Files
help/helpcontent2/source/text/sbasic/shared/03080101.xhp
2004-08-18 09:59:46 +00:00

101 lines
7.0 KiB
XML
Executable File

<?xml version="1.0" encoding="UTF-8"?>
<!--***********************************************************************
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRUNTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRUNTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc..
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************--><helpdocument version="1.0">
<meta>
<topic id="textsbasicshared03080101xml" indexer="include" status="PUBLISH">
<title xml-lang="en-US" id="tit">Atn Function [Runtime]</title>
<filename>/text/sbasic/shared/03080101.xhp</filename>
</topic>
<history>
<created date="2003-10-31T00:00:00">Sun Microsystems, Inc.</created>
<lastedited date="2003-10-31T00:00:00">converted from old format - fpe</lastedited>
</history>
</meta>
<body>
<section id="atn">
<bookmark xml-lang="en-US" branch="index" id="bm_id3150616"><bookmark_value>Atn;function</bookmark_value></bookmark><paragraph id="hd_id3150616" role="heading" level="1" oldref="1" l10n="U" xml-lang="en-US"><link href="text/sbasic/shared/03080101.xhp" name="Atn Function [Runtime]">Atn Function [Runtime]</link></paragraph>
<paragraph role="paragraph" id="par_id3149346" l10n="U" xml-lang="en-US" oldref="2">Trigonometric function that returns the arctangent of a numeric expression. The return value is in the range -Pi/2 to +Pi/2.</paragraph>
</section>
<paragraph role="paragraph" id="par_id3143271" l10n="U" xml-lang="en-US" oldref="3">The arctangent is the inverse of the tangent function. The Atn Function returns the angle &quot;Alpha&quot;, expressed in radians, using the tangent of this angle. The function can also return the angle &quot;Alpha&quot; by comparing the ratio of the length of the side that is opposite of the angle to the length of the side that is adjacent to the angle in a right-angled triangle.</paragraph>
<paragraph role="paragraph" id="par_id3145315" l10n="U" xml-lang="en-US" oldref="4">Atn(side opposite the angle/side adjacent to angle)= Alpha</paragraph>
<paragraph role="heading" level="2" id="hd_id3149669" l10n="U" xml-lang="en-US" oldref="5">Syntax:</paragraph>
<paragraph role="paragraph" id="par_id3148947" l10n="U" xml-lang="en-US" oldref="6">Atn (Number)</paragraph>
<paragraph role="heading" level="2" id="hd_id3148664" l10n="U" xml-lang="en-US" oldref="7">Return value:</paragraph>
<paragraph role="paragraph" id="par_id3150359" l10n="U" xml-lang="en-US" oldref="8">Double</paragraph>
<paragraph role="heading" level="2" id="hd_id3148798" l10n="U" xml-lang="en-US" oldref="9">Parameters:</paragraph>
<paragraph l10n="U" role="paragraph" id="par_id3156212" xml-lang="en-US" oldref="10"><emph>Number:</emph> Any numerical expression that represents the ratio of two sides of a right triangle. The Atn function returns the corresponding angle in radians (arctangent).</paragraph>
<paragraph role="paragraph" id="par_id3153192" l10n="U" xml-lang="en-US" oldref="11">To convert radians to degrees, multiply radians by 180/pi.</paragraph>
<paragraph role="paragraph" id="par_id3147230" l10n="U" xml-lang="en-US" oldref="12">degree=(radian*180)/pi</paragraph>
<paragraph role="paragraph" id="par_id3125864" l10n="U" xml-lang="en-US" oldref="13">radian=(degree*pi)/180</paragraph>
<paragraph role="paragraph" id="par_id3159252" l10n="U" xml-lang="en-US" oldref="14">Pi is here the fixed circle constant with the rounded value 3.14159.</paragraph>
<embed href="text/sbasic/shared/00000003.xhp#errorcode"/>
<embed href="text/sbasic/shared/00000003.xhp#err5"/>
<paragraph role="heading" level="2" id="hd_id3153142" l10n="U" xml-lang="en-US" oldref="15">Example:</paragraph>
<paragraph role="paragraph" id="par_id3146985" l10n="U" xml-lang="en-US" oldref="16">REM The following example calculates for a right-angled triangle</paragraph>
<paragraph role="paragraph" id="par_id3145750" l10n="U" xml-lang="en-US" oldref="17">REM the angle Alpha from the tangent of the angle Alpha:</paragraph>
<paragraph role="paragraph" id="par_id3146975" l10n="U" xml-lang="en-US" oldref="18">Sub ExampleATN</paragraph>
<paragraph role="paragraph" id="par_id3151112" l10n="U" xml-lang="en-US" oldref="19">REM rounded Pi = 3.14159 is a predefined constant</paragraph>
<paragraph role="paragraph" id="par_id3159156" l10n="U" xml-lang="en-US" oldref="20">Dim d1 As Double</paragraph>
<paragraph role="paragraph" id="par_id3147435" l10n="U" xml-lang="en-US" oldref="21">Dim d2 As Double</paragraph>
<paragraph role="paragraph" id="par_id3149262" l10n="U" xml-lang="en-US" oldref="22">d1 = InputBox$ (&quot;Enter the length of the side adjacent to the angle: &quot;,&quot;Adjacent&quot;)</paragraph>
<paragraph role="paragraph" id="par_id3149482" l10n="U" xml-lang="en-US" oldref="23">d2 = InputBox$ (&quot;Enter the length of the side opposite the angle: &quot;,&quot;Opposite&quot;)</paragraph>
<paragraph role="paragraph" id="par_id3155415" l10n="U" xml-lang="en-US" oldref="24">Print &quot;The Alpha angle is&quot;; (atn (d2/d1) * 180 / Pi); &quot; degrees&quot;</paragraph>
<paragraph role="paragraph" id="par_id3149959" l10n="U" xml-lang="en-US" oldref="25">End Sub</paragraph>
</body>
</helpdocument>