mirror of
https://git.postgresql.org/git/postgresql.git
synced 2026-02-08 01:47:31 +08:00
The new indent version includes numerous fixes thanks to Piotr Stefaniak. The main changes visible in this commit are: * Nicer formatting of function-pointer declarations. * No longer unexpectedly removes spaces in expressions using casts, sizeof, or offsetof. * No longer wants to add a space in "struct structname *varname", as well as some similar cases for const- or volatile-qualified pointers. * Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely. * Fixes bug where comments following declarations were sometimes placed with no space separating them from the code. * Fixes some odd decisions for comments following case labels. * Fixes some cases where comments following code were indented to less than the expected column 33. On the less good side, it now tends to put more whitespace around typedef names that are not listed in typedefs.list. This might encourage us to put more effort into typedef name collection; it's not really a bug in indent itself. There are more changes coming after this round, having to do with comment indentation and alignment of lines appearing within parentheses. I wanted to limit the size of the diffs to something that could be reviewed without one's eyes completely glazing over, so it seemed better to split up the changes as much as practical. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
1119 lines
30 KiB
C
1119 lines
30 KiB
C
/*
|
|
* executing Python code
|
|
*
|
|
* src/pl/plpython/plpy_exec.c
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "commands/trigger.h"
|
|
#include "executor/spi.h"
|
|
#include "funcapi.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/typcache.h"
|
|
|
|
#include "plpython.h"
|
|
|
|
#include "plpy_exec.h"
|
|
|
|
#include "plpy_elog.h"
|
|
#include "plpy_main.h"
|
|
#include "plpy_procedure.h"
|
|
#include "plpy_subxactobject.h"
|
|
|
|
|
|
/* saved state for a set-returning function */
|
|
typedef struct PLySRFState
|
|
{
|
|
PyObject *iter; /* Python iterator producing results */
|
|
PLySavedArgs *savedargs; /* function argument values */
|
|
MemoryContextCallback callback; /* for releasing refcounts when done */
|
|
} PLySRFState;
|
|
|
|
static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc);
|
|
static PLySavedArgs *PLy_function_save_args(PLyProcedure *proc);
|
|
static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs);
|
|
static void PLy_function_drop_args(PLySavedArgs *savedargs);
|
|
static void PLy_global_args_push(PLyProcedure *proc);
|
|
static void PLy_global_args_pop(PLyProcedure *proc);
|
|
static void plpython_srf_cleanup_callback(void *arg);
|
|
static void plpython_return_error_callback(void *arg);
|
|
|
|
static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc,
|
|
HeapTuple *rv);
|
|
static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd,
|
|
TriggerData *tdata, HeapTuple otup);
|
|
static void plpython_trigger_error_callback(void *arg);
|
|
|
|
static PyObject *PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs);
|
|
static void PLy_abort_open_subtransactions(int save_subxact_level);
|
|
|
|
|
|
/* function subhandler */
|
|
Datum
|
|
PLy_exec_function(FunctionCallInfo fcinfo, PLyProcedure *proc)
|
|
{
|
|
Datum rv;
|
|
PyObject *volatile plargs = NULL;
|
|
PyObject *volatile plrv = NULL;
|
|
FuncCallContext *volatile funcctx = NULL;
|
|
PLySRFState *volatile srfstate = NULL;
|
|
ErrorContextCallback plerrcontext;
|
|
|
|
/*
|
|
* If the function is called recursively, we must push outer-level
|
|
* arguments into the stack. This must be immediately before the PG_TRY
|
|
* to ensure that the corresponding pop happens.
|
|
*/
|
|
PLy_global_args_push(proc);
|
|
|
|
PG_TRY();
|
|
{
|
|
if (proc->is_setof)
|
|
{
|
|
/* First Call setup */
|
|
if (SRF_IS_FIRSTCALL())
|
|
{
|
|
funcctx = SRF_FIRSTCALL_INIT();
|
|
srfstate = (PLySRFState *)
|
|
MemoryContextAllocZero(funcctx->multi_call_memory_ctx,
|
|
sizeof(PLySRFState));
|
|
/* Immediately register cleanup callback */
|
|
srfstate->callback.func = plpython_srf_cleanup_callback;
|
|
srfstate->callback.arg = (void *) srfstate;
|
|
MemoryContextRegisterResetCallback(funcctx->multi_call_memory_ctx,
|
|
&srfstate->callback);
|
|
funcctx->user_fctx = (void *) srfstate;
|
|
}
|
|
/* Every call setup */
|
|
funcctx = SRF_PERCALL_SETUP();
|
|
Assert(funcctx != NULL);
|
|
srfstate = (PLySRFState *) funcctx->user_fctx;
|
|
}
|
|
|
|
if (srfstate == NULL || srfstate->iter == NULL)
|
|
{
|
|
/*
|
|
* Non-SETOF function or first time for SETOF function: build
|
|
* args, then actually execute the function.
|
|
*/
|
|
plargs = PLy_function_build_args(fcinfo, proc);
|
|
plrv = PLy_procedure_call(proc, "args", plargs);
|
|
Assert(plrv != NULL);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Second or later call for a SETOF function: restore arguments in
|
|
* globals dict to what they were when we left off. We must do
|
|
* this in case multiple evaluations of the same SETOF function
|
|
* are interleaved. It's a bit annoying, since the iterator may
|
|
* not look at the arguments at all, but we have no way to know
|
|
* that. Fortunately this isn't terribly expensive.
|
|
*/
|
|
if (srfstate->savedargs)
|
|
PLy_function_restore_args(proc, srfstate->savedargs);
|
|
srfstate->savedargs = NULL; /* deleted by restore_args */
|
|
}
|
|
|
|
/*
|
|
* If it returns a set, call the iterator to get the next return item.
|
|
* We stay in the SPI context while doing this, because PyIter_Next()
|
|
* calls back into Python code which might contain SPI calls.
|
|
*/
|
|
if (proc->is_setof)
|
|
{
|
|
if (srfstate->iter == NULL)
|
|
{
|
|
/* first time -- do checks and setup */
|
|
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
|
|
|
|
if (!rsi || !IsA(rsi, ReturnSetInfo) ||
|
|
(rsi->allowedModes & SFRM_ValuePerCall) == 0)
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("unsupported set function return mode"),
|
|
errdetail("PL/Python set-returning functions only support returning one value per call.")));
|
|
}
|
|
rsi->returnMode = SFRM_ValuePerCall;
|
|
|
|
/* Make iterator out of returned object */
|
|
srfstate->iter = PyObject_GetIter(plrv);
|
|
|
|
Py_DECREF(plrv);
|
|
plrv = NULL;
|
|
|
|
if (srfstate->iter == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("returned object cannot be iterated"),
|
|
errdetail("PL/Python set-returning functions must return an iterable object.")));
|
|
}
|
|
|
|
/* Fetch next from iterator */
|
|
plrv = PyIter_Next(srfstate->iter);
|
|
if (plrv == NULL)
|
|
{
|
|
/* Iterator is exhausted or error happened */
|
|
bool has_error = (PyErr_Occurred() != NULL);
|
|
|
|
Py_DECREF(srfstate->iter);
|
|
srfstate->iter = NULL;
|
|
|
|
if (has_error)
|
|
PLy_elog(ERROR, "error fetching next item from iterator");
|
|
|
|
/* Pass a null through the data-returning steps below */
|
|
Py_INCREF(Py_None);
|
|
plrv = Py_None;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* This won't be last call, so save argument values. We do
|
|
* this again each time in case the iterator is changing those
|
|
* values.
|
|
*/
|
|
srfstate->savedargs = PLy_function_save_args(proc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disconnect from SPI manager and then create the return values datum
|
|
* (if the input function does a palloc for it this must not be
|
|
* allocated in the SPI memory context because SPI_finish would free
|
|
* it).
|
|
*/
|
|
if (SPI_finish() != SPI_OK_FINISH)
|
|
elog(ERROR, "SPI_finish failed");
|
|
|
|
plerrcontext.callback = plpython_return_error_callback;
|
|
plerrcontext.previous = error_context_stack;
|
|
error_context_stack = &plerrcontext;
|
|
|
|
/*
|
|
* If the function is declared to return void, the Python return value
|
|
* must be None. For void-returning functions, we also treat a None
|
|
* return value as a special "void datum" rather than NULL (as is the
|
|
* case for non-void-returning functions).
|
|
*/
|
|
if (proc->result.out.d.typoid == VOIDOID)
|
|
{
|
|
if (plrv != Py_None)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("PL/Python function with return type \"void\" did not return None")));
|
|
|
|
fcinfo->isnull = false;
|
|
rv = (Datum) 0;
|
|
}
|
|
else if (plrv == Py_None)
|
|
{
|
|
fcinfo->isnull = true;
|
|
|
|
/*
|
|
* In a SETOF function, the iteration-ending null isn't a real
|
|
* value; don't pass it through the input function, which might
|
|
* complain.
|
|
*/
|
|
if (srfstate && srfstate->iter == NULL)
|
|
rv = (Datum) 0;
|
|
else if (proc->result.is_rowtype < 1)
|
|
rv = InputFunctionCall(&proc->result.out.d.typfunc,
|
|
NULL,
|
|
proc->result.out.d.typioparam,
|
|
-1);
|
|
else
|
|
/* Tuple as None */
|
|
rv = (Datum) NULL;
|
|
}
|
|
else if (proc->result.is_rowtype >= 1)
|
|
{
|
|
TupleDesc desc;
|
|
|
|
/* make sure it's not an unnamed record */
|
|
Assert((proc->result.out.d.typoid == RECORDOID &&
|
|
proc->result.out.d.typmod != -1) ||
|
|
(proc->result.out.d.typoid != RECORDOID &&
|
|
proc->result.out.d.typmod == -1));
|
|
|
|
desc = lookup_rowtype_tupdesc(proc->result.out.d.typoid,
|
|
proc->result.out.d.typmod);
|
|
|
|
rv = PLyObject_ToCompositeDatum(&proc->result, desc, plrv, false);
|
|
fcinfo->isnull = (rv == (Datum) NULL);
|
|
|
|
ReleaseTupleDesc(desc);
|
|
}
|
|
else
|
|
{
|
|
fcinfo->isnull = false;
|
|
rv = (proc->result.out.d.func) (&proc->result.out.d, -1, plrv, false);
|
|
}
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
/* Pop old arguments from the stack if they were pushed above */
|
|
PLy_global_args_pop(proc);
|
|
|
|
Py_XDECREF(plargs);
|
|
Py_XDECREF(plrv);
|
|
|
|
/*
|
|
* If there was an error within a SRF, the iterator might not have
|
|
* been exhausted yet. Clear it so the next invocation of the
|
|
* function will start the iteration again. (This code is probably
|
|
* unnecessary now; plpython_srf_cleanup_callback should take care of
|
|
* cleanup. But it doesn't hurt anything to do it here.)
|
|
*/
|
|
if (srfstate)
|
|
{
|
|
Py_XDECREF(srfstate->iter);
|
|
srfstate->iter = NULL;
|
|
/* And drop any saved args; we won't need them */
|
|
if (srfstate->savedargs)
|
|
PLy_function_drop_args(srfstate->savedargs);
|
|
srfstate->savedargs = NULL;
|
|
}
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
error_context_stack = plerrcontext.previous;
|
|
|
|
/* Pop old arguments from the stack if they were pushed above */
|
|
PLy_global_args_pop(proc);
|
|
|
|
Py_XDECREF(plargs);
|
|
Py_DECREF(plrv);
|
|
|
|
if (srfstate)
|
|
{
|
|
/* We're in a SRF, exit appropriately */
|
|
if (srfstate->iter == NULL)
|
|
{
|
|
/* Iterator exhausted, so we're done */
|
|
SRF_RETURN_DONE(funcctx);
|
|
}
|
|
else if (fcinfo->isnull)
|
|
SRF_RETURN_NEXT_NULL(funcctx);
|
|
else
|
|
SRF_RETURN_NEXT(funcctx, rv);
|
|
}
|
|
|
|
/* Plain function, just return the Datum value (possibly null) */
|
|
return rv;
|
|
}
|
|
|
|
/* trigger subhandler
|
|
*
|
|
* the python function is expected to return Py_None if the tuple is
|
|
* acceptable and unmodified. Otherwise it should return a PyString
|
|
* object who's value is SKIP, or MODIFY. SKIP means don't perform
|
|
* this action. MODIFY means the tuple has been modified, so update
|
|
* tuple and perform action. SKIP and MODIFY assume the trigger fires
|
|
* BEFORE the event and is ROW level. postgres expects the function
|
|
* to take no arguments and return an argument of type trigger.
|
|
*/
|
|
HeapTuple
|
|
PLy_exec_trigger(FunctionCallInfo fcinfo, PLyProcedure *proc)
|
|
{
|
|
HeapTuple rv = NULL;
|
|
PyObject *volatile plargs = NULL;
|
|
PyObject *volatile plrv = NULL;
|
|
TriggerData *tdata;
|
|
|
|
Assert(CALLED_AS_TRIGGER(fcinfo));
|
|
|
|
/*
|
|
* Input/output conversion for trigger tuples. Use the result TypeInfo
|
|
* variable to store the tuple conversion info. We do this over again on
|
|
* each call to cover the possibility that the relation's tupdesc changed
|
|
* since the trigger was last called. PLy_input_tuple_funcs and
|
|
* PLy_output_tuple_funcs are responsible for not doing repetitive work.
|
|
*/
|
|
tdata = (TriggerData *) fcinfo->context;
|
|
|
|
PLy_input_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att);
|
|
PLy_output_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att);
|
|
|
|
PG_TRY();
|
|
{
|
|
int rc PG_USED_FOR_ASSERTS_ONLY;
|
|
|
|
rc = SPI_register_trigger_data(tdata);
|
|
Assert(rc >= 0);
|
|
|
|
plargs = PLy_trigger_build_args(fcinfo, proc, &rv);
|
|
plrv = PLy_procedure_call(proc, "TD", plargs);
|
|
|
|
Assert(plrv != NULL);
|
|
|
|
/*
|
|
* Disconnect from SPI manager
|
|
*/
|
|
if (SPI_finish() != SPI_OK_FINISH)
|
|
elog(ERROR, "SPI_finish failed");
|
|
|
|
/*
|
|
* return of None means we're happy with the tuple
|
|
*/
|
|
if (plrv != Py_None)
|
|
{
|
|
char *srv;
|
|
|
|
if (PyString_Check(plrv))
|
|
srv = PyString_AsString(plrv);
|
|
else if (PyUnicode_Check(plrv))
|
|
srv = PLyUnicode_AsString(plrv);
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_EXCEPTION),
|
|
errmsg("unexpected return value from trigger procedure"),
|
|
errdetail("Expected None or a string.")));
|
|
srv = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
if (pg_strcasecmp(srv, "SKIP") == 0)
|
|
rv = NULL;
|
|
else if (pg_strcasecmp(srv, "MODIFY") == 0)
|
|
{
|
|
TriggerData *tdata = (TriggerData *) fcinfo->context;
|
|
|
|
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) ||
|
|
TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
|
|
rv = PLy_modify_tuple(proc, plargs, tdata, rv);
|
|
else
|
|
ereport(WARNING,
|
|
(errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored")));
|
|
}
|
|
else if (pg_strcasecmp(srv, "OK") != 0)
|
|
{
|
|
/*
|
|
* accept "OK" as an alternative to None; otherwise, raise an
|
|
* error
|
|
*/
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATA_EXCEPTION),
|
|
errmsg("unexpected return value from trigger procedure"),
|
|
errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\".")));
|
|
}
|
|
}
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
Py_XDECREF(plargs);
|
|
Py_XDECREF(plrv);
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
Py_DECREF(plargs);
|
|
Py_DECREF(plrv);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* helper functions for Python code execution */
|
|
|
|
static PyObject *
|
|
PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc)
|
|
{
|
|
PyObject *volatile arg = NULL;
|
|
PyObject *volatile args = NULL;
|
|
int i;
|
|
|
|
PG_TRY();
|
|
{
|
|
args = PyList_New(proc->nargs);
|
|
for (i = 0; i < proc->nargs; i++)
|
|
{
|
|
if (proc->args[i].is_rowtype > 0)
|
|
{
|
|
if (fcinfo->argnull[i])
|
|
arg = NULL;
|
|
else
|
|
{
|
|
HeapTupleHeader td;
|
|
Oid tupType;
|
|
int32 tupTypmod;
|
|
TupleDesc tupdesc;
|
|
HeapTupleData tmptup;
|
|
|
|
td = DatumGetHeapTupleHeader(fcinfo->arg[i]);
|
|
/* Extract rowtype info and find a tupdesc */
|
|
tupType = HeapTupleHeaderGetTypeId(td);
|
|
tupTypmod = HeapTupleHeaderGetTypMod(td);
|
|
tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
|
|
|
|
/* Set up I/O funcs if not done yet */
|
|
if (proc->args[i].is_rowtype != 1)
|
|
PLy_input_tuple_funcs(&(proc->args[i]), tupdesc);
|
|
|
|
/* Build a temporary HeapTuple control structure */
|
|
tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
|
|
tmptup.t_data = td;
|
|
|
|
arg = PLyDict_FromTuple(&(proc->args[i]), &tmptup, tupdesc);
|
|
ReleaseTupleDesc(tupdesc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (fcinfo->argnull[i])
|
|
arg = NULL;
|
|
else
|
|
{
|
|
arg = (proc->args[i].in.d.func) (&(proc->args[i].in.d),
|
|
fcinfo->arg[i]);
|
|
}
|
|
}
|
|
|
|
if (arg == NULL)
|
|
{
|
|
Py_INCREF(Py_None);
|
|
arg = Py_None;
|
|
}
|
|
|
|
if (PyList_SetItem(args, i, arg) == -1)
|
|
PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments");
|
|
|
|
if (proc->argnames && proc->argnames[i] &&
|
|
PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1)
|
|
PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments");
|
|
arg = NULL;
|
|
}
|
|
|
|
/* Set up output conversion for functions returning RECORD */
|
|
if (proc->result.out.d.typoid == RECORDOID)
|
|
{
|
|
TupleDesc desc;
|
|
|
|
if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("function returning record called in context "
|
|
"that cannot accept type record")));
|
|
|
|
/* cache the output conversion functions */
|
|
PLy_output_record_funcs(&(proc->result), desc);
|
|
}
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
Py_XDECREF(arg);
|
|
Py_XDECREF(args);
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
return args;
|
|
}
|
|
|
|
/*
|
|
* Construct a PLySavedArgs struct representing the current values of the
|
|
* procedure's arguments in its globals dict. This can be used to restore
|
|
* those values when exiting a recursive call level or returning control to a
|
|
* set-returning function.
|
|
*
|
|
* This would not be necessary except for an ancient decision to make args
|
|
* available via the proc's globals :-( ... but we're stuck with that now.
|
|
*/
|
|
static PLySavedArgs *
|
|
PLy_function_save_args(PLyProcedure *proc)
|
|
{
|
|
PLySavedArgs *result;
|
|
|
|
/* saved args are always allocated in procedure's context */
|
|
result = (PLySavedArgs *)
|
|
MemoryContextAllocZero(proc->mcxt,
|
|
offsetof(PLySavedArgs, namedargs) +
|
|
proc->nargs * sizeof(PyObject *));
|
|
result->nargs = proc->nargs;
|
|
|
|
/* Fetch the "args" list */
|
|
result->args = PyDict_GetItemString(proc->globals, "args");
|
|
Py_XINCREF(result->args);
|
|
|
|
/* Fetch all the named arguments */
|
|
if (proc->argnames)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < result->nargs; i++)
|
|
{
|
|
if (proc->argnames[i])
|
|
{
|
|
result->namedargs[i] = PyDict_GetItemString(proc->globals,
|
|
proc->argnames[i]);
|
|
Py_XINCREF(result->namedargs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Restore procedure's arguments from a PLySavedArgs struct,
|
|
* then free the struct.
|
|
*/
|
|
static void
|
|
PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs)
|
|
{
|
|
/* Restore named arguments into their slots in the globals dict */
|
|
if (proc->argnames)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < savedargs->nargs; i++)
|
|
{
|
|
if (proc->argnames[i] && savedargs->namedargs[i])
|
|
{
|
|
PyDict_SetItemString(proc->globals, proc->argnames[i],
|
|
savedargs->namedargs[i]);
|
|
Py_DECREF(savedargs->namedargs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Restore the "args" object, too */
|
|
if (savedargs->args)
|
|
{
|
|
PyDict_SetItemString(proc->globals, "args", savedargs->args);
|
|
Py_DECREF(savedargs->args);
|
|
}
|
|
|
|
/* And free the PLySavedArgs struct */
|
|
pfree(savedargs);
|
|
}
|
|
|
|
/*
|
|
* Free a PLySavedArgs struct without restoring the values.
|
|
*/
|
|
static void
|
|
PLy_function_drop_args(PLySavedArgs *savedargs)
|
|
{
|
|
int i;
|
|
|
|
/* Drop references for named args */
|
|
for (i = 0; i < savedargs->nargs; i++)
|
|
{
|
|
Py_XDECREF(savedargs->namedargs[i]);
|
|
}
|
|
|
|
/* Drop ref to the "args" object, too */
|
|
Py_XDECREF(savedargs->args);
|
|
|
|
/* And free the PLySavedArgs struct */
|
|
pfree(savedargs);
|
|
}
|
|
|
|
/*
|
|
* Save away any existing arguments for the given procedure, so that we can
|
|
* install new values for a recursive call. This should be invoked before
|
|
* doing PLy_function_build_args().
|
|
*
|
|
* NB: caller must ensure that PLy_global_args_pop gets invoked once, and
|
|
* only once, per successful completion of PLy_global_args_push. Otherwise
|
|
* we'll end up out-of-sync between the actual call stack and the contents
|
|
* of proc->argstack.
|
|
*/
|
|
static void
|
|
PLy_global_args_push(PLyProcedure *proc)
|
|
{
|
|
/* We only need to push if we are already inside some active call */
|
|
if (proc->calldepth > 0)
|
|
{
|
|
PLySavedArgs *node;
|
|
|
|
/* Build a struct containing current argument values */
|
|
node = PLy_function_save_args(proc);
|
|
|
|
/*
|
|
* Push the saved argument values into the procedure's stack. Once we
|
|
* modify either proc->argstack or proc->calldepth, we had better
|
|
* return without the possibility of error.
|
|
*/
|
|
node->next = proc->argstack;
|
|
proc->argstack = node;
|
|
}
|
|
proc->calldepth++;
|
|
}
|
|
|
|
/*
|
|
* Pop old arguments when exiting a recursive call.
|
|
*
|
|
* Note: the idea here is to adjust the proc's callstack state before doing
|
|
* anything that could possibly fail. In event of any error, we want the
|
|
* callstack to look like we've done the pop. Leaking a bit of memory is
|
|
* tolerable.
|
|
*/
|
|
static void
|
|
PLy_global_args_pop(PLyProcedure *proc)
|
|
{
|
|
Assert(proc->calldepth > 0);
|
|
/* We only need to pop if we were already inside some active call */
|
|
if (proc->calldepth > 1)
|
|
{
|
|
PLySavedArgs *ptr = proc->argstack;
|
|
|
|
/* Pop the callstack */
|
|
Assert(ptr != NULL);
|
|
proc->argstack = ptr->next;
|
|
proc->calldepth--;
|
|
|
|
/* Restore argument values, then free ptr */
|
|
PLy_function_restore_args(proc, ptr);
|
|
}
|
|
else
|
|
{
|
|
/* Exiting call depth 1 */
|
|
Assert(proc->argstack == NULL);
|
|
proc->calldepth--;
|
|
|
|
/*
|
|
* We used to delete the named arguments (but not "args") from the
|
|
* proc's globals dict when exiting the outermost call level for a
|
|
* function. This seems rather pointless though: nothing can see the
|
|
* dict until the function is called again, at which time we'll
|
|
* overwrite those dict entries. So don't bother with that.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Memory context deletion callback for cleaning up a PLySRFState.
|
|
* We need this in case execution of the SRF is terminated early,
|
|
* due to error or the caller simply not running it to completion.
|
|
*/
|
|
static void
|
|
plpython_srf_cleanup_callback(void *arg)
|
|
{
|
|
PLySRFState *srfstate = (PLySRFState *) arg;
|
|
|
|
/* Release refcount on the iter, if we still have one */
|
|
Py_XDECREF(srfstate->iter);
|
|
srfstate->iter = NULL;
|
|
/* And drop any saved args; we won't need them */
|
|
if (srfstate->savedargs)
|
|
PLy_function_drop_args(srfstate->savedargs);
|
|
srfstate->savedargs = NULL;
|
|
}
|
|
|
|
static void
|
|
plpython_return_error_callback(void *arg)
|
|
{
|
|
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
|
|
|
|
if (exec_ctx->curr_proc)
|
|
errcontext("while creating return value");
|
|
}
|
|
|
|
static PyObject *
|
|
PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv)
|
|
{
|
|
TriggerData *tdata = (TriggerData *) fcinfo->context;
|
|
PyObject *pltname,
|
|
*pltevent,
|
|
*pltwhen,
|
|
*pltlevel,
|
|
*pltrelid,
|
|
*plttablename,
|
|
*plttableschema;
|
|
PyObject *pltargs,
|
|
*pytnew,
|
|
*pytold;
|
|
PyObject *volatile pltdata = NULL;
|
|
char *stroid;
|
|
|
|
PG_TRY();
|
|
{
|
|
pltdata = PyDict_New();
|
|
if (!pltdata)
|
|
PLy_elog(ERROR, "could not create new dictionary while building trigger arguments");
|
|
|
|
pltname = PyString_FromString(tdata->tg_trigger->tgname);
|
|
PyDict_SetItemString(pltdata, "name", pltname);
|
|
Py_DECREF(pltname);
|
|
|
|
stroid = DatumGetCString(DirectFunctionCall1(oidout,
|
|
ObjectIdGetDatum(tdata->tg_relation->rd_id)));
|
|
pltrelid = PyString_FromString(stroid);
|
|
PyDict_SetItemString(pltdata, "relid", pltrelid);
|
|
Py_DECREF(pltrelid);
|
|
pfree(stroid);
|
|
|
|
stroid = SPI_getrelname(tdata->tg_relation);
|
|
plttablename = PyString_FromString(stroid);
|
|
PyDict_SetItemString(pltdata, "table_name", plttablename);
|
|
Py_DECREF(plttablename);
|
|
pfree(stroid);
|
|
|
|
stroid = SPI_getnspname(tdata->tg_relation);
|
|
plttableschema = PyString_FromString(stroid);
|
|
PyDict_SetItemString(pltdata, "table_schema", plttableschema);
|
|
Py_DECREF(plttableschema);
|
|
pfree(stroid);
|
|
|
|
if (TRIGGER_FIRED_BEFORE(tdata->tg_event))
|
|
pltwhen = PyString_FromString("BEFORE");
|
|
else if (TRIGGER_FIRED_AFTER(tdata->tg_event))
|
|
pltwhen = PyString_FromString("AFTER");
|
|
else if (TRIGGER_FIRED_INSTEAD(tdata->tg_event))
|
|
pltwhen = PyString_FromString("INSTEAD OF");
|
|
else
|
|
{
|
|
elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event);
|
|
pltwhen = NULL; /* keep compiler quiet */
|
|
}
|
|
PyDict_SetItemString(pltdata, "when", pltwhen);
|
|
Py_DECREF(pltwhen);
|
|
|
|
if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event))
|
|
{
|
|
pltlevel = PyString_FromString("ROW");
|
|
PyDict_SetItemString(pltdata, "level", pltlevel);
|
|
Py_DECREF(pltlevel);
|
|
|
|
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
|
|
{
|
|
pltevent = PyString_FromString("INSERT");
|
|
|
|
PyDict_SetItemString(pltdata, "old", Py_None);
|
|
pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
|
|
tdata->tg_relation->rd_att);
|
|
PyDict_SetItemString(pltdata, "new", pytnew);
|
|
Py_DECREF(pytnew);
|
|
*rv = tdata->tg_trigtuple;
|
|
}
|
|
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
|
|
{
|
|
pltevent = PyString_FromString("DELETE");
|
|
|
|
PyDict_SetItemString(pltdata, "new", Py_None);
|
|
pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
|
|
tdata->tg_relation->rd_att);
|
|
PyDict_SetItemString(pltdata, "old", pytold);
|
|
Py_DECREF(pytold);
|
|
*rv = tdata->tg_trigtuple;
|
|
}
|
|
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
|
|
{
|
|
pltevent = PyString_FromString("UPDATE");
|
|
|
|
pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_newtuple,
|
|
tdata->tg_relation->rd_att);
|
|
PyDict_SetItemString(pltdata, "new", pytnew);
|
|
Py_DECREF(pytnew);
|
|
pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
|
|
tdata->tg_relation->rd_att);
|
|
PyDict_SetItemString(pltdata, "old", pytold);
|
|
Py_DECREF(pytold);
|
|
*rv = tdata->tg_newtuple;
|
|
}
|
|
else
|
|
{
|
|
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
|
|
pltevent = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
PyDict_SetItemString(pltdata, "event", pltevent);
|
|
Py_DECREF(pltevent);
|
|
}
|
|
else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event))
|
|
{
|
|
pltlevel = PyString_FromString("STATEMENT");
|
|
PyDict_SetItemString(pltdata, "level", pltlevel);
|
|
Py_DECREF(pltlevel);
|
|
|
|
PyDict_SetItemString(pltdata, "old", Py_None);
|
|
PyDict_SetItemString(pltdata, "new", Py_None);
|
|
*rv = NULL;
|
|
|
|
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
|
|
pltevent = PyString_FromString("INSERT");
|
|
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
|
|
pltevent = PyString_FromString("DELETE");
|
|
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
|
|
pltevent = PyString_FromString("UPDATE");
|
|
else if (TRIGGER_FIRED_BY_TRUNCATE(tdata->tg_event))
|
|
pltevent = PyString_FromString("TRUNCATE");
|
|
else
|
|
{
|
|
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
|
|
pltevent = NULL; /* keep compiler quiet */
|
|
}
|
|
|
|
PyDict_SetItemString(pltdata, "event", pltevent);
|
|
Py_DECREF(pltevent);
|
|
}
|
|
else
|
|
elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event);
|
|
|
|
if (tdata->tg_trigger->tgnargs)
|
|
{
|
|
/*
|
|
* all strings...
|
|
*/
|
|
int i;
|
|
PyObject *pltarg;
|
|
|
|
pltargs = PyList_New(tdata->tg_trigger->tgnargs);
|
|
for (i = 0; i < tdata->tg_trigger->tgnargs; i++)
|
|
{
|
|
pltarg = PyString_FromString(tdata->tg_trigger->tgargs[i]);
|
|
|
|
/*
|
|
* stolen, don't Py_DECREF
|
|
*/
|
|
PyList_SetItem(pltargs, i, pltarg);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Py_INCREF(Py_None);
|
|
pltargs = Py_None;
|
|
}
|
|
PyDict_SetItemString(pltdata, "args", pltargs);
|
|
Py_DECREF(pltargs);
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
Py_XDECREF(pltdata);
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
return pltdata;
|
|
}
|
|
|
|
static HeapTuple
|
|
PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata,
|
|
HeapTuple otup)
|
|
{
|
|
HeapTuple rtup;
|
|
PyObject *volatile plntup;
|
|
PyObject *volatile plkeys;
|
|
PyObject *volatile plval;
|
|
Datum *volatile modvalues;
|
|
bool *volatile modnulls;
|
|
bool *volatile modrepls;
|
|
ErrorContextCallback plerrcontext;
|
|
|
|
plerrcontext.callback = plpython_trigger_error_callback;
|
|
plerrcontext.previous = error_context_stack;
|
|
error_context_stack = &plerrcontext;
|
|
|
|
plntup = plkeys = plval = NULL;
|
|
modvalues = NULL;
|
|
modnulls = NULL;
|
|
modrepls = NULL;
|
|
|
|
PG_TRY();
|
|
{
|
|
TupleDesc tupdesc;
|
|
int nkeys,
|
|
i;
|
|
|
|
if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("TD[\"new\"] deleted, cannot modify row")));
|
|
Py_INCREF(plntup);
|
|
if (!PyDict_Check(plntup))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("TD[\"new\"] is not a dictionary")));
|
|
|
|
plkeys = PyDict_Keys(plntup);
|
|
nkeys = PyList_Size(plkeys);
|
|
|
|
tupdesc = tdata->tg_relation->rd_att;
|
|
|
|
modvalues = (Datum *) palloc0(tupdesc->natts * sizeof(Datum));
|
|
modnulls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
|
|
modrepls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
PyObject *platt;
|
|
char *plattstr;
|
|
int attn;
|
|
PLyObToDatum *att;
|
|
|
|
platt = PyList_GetItem(plkeys, i);
|
|
if (PyString_Check(platt))
|
|
plattstr = PyString_AsString(platt);
|
|
else if (PyUnicode_Check(platt))
|
|
plattstr = PLyUnicode_AsString(platt);
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DATATYPE_MISMATCH),
|
|
errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i)));
|
|
plattstr = NULL; /* keep compiler quiet */
|
|
}
|
|
attn = SPI_fnumber(tupdesc, plattstr);
|
|
if (attn == SPI_ERROR_NOATTRIBUTE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_COLUMN),
|
|
errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row",
|
|
plattstr)));
|
|
if (attn <= 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot set system attribute \"%s\"",
|
|
plattstr)));
|
|
att = &proc->result.out.r.atts[attn - 1];
|
|
|
|
plval = PyDict_GetItem(plntup, platt);
|
|
if (plval == NULL)
|
|
elog(FATAL, "Python interpreter is probably corrupted");
|
|
|
|
Py_INCREF(plval);
|
|
|
|
if (plval != Py_None)
|
|
{
|
|
modvalues[attn - 1] =
|
|
(att->func) (att,
|
|
tupdesc->attrs[attn - 1]->atttypmod,
|
|
plval,
|
|
false);
|
|
modnulls[attn - 1] = false;
|
|
}
|
|
else
|
|
{
|
|
modvalues[attn - 1] =
|
|
InputFunctionCall(&att->typfunc,
|
|
NULL,
|
|
att->typioparam,
|
|
tupdesc->attrs[attn - 1]->atttypmod);
|
|
modnulls[attn - 1] = true;
|
|
}
|
|
modrepls[attn - 1] = true;
|
|
|
|
Py_DECREF(plval);
|
|
plval = NULL;
|
|
}
|
|
|
|
rtup = heap_modify_tuple(otup, tupdesc, modvalues, modnulls, modrepls);
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
Py_XDECREF(plntup);
|
|
Py_XDECREF(plkeys);
|
|
Py_XDECREF(plval);
|
|
|
|
if (modvalues)
|
|
pfree(modvalues);
|
|
if (modnulls)
|
|
pfree(modnulls);
|
|
if (modrepls)
|
|
pfree(modrepls);
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
Py_DECREF(plntup);
|
|
Py_DECREF(plkeys);
|
|
|
|
pfree(modvalues);
|
|
pfree(modnulls);
|
|
pfree(modrepls);
|
|
|
|
error_context_stack = plerrcontext.previous;
|
|
|
|
return rtup;
|
|
}
|
|
|
|
static void
|
|
plpython_trigger_error_callback(void *arg)
|
|
{
|
|
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
|
|
|
|
if (exec_ctx->curr_proc)
|
|
errcontext("while modifying trigger row");
|
|
}
|
|
|
|
/* execute Python code, propagate Python errors to the backend */
|
|
static PyObject *
|
|
PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs)
|
|
{
|
|
PyObject *rv;
|
|
int volatile save_subxact_level = list_length(explicit_subtransactions);
|
|
|
|
PyDict_SetItemString(proc->globals, kargs, vargs);
|
|
|
|
PG_TRY();
|
|
{
|
|
#if PY_VERSION_HEX >= 0x03020000
|
|
rv = PyEval_EvalCode(proc->code,
|
|
proc->globals, proc->globals);
|
|
#else
|
|
rv = PyEval_EvalCode((PyCodeObject *) proc->code,
|
|
proc->globals, proc->globals);
|
|
#endif
|
|
|
|
/*
|
|
* Since plpy will only let you close subtransactions that you
|
|
* started, you cannot *unnest* subtransactions, only *nest* them
|
|
* without closing.
|
|
*/
|
|
Assert(list_length(explicit_subtransactions) >= save_subxact_level);
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
PLy_abort_open_subtransactions(save_subxact_level);
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
PLy_abort_open_subtransactions(save_subxact_level);
|
|
|
|
/* If the Python code returned an error, propagate it */
|
|
if (rv == NULL)
|
|
PLy_elog(ERROR, NULL);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Abort lingering subtransactions that have been explicitly started
|
|
* by plpy.subtransaction().start() and not properly closed.
|
|
*/
|
|
static void
|
|
PLy_abort_open_subtransactions(int save_subxact_level)
|
|
{
|
|
Assert(save_subxact_level >= 0);
|
|
|
|
while (list_length(explicit_subtransactions) > save_subxact_level)
|
|
{
|
|
PLySubtransactionData *subtransactiondata;
|
|
|
|
Assert(explicit_subtransactions != NIL);
|
|
|
|
ereport(WARNING,
|
|
(errmsg("forcibly aborting a subtransaction that has not been exited")));
|
|
|
|
RollbackAndReleaseCurrentSubTransaction();
|
|
|
|
subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions);
|
|
explicit_subtransactions = list_delete_first(explicit_subtransactions);
|
|
|
|
MemoryContextSwitchTo(subtransactiondata->oldcontext);
|
|
CurrentResourceOwner = subtransactiondata->oldowner;
|
|
pfree(subtransactiondata);
|
|
}
|
|
}
|