndices; i++)
|
|
{
|
|
Oid indexOid;
|
|
|
|
indexOid = (Oid) nthi(i, indxid);
|
|
|
|
if (indexOid != 0)
|
|
{
|
|
ExecOpenScanR(indexOid, /* relation */
|
|
numScanKeys[i], /* nkeys */
|
|
scanKeys[i], /* scan key */
|
|
true, /* is index */
|
|
direction, /* scan direction */
|
|
estate->es_snapshot,
|
|
&(relationDescs[i]), /* return: rel desc */
|
|
(Pointer *) &(scanDescs[i]));
|
|
/* return: scan desc */
|
|
}
|
|
}
|
|
|
|
indexstate->iss_RelationDescs = relationDescs;
|
|
indexstate->iss_ScanDescs = scanDescs;
|
|
|
|
indexstate->cstate.cs_TupFromTlist = false;
|
|
|
|
/*
|
|
* if there are some PARAM_EXEC in skankeys then force index rescan on
|
|
* first scan.
|
|
*/
|
|
((Plan *) node)->chgParam = execParam;
|
|
|
|
/* ----------------
|
|
* all done.
|
|
* ----------------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
int
|
|
ExecCountSlotsIndexScan(IndexScan *node)
|
|
{
|
|
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
|
|
ExecCountSlotsNode(innerPlan((Plan *) node)) + INDEXSCAN_NSLOTS;
|
|
}
|