Files
postgresql/src/pl/plpython/plpy_exec.c
Tom Lane d727c54317 Fix recursive RECORD-returning plpython functions.
If we recursed to a new call of the same function, with a different
coldeflist (AS clause), it would fail because the inner call would
overwrite the outer call's idea of what to return.  This is vaguely
like 1d2fe56e4 and c5bec5426, but it's not due to any API decisions:
it's just that we computed the actual output rowtype at the start of
the call, and saved it in the per-procedure data structure.  We can
fix it at basically zero cost by doing the computation at the end
of each call instead of the start.

It's not clear that there's any real-world use-case for such a
function, but given that it doesn't cost anything to fix,
it'd be silly not to.

Per report from Andreas Karlsson.  Back-patch to all supported
branches.

Discussion: https://postgr.es/m/1651a46d-3c15-4028-a8c1-d74937b54e19@proxel.se
2024-05-09 13:16:34 -04:00

1127 lines
30 KiB
C

/*
* executing Python code
*
* src/pl/plpython/plpy_exec.c
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "commands/trigger.h"
#include "executor/spi.h"
#include "funcapi.h"
#include "plpy_elog.h"
#include "plpy_exec.h"
#include "plpy_main.h"
#include "plpy_procedure.h"
#include "plpy_subxactobject.h"
#include "plpython.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/typcache.h"
/* saved state for a set-returning function */
typedef struct PLySRFState
{
PyObject *iter; /* Python iterator producing results */
PLySavedArgs *savedargs; /* function argument values */
MemoryContextCallback callback; /* for releasing refcounts when done */
} PLySRFState;
static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc);
static PLySavedArgs *PLy_function_save_args(PLyProcedure *proc);
static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs);
static void PLy_function_drop_args(PLySavedArgs *savedargs);
static void PLy_global_args_push(PLyProcedure *proc);
static void PLy_global_args_pop(PLyProcedure *proc);
static void plpython_srf_cleanup_callback(void *arg);
static void plpython_return_error_callback(void *arg);
static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc,
HeapTuple *rv);
static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd,
TriggerData *tdata, HeapTuple otup);
static void plpython_trigger_error_callback(void *arg);
static PyObject *PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs);
static void PLy_abort_open_subtransactions(int save_subxact_level);
/* function subhandler */
Datum
PLy_exec_function(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
bool is_setof = proc->is_setof;
Datum rv;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
FuncCallContext *volatile funcctx = NULL;
PLySRFState *volatile srfstate = NULL;
ErrorContextCallback plerrcontext;
/*
* If the function is called recursively, we must push outer-level
* arguments into the stack. This must be immediately before the PG_TRY
* to ensure that the corresponding pop happens.
*/
PLy_global_args_push(proc);
PG_TRY();
{
if (is_setof)
{
/* First Call setup */
if (SRF_IS_FIRSTCALL())
{
funcctx = SRF_FIRSTCALL_INIT();
srfstate = (PLySRFState *)
MemoryContextAllocZero(funcctx->multi_call_memory_ctx,
sizeof(PLySRFState));
/* Immediately register cleanup callback */
srfstate->callback.func = plpython_srf_cleanup_callback;
srfstate->callback.arg = (void *) srfstate;
MemoryContextRegisterResetCallback(funcctx->multi_call_memory_ctx,
&srfstate->callback);
funcctx->user_fctx = (void *) srfstate;
}
/* Every call setup */
funcctx = SRF_PERCALL_SETUP();
Assert(funcctx != NULL);
srfstate = (PLySRFState *) funcctx->user_fctx;
Assert(srfstate != NULL);
}
if (srfstate == NULL || srfstate->iter == NULL)
{
/*
* Non-SETOF function or first time for SETOF function: build
* args, then actually execute the function.
*/
plargs = PLy_function_build_args(fcinfo, proc);
plrv = PLy_procedure_call(proc, "args", plargs);
Assert(plrv != NULL);
}
else
{
/*
* Second or later call for a SETOF function: restore arguments in
* globals dict to what they were when we left off. We must do
* this in case multiple evaluations of the same SETOF function
* are interleaved. It's a bit annoying, since the iterator may
* not look at the arguments at all, but we have no way to know
* that. Fortunately this isn't terribly expensive.
*/
if (srfstate->savedargs)
PLy_function_restore_args(proc, srfstate->savedargs);
srfstate->savedargs = NULL; /* deleted by restore_args */
}
/*
* If it returns a set, call the iterator to get the next return item.
* We stay in the SPI context while doing this, because PyIter_Next()
* calls back into Python code which might contain SPI calls.
*/
if (is_setof)
{
if (srfstate->iter == NULL)
{
/* first time -- do checks and setup */
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
if (!rsi || !IsA(rsi, ReturnSetInfo) ||
(rsi->allowedModes & SFRM_ValuePerCall) == 0)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported set function return mode"),
errdetail("PL/Python set-returning functions only support returning one value per call.")));
}
rsi->returnMode = SFRM_ValuePerCall;
/* Make iterator out of returned object */
srfstate->iter = PyObject_GetIter(plrv);
Py_DECREF(plrv);
plrv = NULL;
if (srfstate->iter == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("returned object cannot be iterated"),
errdetail("PL/Python set-returning functions must return an iterable object.")));
}
/* Fetch next from iterator */
plrv = PyIter_Next(srfstate->iter);
if (plrv == NULL)
{
/* Iterator is exhausted or error happened */
bool has_error = (PyErr_Occurred() != NULL);
Py_DECREF(srfstate->iter);
srfstate->iter = NULL;
if (has_error)
PLy_elog(ERROR, "error fetching next item from iterator");
/* Pass a null through the data-returning steps below */
Py_INCREF(Py_None);
plrv = Py_None;
}
else
{
/*
* This won't be last call, so save argument values. We do
* this again each time in case the iterator is changing those
* values.
*/
srfstate->savedargs = PLy_function_save_args(proc);
}
}
/*
* Disconnect from SPI manager and then create the return values datum
* (if the input function does a palloc for it this must not be
* allocated in the SPI memory context because SPI_finish would free
* it).
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
plerrcontext.callback = plpython_return_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
/*
* For a procedure or function declared to return void, the Python
* return value must be None. For void-returning functions, we also
* treat a None return value as a special "void datum" rather than
* NULL (as is the case for non-void-returning functions).
*/
if (proc->result.typoid == VOIDOID)
{
if (plrv != Py_None)
{
if (proc->is_procedure)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("PL/Python procedure did not return None")));
else
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("PL/Python function with return type \"void\" did not return None")));
}
fcinfo->isnull = false;
rv = (Datum) 0;
}
else if (plrv == Py_None &&
srfstate && srfstate->iter == NULL)
{
/*
* In a SETOF function, the iteration-ending null isn't a real
* value; don't pass it through the input function, which might
* complain.
*/
fcinfo->isnull = true;
rv = (Datum) 0;
}
else
{
/*
* Normal conversion of result. However, if the result is of type
* RECORD, we have to set up for that each time through, since it
* might be different from last time.
*/
if (proc->result.typoid == RECORDOID)
{
TupleDesc desc;
if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "
"that cannot accept type record")));
PLy_output_setup_record(&proc->result, desc, proc);
}
rv = PLy_output_convert(&proc->result, plrv,
&fcinfo->isnull);
}
}
PG_CATCH();
{
/* Pop old arguments from the stack if they were pushed above */
PLy_global_args_pop(proc);
Py_XDECREF(plargs);
Py_XDECREF(plrv);
/*
* If there was an error within a SRF, the iterator might not have
* been exhausted yet. Clear it so the next invocation of the
* function will start the iteration again. (This code is probably
* unnecessary now; plpython_srf_cleanup_callback should take care of
* cleanup. But it doesn't hurt anything to do it here.)
*/
if (srfstate)
{
Py_XDECREF(srfstate->iter);
srfstate->iter = NULL;
/* And drop any saved args; we won't need them */
if (srfstate->savedargs)
PLy_function_drop_args(srfstate->savedargs);
srfstate->savedargs = NULL;
}
PG_RE_THROW();
}
PG_END_TRY();
error_context_stack = plerrcontext.previous;
/* Pop old arguments from the stack if they were pushed above */
PLy_global_args_pop(proc);
Py_XDECREF(plargs);
Py_DECREF(plrv);
if (srfstate)
{
/* We're in a SRF, exit appropriately */
if (srfstate->iter == NULL)
{
/* Iterator exhausted, so we're done */
SRF_RETURN_DONE(funcctx);
}
else if (fcinfo->isnull)
SRF_RETURN_NEXT_NULL(funcctx);
else
SRF_RETURN_NEXT(funcctx, rv);
}
/* Plain function, just return the Datum value (possibly null) */
return rv;
}
/* trigger subhandler
*
* the python function is expected to return Py_None if the tuple is
* acceptable and unmodified. Otherwise it should return a PyUnicode
* object who's value is SKIP, or MODIFY. SKIP means don't perform
* this action. MODIFY means the tuple has been modified, so update
* tuple and perform action. SKIP and MODIFY assume the trigger fires
* BEFORE the event and is ROW level. postgres expects the function
* to take no arguments and return an argument of type trigger.
*/
HeapTuple
PLy_exec_trigger(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
HeapTuple rv = NULL;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
TriggerData *tdata;
TupleDesc rel_descr;
Assert(CALLED_AS_TRIGGER(fcinfo));
tdata = (TriggerData *) fcinfo->context;
/*
* Input/output conversion for trigger tuples. We use the result and
* result_in fields to store the tuple conversion info. We do this over
* again on each call to cover the possibility that the relation's tupdesc
* changed since the trigger was last called. The PLy_xxx_setup_func
* calls should only happen once, but PLy_input_setup_tuple and
* PLy_output_setup_tuple are responsible for not doing repetitive work.
*/
rel_descr = RelationGetDescr(tdata->tg_relation);
if (proc->result.typoid != rel_descr->tdtypeid)
PLy_output_setup_func(&proc->result, proc->mcxt,
rel_descr->tdtypeid,
rel_descr->tdtypmod,
proc);
if (proc->result_in.typoid != rel_descr->tdtypeid)
PLy_input_setup_func(&proc->result_in, proc->mcxt,
rel_descr->tdtypeid,
rel_descr->tdtypmod,
proc);
PLy_output_setup_tuple(&proc->result, rel_descr, proc);
PLy_input_setup_tuple(&proc->result_in, rel_descr, proc);
/*
* If the trigger is called recursively, we must push outer-level
* arguments into the stack. This must be immediately before the PG_TRY
* to ensure that the corresponding pop happens.
*/
PLy_global_args_push(proc);
PG_TRY();
{
int rc PG_USED_FOR_ASSERTS_ONLY;
rc = SPI_register_trigger_data(tdata);
Assert(rc >= 0);
plargs = PLy_trigger_build_args(fcinfo, proc, &rv);
plrv = PLy_procedure_call(proc, "TD", plargs);
Assert(plrv != NULL);
/*
* Disconnect from SPI manager
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
/*
* return of None means we're happy with the tuple
*/
if (plrv != Py_None)
{
char *srv;
if (PyUnicode_Check(plrv))
srv = PLyUnicode_AsString(plrv);
else
{
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None or a string.")));
srv = NULL; /* keep compiler quiet */
}
if (pg_strcasecmp(srv, "SKIP") == 0)
rv = NULL;
else if (pg_strcasecmp(srv, "MODIFY") == 0)
{
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) ||
TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
rv = PLy_modify_tuple(proc, plargs, tdata, rv);
else
ereport(WARNING,
(errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored")));
}
else if (pg_strcasecmp(srv, "OK") != 0)
{
/*
* accept "OK" as an alternative to None; otherwise, raise an
* error
*/
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\".")));
}
}
}
PG_FINALLY();
{
PLy_global_args_pop(proc);
Py_XDECREF(plargs);
Py_XDECREF(plrv);
}
PG_END_TRY();
return rv;
}
/* helper functions for Python code execution */
static PyObject *
PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
PyObject *volatile arg = NULL;
PyObject *args;
int i;
/*
* Make any Py*_New() calls before the PG_TRY block so that we can quickly
* return NULL on failure. We can't return within the PG_TRY block, else
* we'd miss unwinding the exception stack.
*/
args = PyList_New(proc->nargs);
if (!args)
return NULL;
PG_TRY();
{
for (i = 0; i < proc->nargs; i++)
{
PLyDatumToOb *arginfo = &proc->args[i];
if (fcinfo->args[i].isnull)
arg = NULL;
else
arg = PLy_input_convert(arginfo, fcinfo->args[i].value);
if (arg == NULL)
{
Py_INCREF(Py_None);
arg = Py_None;
}
if (PyList_SetItem(args, i, arg) == -1)
PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments");
if (proc->argnames && proc->argnames[i] &&
PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1)
PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments");
arg = NULL;
}
}
PG_CATCH();
{
Py_XDECREF(arg);
Py_XDECREF(args);
PG_RE_THROW();
}
PG_END_TRY();
return args;
}
/*
* Construct a PLySavedArgs struct representing the current values of the
* procedure's arguments in its globals dict. This can be used to restore
* those values when exiting a recursive call level or returning control to a
* set-returning function.
*
* This would not be necessary except for an ancient decision to make args
* available via the proc's globals :-( ... but we're stuck with that now.
*/
static PLySavedArgs *
PLy_function_save_args(PLyProcedure *proc)
{
PLySavedArgs *result;
/* saved args are always allocated in procedure's context */
result = (PLySavedArgs *)
MemoryContextAllocZero(proc->mcxt,
offsetof(PLySavedArgs, namedargs) +
proc->nargs * sizeof(PyObject *));
result->nargs = proc->nargs;
/* Fetch the "args" list */
result->args = PyDict_GetItemString(proc->globals, "args");
Py_XINCREF(result->args);
/* If it's a trigger, also save "TD" */
if (proc->is_trigger)
{
result->td = PyDict_GetItemString(proc->globals, "TD");
Py_XINCREF(result->td);
}
/* Fetch all the named arguments */
if (proc->argnames)
{
int i;
for (i = 0; i < result->nargs; i++)
{
if (proc->argnames[i])
{
result->namedargs[i] = PyDict_GetItemString(proc->globals,
proc->argnames[i]);
Py_XINCREF(result->namedargs[i]);
}
}
}
return result;
}
/*
* Restore procedure's arguments from a PLySavedArgs struct,
* then free the struct.
*/
static void
PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs)
{
/* Restore named arguments into their slots in the globals dict */
if (proc->argnames)
{
int i;
for (i = 0; i < savedargs->nargs; i++)
{
if (proc->argnames[i] && savedargs->namedargs[i])
{
PyDict_SetItemString(proc->globals, proc->argnames[i],
savedargs->namedargs[i]);
Py_DECREF(savedargs->namedargs[i]);
}
}
}
/* Restore the "args" object, too */
if (savedargs->args)
{
PyDict_SetItemString(proc->globals, "args", savedargs->args);
Py_DECREF(savedargs->args);
}
/* Restore the "TD" object, too */
if (savedargs->td)
{
PyDict_SetItemString(proc->globals, "TD", savedargs->td);
Py_DECREF(savedargs->td);
}
/* And free the PLySavedArgs struct */
pfree(savedargs);
}
/*
* Free a PLySavedArgs struct without restoring the values.
*/
static void
PLy_function_drop_args(PLySavedArgs *savedargs)
{
int i;
/* Drop references for named args */
for (i = 0; i < savedargs->nargs; i++)
{
Py_XDECREF(savedargs->namedargs[i]);
}
/* Drop refs to the "args" and "TD" objects, too */
Py_XDECREF(savedargs->args);
Py_XDECREF(savedargs->td);
/* And free the PLySavedArgs struct */
pfree(savedargs);
}
/*
* Save away any existing arguments for the given procedure, so that we can
* install new values for a recursive call. This should be invoked before
* doing PLy_function_build_args() or PLy_trigger_build_args().
*
* NB: callers must ensure that PLy_global_args_pop gets invoked once, and
* only once, per successful completion of PLy_global_args_push. Otherwise
* we'll end up out-of-sync between the actual call stack and the contents
* of proc->argstack.
*/
static void
PLy_global_args_push(PLyProcedure *proc)
{
/* We only need to push if we are already inside some active call */
if (proc->calldepth > 0)
{
PLySavedArgs *node;
/* Build a struct containing current argument values */
node = PLy_function_save_args(proc);
/*
* Push the saved argument values into the procedure's stack. Once we
* modify either proc->argstack or proc->calldepth, we had better
* return without the possibility of error.
*/
node->next = proc->argstack;
proc->argstack = node;
}
proc->calldepth++;
}
/*
* Pop old arguments when exiting a recursive call.
*
* Note: the idea here is to adjust the proc's callstack state before doing
* anything that could possibly fail. In event of any error, we want the
* callstack to look like we've done the pop. Leaking a bit of memory is
* tolerable.
*/
static void
PLy_global_args_pop(PLyProcedure *proc)
{
Assert(proc->calldepth > 0);
/* We only need to pop if we were already inside some active call */
if (proc->calldepth > 1)
{
PLySavedArgs *ptr = proc->argstack;
/* Pop the callstack */
Assert(ptr != NULL);
proc->argstack = ptr->next;
proc->calldepth--;
/* Restore argument values, then free ptr */
PLy_function_restore_args(proc, ptr);
}
else
{
/* Exiting call depth 1 */
Assert(proc->argstack == NULL);
proc->calldepth--;
/*
* We used to delete the named arguments (but not "args") from the
* proc's globals dict when exiting the outermost call level for a
* function. This seems rather pointless though: nothing can see the
* dict until the function is called again, at which time we'll
* overwrite those dict entries. So don't bother with that.
*/
}
}
/*
* Memory context deletion callback for cleaning up a PLySRFState.
* We need this in case execution of the SRF is terminated early,
* due to error or the caller simply not running it to completion.
*/
static void
plpython_srf_cleanup_callback(void *arg)
{
PLySRFState *srfstate = (PLySRFState *) arg;
/* Release refcount on the iter, if we still have one */
Py_XDECREF(srfstate->iter);
srfstate->iter = NULL;
/* And drop any saved args; we won't need them */
if (srfstate->savedargs)
PLy_function_drop_args(srfstate->savedargs);
srfstate->savedargs = NULL;
}
static void
plpython_return_error_callback(void *arg)
{
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
if (exec_ctx->curr_proc &&
!exec_ctx->curr_proc->is_procedure)
errcontext("while creating return value");
}
static PyObject *
PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv)
{
TriggerData *tdata = (TriggerData *) fcinfo->context;
TupleDesc rel_descr = RelationGetDescr(tdata->tg_relation);
PyObject *pltname,
*pltevent,
*pltwhen,
*pltlevel,
*pltrelid,
*plttablename,
*plttableschema,
*pltargs,
*pytnew,
*pytold,
*pltdata;
char *stroid;
/*
* Make any Py*_New() calls before the PG_TRY block so that we can quickly
* return NULL on failure. We can't return within the PG_TRY block, else
* we'd miss unwinding the exception stack.
*/
pltdata = PyDict_New();
if (!pltdata)
return NULL;
if (tdata->tg_trigger->tgnargs)
{
pltargs = PyList_New(tdata->tg_trigger->tgnargs);
if (!pltargs)
{
Py_DECREF(pltdata);
return NULL;
}
}
else
{
Py_INCREF(Py_None);
pltargs = Py_None;
}
PG_TRY();
{
pltname = PLyUnicode_FromString(tdata->tg_trigger->tgname);
PyDict_SetItemString(pltdata, "name", pltname);
Py_DECREF(pltname);
stroid = DatumGetCString(DirectFunctionCall1(oidout,
ObjectIdGetDatum(tdata->tg_relation->rd_id)));
pltrelid = PLyUnicode_FromString(stroid);
PyDict_SetItemString(pltdata, "relid", pltrelid);
Py_DECREF(pltrelid);
pfree(stroid);
stroid = SPI_getrelname(tdata->tg_relation);
plttablename = PLyUnicode_FromString(stroid);
PyDict_SetItemString(pltdata, "table_name", plttablename);
Py_DECREF(plttablename);
pfree(stroid);
stroid = SPI_getnspname(tdata->tg_relation);
plttableschema = PLyUnicode_FromString(stroid);
PyDict_SetItemString(pltdata, "table_schema", plttableschema);
Py_DECREF(plttableschema);
pfree(stroid);
if (TRIGGER_FIRED_BEFORE(tdata->tg_event))
pltwhen = PLyUnicode_FromString("BEFORE");
else if (TRIGGER_FIRED_AFTER(tdata->tg_event))
pltwhen = PLyUnicode_FromString("AFTER");
else if (TRIGGER_FIRED_INSTEAD(tdata->tg_event))
pltwhen = PLyUnicode_FromString("INSTEAD OF");
else
{
elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event);
pltwhen = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "when", pltwhen);
Py_DECREF(pltwhen);
if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event))
{
pltlevel = PLyUnicode_FromString("ROW");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
/*
* Note: In BEFORE trigger, stored generated columns are not
* computed yet, so don't make them accessible in NEW row.
*/
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
{
pltevent = PLyUnicode_FromString("INSERT");
PyDict_SetItemString(pltdata, "old", Py_None);
pytnew = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
!TRIGGER_FIRED_BEFORE(tdata->tg_event));
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
{
pltevent = PLyUnicode_FromString("DELETE");
PyDict_SetItemString(pltdata, "new", Py_None);
pytold = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
true);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
{
pltevent = PLyUnicode_FromString("UPDATE");
pytnew = PLy_input_from_tuple(&proc->result_in,
tdata->tg_newtuple,
rel_descr,
!TRIGGER_FIRED_BEFORE(tdata->tg_event));
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
pytold = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
true);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_newtuple;
}
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event))
{
pltlevel = PLyUnicode_FromString("STATEMENT");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
PyDict_SetItemString(pltdata, "old", Py_None);
PyDict_SetItemString(pltdata, "new", Py_None);
*rv = NULL;
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
pltevent = PLyUnicode_FromString("INSERT");
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
pltevent = PLyUnicode_FromString("DELETE");
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
pltevent = PLyUnicode_FromString("UPDATE");
else if (TRIGGER_FIRED_BY_TRUNCATE(tdata->tg_event))
pltevent = PLyUnicode_FromString("TRUNCATE");
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else
elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event);
if (tdata->tg_trigger->tgnargs)
{
/*
* all strings...
*/
int i;
PyObject *pltarg;
/* pltargs should have been allocated before the PG_TRY block. */
Assert(pltargs && pltargs != Py_None);
for (i = 0; i < tdata->tg_trigger->tgnargs; i++)
{
pltarg = PLyUnicode_FromString(tdata->tg_trigger->tgargs[i]);
/*
* stolen, don't Py_DECREF
*/
PyList_SetItem(pltargs, i, pltarg);
}
}
else
{
Assert(pltargs == Py_None);
}
PyDict_SetItemString(pltdata, "args", pltargs);
Py_DECREF(pltargs);
}
PG_CATCH();
{
Py_XDECREF(pltargs);
Py_XDECREF(pltdata);
PG_RE_THROW();
}
PG_END_TRY();
return pltdata;
}
/*
* Apply changes requested by a MODIFY return from a trigger function.
*/
static HeapTuple
PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata,
HeapTuple otup)
{
HeapTuple rtup;
PyObject *volatile plntup;
PyObject *volatile plkeys;
PyObject *volatile plval;
Datum *volatile modvalues;
bool *volatile modnulls;
bool *volatile modrepls;
ErrorContextCallback plerrcontext;
plerrcontext.callback = plpython_trigger_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
plntup = plkeys = plval = NULL;
modvalues = NULL;
modnulls = NULL;
modrepls = NULL;
PG_TRY();
{
TupleDesc tupdesc;
int nkeys,
i;
if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("TD[\"new\"] deleted, cannot modify row")));
Py_INCREF(plntup);
if (!PyDict_Check(plntup))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("TD[\"new\"] is not a dictionary")));
plkeys = PyDict_Keys(plntup);
nkeys = PyList_Size(plkeys);
tupdesc = RelationGetDescr(tdata->tg_relation);
modvalues = (Datum *) palloc0(tupdesc->natts * sizeof(Datum));
modnulls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
modrepls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
for (i = 0; i < nkeys; i++)
{
PyObject *platt;
char *plattstr;
int attn;
PLyObToDatum *att;
platt = PyList_GetItem(plkeys, i);
if (PyUnicode_Check(platt))
plattstr = PLyUnicode_AsString(platt);
else
{
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i)));
plattstr = NULL; /* keep compiler quiet */
}
attn = SPI_fnumber(tupdesc, plattstr);
if (attn == SPI_ERROR_NOATTRIBUTE)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row",
plattstr)));
if (attn <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot set system attribute \"%s\"",
plattstr)));
if (TupleDescAttr(tupdesc, attn - 1)->attgenerated)
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
errmsg("cannot set generated column \"%s\"",
plattstr)));
plval = PyDict_GetItem(plntup, platt);
if (plval == NULL)
elog(FATAL, "Python interpreter is probably corrupted");
Py_INCREF(plval);
/* We assume proc->result is set up to convert tuples properly */
att = &proc->result.u.tuple.atts[attn - 1];
modvalues[attn - 1] = PLy_output_convert(att,
plval,
&modnulls[attn - 1]);
modrepls[attn - 1] = true;
Py_DECREF(plval);
plval = NULL;
}
rtup = heap_modify_tuple(otup, tupdesc, modvalues, modnulls, modrepls);
}
PG_CATCH();
{
Py_XDECREF(plntup);
Py_XDECREF(plkeys);
Py_XDECREF(plval);
if (modvalues)
pfree(modvalues);
if (modnulls)
pfree(modnulls);
if (modrepls)
pfree(modrepls);
PG_RE_THROW();
}
PG_END_TRY();
Py_DECREF(plntup);
Py_DECREF(plkeys);
pfree(modvalues);
pfree(modnulls);
pfree(modrepls);
error_context_stack = plerrcontext.previous;
return rtup;
}
static void
plpython_trigger_error_callback(void *arg)
{
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
if (exec_ctx->curr_proc)
errcontext("while modifying trigger row");
}
/* execute Python code, propagate Python errors to the backend */
static PyObject *
PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs)
{
PyObject *rv = NULL;
int volatile save_subxact_level = list_length(explicit_subtransactions);
PyDict_SetItemString(proc->globals, kargs, vargs);
PG_TRY();
{
#if PY_VERSION_HEX >= 0x03020000
rv = PyEval_EvalCode(proc->code,
proc->globals, proc->globals);
#else
rv = PyEval_EvalCode((PyCodeObject *) proc->code,
proc->globals, proc->globals);
#endif
/*
* Since plpy will only let you close subtransactions that you
* started, you cannot *unnest* subtransactions, only *nest* them
* without closing.
*/
Assert(list_length(explicit_subtransactions) >= save_subxact_level);
}
PG_FINALLY();
{
PLy_abort_open_subtransactions(save_subxact_level);
}
PG_END_TRY();
/* If the Python code returned an error, propagate it */
if (rv == NULL)
PLy_elog(ERROR, NULL);
return rv;
}
/*
* Abort lingering subtransactions that have been explicitly started
* by plpy.subtransaction().start() and not properly closed.
*/
static void
PLy_abort_open_subtransactions(int save_subxact_level)
{
Assert(save_subxact_level >= 0);
while (list_length(explicit_subtransactions) > save_subxact_level)
{
PLySubtransactionData *subtransactiondata;
Assert(explicit_subtransactions != NIL);
ereport(WARNING,
(errmsg("forcibly aborting a subtransaction that has not been exited")));
RollbackAndReleaseCurrentSubTransaction();
subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions);
explicit_subtransactions = list_delete_first(explicit_subtransactions);
MemoryContextSwitchTo(subtransactiondata->oldcontext);
CurrentResourceOwner = subtransactiondata->oldowner;
pfree(subtransactiondata);
}
}