156 lines
6.0 KiB
Python
156 lines
6.0 KiB
Python
# 摄像头实时人脸识别
|
|
# Real-time face recognition
|
|
|
|
# Author: coneypo
|
|
# Blog: http://www.cnblogs.com/AdaminXie
|
|
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
|
|
|
# Created at 2018-05-11
|
|
# Updated at 2019-03-23
|
|
|
|
import dlib # 人脸处理的库 Dlib
|
|
import numpy as np # 数据处理的库 numpy
|
|
import cv2 # 图像处理的库 OpenCv
|
|
import pandas as pd # 数据处理的库 Pandas
|
|
|
|
# 人脸识别模型,提取128D的特征矢量
|
|
# face recognition model, the object maps human faces into 128D vectors
|
|
# Refer this tutorial: http://dlib.net/python/index.html#dlib.face_recognition_model_v1
|
|
facerec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
|
|
|
|
|
# 计算两个128D向量间的欧式距离
|
|
# compute the e-distance between two 128D features
|
|
def return_euclidean_distance(feature_1, feature_2):
|
|
feature_1 = np.array(feature_1)
|
|
feature_2 = np.array(feature_2)
|
|
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
|
print("e_distance: ", dist)
|
|
|
|
if dist > 0.4:
|
|
return "diff"
|
|
else:
|
|
return "same"
|
|
|
|
|
|
# 处理存放所有人脸特征的 csv
|
|
path_features_known_csv = "data/features_all.csv"
|
|
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
|
|
|
# 用来存放所有录入人脸特征的数组
|
|
# the array to save the features of faces in the database
|
|
features_known_arr = []
|
|
|
|
# 读取已知人脸数据
|
|
# print known faces
|
|
for i in range(csv_rd.shape[0]):
|
|
features_someone_arr = []
|
|
for j in range(0, len(csv_rd.ix[i, :])):
|
|
features_someone_arr.append(csv_rd.ix[i, :][j])
|
|
features_known_arr.append(features_someone_arr)
|
|
print("Faces in Database:", len(features_known_arr))
|
|
|
|
# Dlib 检测器和预测器
|
|
# The detector and predictor will be used
|
|
detector = dlib.get_frontal_face_detector()
|
|
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
|
|
|
# 创建 cv2 摄像头对象
|
|
# cv2.VideoCapture(0) to use the default camera of PC,
|
|
# and you can use local video name by use cv2.VideoCapture(filename)
|
|
cap = cv2.VideoCapture(0)
|
|
|
|
# cap.set(propId, value)
|
|
# 设置视频参数,propId 设置的视频参数,value 设置的参数值
|
|
cap.set(3, 480)
|
|
|
|
# cap.isOpened() 返回 true/false 检查初始化是否成功
|
|
# when the camera is open
|
|
while cap.isOpened():
|
|
|
|
flag, img_rd = cap.read()
|
|
kk = cv2.waitKey(1)
|
|
|
|
# 取灰度
|
|
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
|
|
|
|
# 人脸数 faces
|
|
faces = detector(img_gray, 0)
|
|
|
|
# 待会要写的字体 font to write later
|
|
font = cv2.FONT_HERSHEY_COMPLEX
|
|
|
|
# 存储当前摄像头中捕获到的所有人脸的坐标/名字
|
|
# the list to save the positions and names of current faces captured
|
|
pos_namelist = []
|
|
name_namelist = []
|
|
|
|
# 按下 q 键退出
|
|
# press 'q' to exit
|
|
if kk == ord('q'):
|
|
break
|
|
else:
|
|
# 检测到人脸 when face detected
|
|
if len(faces) != 0:
|
|
# 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
|
|
# get the features captured and save into features_cap_arr
|
|
features_cap_arr = []
|
|
for i in range(len(faces)):
|
|
shape = predictor(img_rd, faces[i])
|
|
features_cap_arr.append(facerec.compute_face_descriptor(img_rd, shape))
|
|
|
|
# 遍历捕获到的图像中所有的人脸
|
|
# traversal all the faces in the database
|
|
for k in range(len(faces)):
|
|
# 让人名跟随在矩形框的下方
|
|
# 确定人名的位置坐标
|
|
# 先默认所有人不认识,是 unknown
|
|
# set the default names of faces with "unknown"
|
|
name_namelist.append("unknown")
|
|
|
|
# 每个捕获人脸的名字坐标 the positions of faces captured
|
|
pos_namelist.append(tuple([faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top())/4)]))
|
|
|
|
# 对于某张人脸,遍历所有存储的人脸特征
|
|
# for every faces detected, compare the faces in the database
|
|
for i in range(len(features_known_arr)):
|
|
print("with person_", str(i+1), "the ", end='')
|
|
# 将某张人脸与存储的所有人脸数据进行比对
|
|
compare = return_euclidean_distance(features_cap_arr[k], features_known_arr[i])
|
|
if compare == "same": # 找到了相似脸
|
|
# 在这里修改 person_1, person_2 ... 的名字
|
|
# 这里只写了前三个
|
|
# 可以在这里改称 Jack, Tom and others
|
|
# Here you can modify the names shown on the camera
|
|
if i == 0:
|
|
name_namelist[k] = "Person 1"
|
|
elif i == 1:
|
|
name_namelist[k] = "Person 2"
|
|
elif i == 2:
|
|
name_namelist[k] = "Person 3"
|
|
|
|
# 矩形框
|
|
# draw rectangle
|
|
for kk, d in enumerate(faces):
|
|
# 绘制矩形框
|
|
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]), (0, 255, 255), 2)
|
|
|
|
# 在人脸框下面写人脸名字
|
|
# write names under rectangle
|
|
for i in range(len(faces)):
|
|
cv2.putText(img_rd, name_namelist[i], pos_namelist[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
|
|
|
|
print("Faces in camera now:", name_namelist, "\n")
|
|
|
|
cv2.putText(img_rd, "Press 'q': Quit", (20, 450), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
|
|
cv2.putText(img_rd, "Face Recognition", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
|
|
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
|
|
|
|
# 窗口显示 show with opencv
|
|
cv2.imshow("camera", img_rd)
|
|
|
|
# 释放摄像头 release camera
|
|
cap.release()
|
|
|
|
# 删除建立的窗口 delete all the windows
|
|
cv2.destroyAllWindows() |