# 从人脸图像文件中提取人脸特征存入 CSV # Get features from images and save into features_all.csv # Author: coneypo # Blog: http://www.cnblogs.com/AdaminXie # GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera # Mail: coneypo@foxmail.com # Created at 2018-05-11 # Updated at 2019-02-25 # 增加录入多张人脸到 CSV 的功能 # return_128d_features() 获取某张图像的 128D 特征 # write_into_csv() 获取某个路径下所有图像的特征,并写入 CSV # compute_the_mean() 从 CSV 中读取 128D 特征,并计算特征均值 import cv2 import os import dlib from skimage import io import csv import numpy as np import pandas as pd # 要读取人脸图像文件的路径 path_photos_from_camera = "data/data_faces_from_camera/" # 储存人脸特征 csv 的路径 path_csv_from_photos = "data/data_csvs_from_camera/" # Dlib 正向人脸检测器 detector = dlib.get_frontal_face_detector() # Dlib 人脸预测器 predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_5_face_landmarks.dat") # Dlib 人脸识别模型 # Face recognition model, the object maps human faces into 128D vectors facerec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat") # 返回单张图像的 128D 特征 def return_128d_features(path_img): img = io.imread(path_img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) faces = detector(img_gray, 1) print("%-40s %-20s" % ("检测到人脸的图像 / image with faces detected:", path_img), '\n') # 因为有可能截下来的人脸再去检测,检测不出来人脸了 # 所以要确保是 检测到人脸的人脸图像 拿去算特征 if len(faces) != 0: shape = predictor(img_gray, faces[0]) face_descriptor = facerec.compute_face_descriptor(img_gray, shape) else: face_descriptor = 0 print("no face") # print(face_descriptor) return face_descriptor # 将文件夹中照片特征提取出来, 写入 CSV # path_faces_personX: 图像文件夹的路径 # path_csv_from_photos: 要生成的 CSV 路径 def write_into_csv(path_faces_personX, path_csv_from_photos): photos_list = os.listdir(path_faces_personX) with open(path_csv_from_photos, "w", newline="") as csvfile: writer = csv.writer(csvfile) if photos_list: for i in range(len(photos_list)): # 调用return_128d_features()得到128d特征 print("%-40s %-20s" % ("正在读的人脸图像 / image to read:", path_faces_personX + "/" + photos_list[i])) features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i]) # print(features_128d) # 遇到没有检测出人脸的图片跳过 if features_128d == 0: i += 1 else: writer.writerow(features_128d) else: print("文件夹内图像文件为空 / Warning: Empty photos in " + path_faces_personX + '/', '\n') writer.writerow("") # 读取某人所有的人脸图像的数据,写入 person_X.csv faces = os.listdir(path_photos_from_camera) faces.sort() for person in faces: print("##### " + person + " #####") print(path_csv_from_photos + person + ".csv") write_into_csv(path_photos_from_camera + person, path_csv_from_photos + person + ".csv") print('\n') # 从 CSV 中读取数据,计算 128D 特征的均值 def compute_the_mean(path_csv_from_photos): column_names = [] # 128D 特征 for feature_num in range(128): column_names.append("features_" + str(feature_num + 1)) # 利用 pandas 读取 csv rd = pd.read_csv(path_csv_from_photos, names=column_names) if rd.size != 0: # 存放 128D 特征的均值 feature_mean_list = [] for feature_num in range(128): tmp_arr = rd["features_" + str(feature_num + 1)] tmp_arr = np.array(tmp_arr) # 计算某一个特征的均值 tmp_mean = np.mean(tmp_arr) feature_mean_list.append(tmp_mean) else: feature_mean_list = [] return feature_mean_list # 存放所有特征均值的 CSV 的路径 path_csv_from_photos_feature_all = "data/features_all.csv" # 存放人脸特征的 CSV 的路径 path_csv_from_photos = "data/data_csvs_from_camera/" with open(path_csv_from_photos_feature_all, "w", newline="") as csvfile: writer = csv.writer(csvfile) csv_rd = os.listdir(path_csv_from_photos) csv_rd.sort() print("##### 得到的特征均值 / The generated average values of features stored in: #####") for i in range(len(csv_rd)): feature_mean_list = compute_the_mean(path_csv_from_photos + csv_rd[i]) print(path_csv_from_photos + csv_rd[i]) writer.writerow(feature_mean_list)