Files
Face_Recognition/features.py

136 lines
4.2 KiB
Python

# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
import os
import dlib
import csv
import numpy as np
import logging
import cv2
from PIL import Image
# 要读取人脸图像文件的路径
path_images_from_camera = "data/data_faces"
# Dlib 检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('models/dlib/shape_predictor_68_face_landmarks.dat')
face_reco_model = dlib.face_recognition_model_v1("models/dlib/dlib_face_recognition_resnet_model_v1.dat")
def return_128d_features(path_img):
"""返回单张图像的 128D 特征"""
try:
img_pil = Image.open(path_img)
img_np = np.array(img_pil)
img_rd = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
faces = detector(img_rd, 1)
logging.info("%-40s %-20s", "检测到人脸的图像:", path_img)
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
return face_descriptor
else:
logging.warning("未检测到人脸: %s", path_img)
return None
except Exception as e:
logging.error("处理图像时出错 %s: %s", path_img, e)
return None
def return_features_mean_personX(path_face_personX):
"""返回 personX 的 128D 特征均值"""
features_list_personX = []
photos_list = os.listdir(path_face_personX)
if photos_list:
for photo in photos_list:
photo_path = os.path.join(path_face_personX, photo)
logging.info("正在读取图像: %s", photo_path)
features_128d = return_128d_features(photo_path)
if features_128d is not None:
features_list_personX.append(features_128d)
else:
logging.warning("文件夹为空: %s", path_face_personX)
# 计算 128D 特征的均值
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=np.float64)
return features_mean_personX
def get_person_name_from_folder(folder_name):
"""从文件夹名称获取有意义的姓名"""
# 常见的文件夹前缀
prefixes = ['person_', 'face_', 'user_']
for prefix in prefixes:
if folder_name.startswith(prefix):
name_part = folder_name[len(prefix):]
# 如果剩下的部分是纯数字,使用完整文件夹名
if name_part.isdigit():
return folder_name
else:
return name_part
return folder_name
def main():
logging.basicConfig(level=logging.INFO)
# 检查源文件夹是否存在
if not os.path.exists(path_images_from_camera):
logging.error("人脸图像文件夹不存在: %s", path_images_from_camera)
return
# 获取人脸文件夹列表
person_list = os.listdir(path_images_from_camera)
person_list.sort()
if not person_list:
logging.error("没有人脸文件夹可处理")
return
logging.info("找到 %d 个人脸文件夹: %s", len(person_list), person_list)
# 创建CSV文件
with open("data/features_all.csv", "w", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
successful_count = 0
for person_folder in person_list:
folder_path = os.path.join(path_images_from_camera, person_folder)
if not os.path.isdir(folder_path):
continue
logging.info("处理文件夹: %s", person_folder)
# 提取特征
features_mean = return_features_mean_personX(folder_path)
# 获取有意义的姓名
person_name = get_person_name_from_folder(person_folder)
logging.info("使用姓名: %s", person_name)
# 构建行数据:姓名 + 128维特征
row_data = [person_name] + features_mean.tolist()
writer.writerow(row_data)
successful_count += 1
logging.info("完成: %s", person_name)
logging.info("-" * 50)
logging.info("成功处理 %d/%d 个人脸文件夹", successful_count, len(person_list))
logging.info("特征数据已保存到: data/features_all.csv")
if __name__ == '__main__':
main()