95 lines
4.2 KiB
Python
Executable File
95 lines
4.2 KiB
Python
Executable File
# Copyright (C) 2020 coneypo
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
# Author: coneypo
|
|
# Blog: http://www.cnblogs.com/AdaminXie
|
|
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
|
# Mail: coneypo@foxmail.com
|
|
|
|
# 从人脸图像文件中提取人脸特征存入 "features_all.csv" / Extract features from images and save into "features_all.csv"
|
|
|
|
import os
|
|
import dlib
|
|
from skimage import io
|
|
import csv
|
|
import numpy as np
|
|
|
|
# 要读取人脸图像文件的路径 / Path of cropped faces
|
|
path_images_from_camera = "data/data_faces_from_camera/"
|
|
|
|
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
|
detector = dlib.get_frontal_face_detector()
|
|
|
|
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
|
|
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
|
|
|
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
|
|
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
|
|
|
|
|
# 返回单张图像的 128D 特征 / Return 128D features for single image
|
|
# Input: path_img <class 'str'>
|
|
# Output: face_descriptor <class 'dlib.vector'>
|
|
def return_128d_features(path_img):
|
|
img_rd = io.imread(path_img)
|
|
faces = detector(img_rd, 1)
|
|
|
|
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
|
|
|
|
# 因为有可能截下来的人脸再去检测,检测不出来人脸了, 所以要确保是 检测到人脸的人脸图像拿去算特征
|
|
# For photos of faces saved, we need to make sure that we can detect faces from the cropped images
|
|
if len(faces) != 0:
|
|
shape = predictor(img_rd, faces[0])
|
|
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
|
|
else:
|
|
face_descriptor = 0
|
|
print("no face")
|
|
return face_descriptor
|
|
|
|
|
|
# 返回 personX 的 128D 特征均值 / Return the mean value of 128D face descriptor for person X
|
|
# Input: path_faces_personX <class 'str'>
|
|
# Output: features_mean_personX <class 'numpy.ndarray'>
|
|
def return_features_mean_personX(path_faces_personX):
|
|
features_list_personX = []
|
|
photos_list = os.listdir(path_faces_personX)
|
|
if photos_list:
|
|
for i in range(len(photos_list)):
|
|
# 调用 return_128d_features() 得到 128D 特征 / Get 128D features for single image of personX
|
|
print("%-40s %-20s" % ("正在读的人脸图像 / Reading image:", path_faces_personX + "/" + photos_list[i]))
|
|
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
|
|
# 遇到没有检测出人脸的图片跳过 / Jump if no face detected from image
|
|
if features_128d == 0:
|
|
i += 1
|
|
else:
|
|
features_list_personX.append(features_128d)
|
|
else:
|
|
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
|
|
|
|
# 计算 128D 特征的均值 / Compute the mean
|
|
# personX 的 N 张图像 x 128D -> 1 x 128D
|
|
if features_list_personX:
|
|
features_mean_personX = np.array(features_list_personX).mean(axis=0)
|
|
else:
|
|
features_mean_personX = np.zeros(128, dtype=int, order='C')
|
|
print(type(features_mean_personX))
|
|
return features_mean_personX
|
|
|
|
|
|
# 获取已录入的最后一个人脸序号 / Get the order of latest person
|
|
person_list = os.listdir("data/data_faces_from_camera/")
|
|
person_num_list = []
|
|
for person in person_list:
|
|
person_num_list.append(int(person.split('_')[-1]))
|
|
person_cnt = max(person_num_list)
|
|
|
|
with open("data/features_all.csv", "w", newline="") as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
for person in range(person_cnt):
|
|
# Get the mean/average features of face/personX, it will be a list with a length of 128D
|
|
print(path_images_from_camera + "person_" + str(person + 1))
|
|
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
|
|
writer.writerow(features_mean_personX)
|
|
print("特征均值 / The mean of features:", list(features_mean_personX))
|
|
print('\n')
|
|
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv") |