Refactor SimulcastTestUtility into SimulcastTestFixture{,Impl}

This will allow exposing the interface to downstream users that
want to test VP8 simulcast. No functional changes to the tests
themselves are expected.

Bug: webrtc:9281
Change-Id: I4128b8f35a4412c5b330cf55c8dc0e173d4570da
Reviewed-on: https://webrtc-review.googlesource.com/77361
Commit-Queue: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Fredrik Solenberg <solenberg@webrtc.org>
Reviewed-by: Magnus Jedvert <magjed@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23469}
This commit is contained in:
Rasmus Brandt
2018-05-31 12:53:00 +02:00
committed by Commit Bot
parent 29921cf097
commit 0cedc054a2
15 changed files with 1298 additions and 956 deletions

View File

@ -283,6 +283,33 @@ if (rtc_include_tests) {
} }
} }
rtc_source_set("simulcast_test_fixture_api") {
visibility = [ "*" ]
testonly = true
sources = [
"test/simulcast_test_fixture.h",
]
}
rtc_source_set("create_simulcast_test_fixture_api") {
visibility = [ "*" ]
testonly = true
sources = [
"test/create_simulcast_test_fixture.cc",
"test/create_simulcast_test_fixture.h",
]
deps = [
":simulcast_test_fixture_api",
"../modules/video_coding:simulcast_test_fixture_impl",
"../rtc_base:rtc_base_approved",
"video_codecs:video_codecs_api",
]
if (!build_with_chromium && is_clang) {
# Suppress warnings from the Chromium Clang plugin (bugs.webrtc.org/163).
suppressed_configs += [ "//build/config/clang:find_bad_constructs" ]
}
}
rtc_source_set("videocodec_test_fixture_api") { rtc_source_set("videocodec_test_fixture_api") {
visibility = [ "*" ] visibility = [ "*" ]
testonly = true testonly = true

View File

@ -0,0 +1,31 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/test/create_simulcast_test_fixture.h"
#include <memory>
#include <utility>
#include "api/test/simulcast_test_fixture.h"
#include "modules/video_coding/codecs/vp8/simulcast_test_fixture_impl.h"
#include "rtc_base/ptr_util.h"
namespace webrtc {
namespace test {
std::unique_ptr<SimulcastTestFixture> CreateSimulcastTestFixture(
std::unique_ptr<VideoEncoderFactory> encoder_factory,
std::unique_ptr<VideoDecoderFactory> decoder_factory) {
return rtc::MakeUnique<SimulcastTestFixtureImpl>(std::move(encoder_factory),
std::move(decoder_factory));
}
} // namespace test
} // namespace webrtc

View File

@ -0,0 +1,30 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_TEST_CREATE_SIMULCAST_TEST_FIXTURE_H_
#define API_TEST_CREATE_SIMULCAST_TEST_FIXTURE_H_
#include <memory>
#include "api/test/simulcast_test_fixture.h"
#include "api/video_codecs/video_decoder_factory.h"
#include "api/video_codecs/video_encoder_factory.h"
namespace webrtc {
namespace test {
std::unique_ptr<SimulcastTestFixture> CreateSimulcastTestFixture(
std::unique_ptr<VideoEncoderFactory> encoder_factory,
std::unique_ptr<VideoDecoderFactory> decoder_factory);
} // namespace test
} // namespace webrtc
#endif // API_TEST_CREATE_SIMULCAST_TEST_FIXTURE_H_

View File

@ -0,0 +1,41 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_TEST_SIMULCAST_TEST_FIXTURE_H_
#define API_TEST_SIMULCAST_TEST_FIXTURE_H_
namespace webrtc {
namespace test {
class SimulcastTestFixture {
public:
virtual ~SimulcastTestFixture() = default;
virtual void TestKeyFrameRequestsOnAllStreams() = 0;
virtual void TestPaddingAllStreams() = 0;
virtual void TestPaddingTwoStreams() = 0;
virtual void TestPaddingTwoStreamsOneMaxedOut() = 0;
virtual void TestPaddingOneStream() = 0;
virtual void TestPaddingOneStreamTwoMaxedOut() = 0;
virtual void TestSendAllStreams() = 0;
virtual void TestDisablingStreams() = 0;
virtual void TestActiveStreams() = 0;
virtual void TestSwitchingToOneStream() = 0;
virtual void TestSwitchingToOneOddStream() = 0;
virtual void TestSwitchingToOneSmallStream() = 0;
virtual void TestSpatioTemporalLayers333PatternEncoder() = 0;
virtual void TestSpatioTemporalLayers321PatternEncoder() = 0;
virtual void TestStrideEncodeDecode() = 0;
};
} // namespace test
} // namespace webrtc
#endif // API_TEST_SIMULCAST_TEST_FIXTURE_H_

View File

@ -529,6 +529,7 @@ if (rtc_include_tests) {
"../rtc_base:rtc_task_queue", "../rtc_base:rtc_task_queue",
"../rtc_base:stringutils", "../rtc_base:stringutils",
"../test:field_trial", "../test:field_trial",
"../test:test_common",
] ]
sources = [ sources = [
"base/codec_unittest.cc", "base/codec_unittest.cc",
@ -608,8 +609,10 @@ if (rtc_include_tests) {
":rtc_media_base", ":rtc_media_base",
":rtc_media_tests_utils", ":rtc_media_tests_utils",
":rtc_software_fallback_wrappers", ":rtc_software_fallback_wrappers",
"../api:create_simulcast_test_fixture_api",
"../api:libjingle_peerconnection_api", "../api:libjingle_peerconnection_api",
"../api:mock_video_codec_factory", "../api:mock_video_codec_factory",
"../api:simulcast_test_fixture_api",
"../api/audio_codecs:builtin_audio_decoder_factory", "../api/audio_codecs:builtin_audio_decoder_factory",
"../api/audio_codecs:builtin_audio_encoder_factory", "../api/audio_codecs:builtin_audio_encoder_factory",
"../api/video:video_bitrate_allocation", "../api/video:video_bitrate_allocation",
@ -624,8 +627,7 @@ if (rtc_include_tests) {
"../logging:rtc_event_log_impl_base", "../logging:rtc_event_log_impl_base",
"../modules/audio_device:mock_audio_device", "../modules/audio_device:mock_audio_device",
"../modules/audio_processing:audio_processing", "../modules/audio_processing:audio_processing",
"../modules/video_coding:simulcast_test_utility", "../modules/video_coding:simulcast_test_fixture_impl",
"../modules/video_coding:video_coding_utility",
"../modules/video_coding:webrtc_vp8_helpers", "../modules/video_coding:webrtc_vp8_helpers",
"../p2p:p2p_test_utils", "../p2p:p2p_test_utils",
"../rtc_base:rtc_base", "../rtc_base:rtc_base",

View File

@ -12,90 +12,134 @@
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "api/test/create_simulcast_test_fixture.h"
#include "api/test/simulcast_test_fixture.h"
#include "api/video_codecs/sdp_video_format.h" #include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_encoder_factory.h" #include "api/video_codecs/video_encoder_factory.h"
#include "common_video/include/video_frame_buffer.h" #include "common_video/include/video_frame_buffer.h"
#include "media/engine/internalencoderfactory.h" #include "media/engine/internalencoderfactory.h"
#include "media/engine/simulcast_encoder_adapter.h" #include "media/engine/simulcast_encoder_adapter.h"
#include "modules/video_coding/codecs/vp8/simulcast_test_utility.h" #include "modules/video_coding/codecs/vp8/simulcast_test_fixture_impl.h"
#include "modules/video_coding/include/video_codec_interface.h" #include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/ptr_util.h" #include "rtc_base/ptr_util.h"
#include "test/function_video_decoder_factory.h"
#include "test/function_video_encoder_factory.h"
#include "test/gmock.h" #include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::Return;
namespace webrtc { namespace webrtc {
namespace testing { namespace test {
class TestSimulcastEncoderAdapter : public TestVp8Simulcast { namespace {
public:
TestSimulcastEncoderAdapter() : factory_(new InternalEncoderFactory()) {}
protected: constexpr int kDefaultWidth = 1280;
std::unique_ptr<VP8Encoder> CreateEncoder() override { constexpr int kDefaultHeight = 720;
return rtc::MakeUnique<SimulcastEncoderAdapter>(factory_.get(),
SdpVideoFormat("VP8"));
}
std::unique_ptr<VP8Decoder> CreateDecoder() override {
return VP8Decoder::Create();
}
private: std::unique_ptr<SimulcastTestFixture> CreateSpecificSimulcastTestFixture(
std::unique_ptr<VideoEncoderFactory> factory_; VideoEncoderFactory* internal_encoder_factory) {
}; std::unique_ptr<VideoEncoderFactory> encoder_factory =
rtc::MakeUnique<FunctionVideoEncoderFactory>(
TEST_F(TestSimulcastEncoderAdapter, TestKeyFrameRequestsOnAllStreams) { [internal_encoder_factory]() {
TestVp8Simulcast::TestKeyFrameRequestsOnAllStreams(); return rtc::MakeUnique<SimulcastEncoderAdapter>(
internal_encoder_factory,
SdpVideoFormat(cricket::kVp8CodecName));
});
std::unique_ptr<VideoDecoderFactory> decoder_factory =
rtc::MakeUnique<FunctionVideoDecoderFactory>(
[]() { return VP8Decoder::Create(); });
return CreateSimulcastTestFixture(std::move(encoder_factory),
std::move(decoder_factory));
} }
TEST_F(TestSimulcastEncoderAdapter, TestPaddingAllStreams) { } // namespace
TestVp8Simulcast::TestPaddingAllStreams();
TEST(SimulcastEncoderAdapterSimulcastTest, TestKeyFrameRequestsOnAllStreams) {
InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestKeyFrameRequestsOnAllStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestPaddingTwoStreams) { TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingAllStreams) {
TestVp8Simulcast::TestPaddingTwoStreams(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestPaddingAllStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestPaddingTwoStreamsOneMaxedOut) { TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingTwoStreams) {
TestVp8Simulcast::TestPaddingTwoStreamsOneMaxedOut(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestPaddingTwoStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestPaddingOneStream) { TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingTwoStreamsOneMaxedOut) {
TestVp8Simulcast::TestPaddingOneStream(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestPaddingTwoStreamsOneMaxedOut();
} }
TEST_F(TestSimulcastEncoderAdapter, TestPaddingOneStreamTwoMaxedOut) { TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingOneStream) {
TestVp8Simulcast::TestPaddingOneStreamTwoMaxedOut(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestPaddingOneStream();
} }
TEST_F(TestSimulcastEncoderAdapter, TestSendAllStreams) { TEST(SimulcastEncoderAdapterSimulcastTest, TestPaddingOneStreamTwoMaxedOut) {
TestVp8Simulcast::TestSendAllStreams(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestPaddingOneStreamTwoMaxedOut();
} }
TEST_F(TestSimulcastEncoderAdapter, TestDisablingStreams) { TEST(SimulcastEncoderAdapterSimulcastTest, TestSendAllStreams) {
TestVp8Simulcast::TestDisablingStreams(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestSendAllStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestActiveStreams) { TEST(SimulcastEncoderAdapterSimulcastTest, TestDisablingStreams) {
TestVp8Simulcast::TestActiveStreams(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestDisablingStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestSwitchingToOneStream) { TEST(SimulcastEncoderAdapterSimulcastTest, TestActiveStreams) {
TestVp8Simulcast::TestSwitchingToOneStream(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestActiveStreams();
} }
TEST_F(TestSimulcastEncoderAdapter, TestSwitchingToOneOddStream) { TEST(SimulcastEncoderAdapterSimulcastTest, TestSwitchingToOneStream) {
TestVp8Simulcast::TestSwitchingToOneOddStream(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestSwitchingToOneStream();
} }
TEST_F(TestSimulcastEncoderAdapter, TestStrideEncodeDecode) { TEST(SimulcastEncoderAdapterSimulcastTest, TestSwitchingToOneOddStream) {
TestVp8Simulcast::TestStrideEncodeDecode(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestSwitchingToOneOddStream();
} }
TEST_F(TestSimulcastEncoderAdapter, TestSaptioTemporalLayers333PatternEncoder) { TEST(SimulcastEncoderAdapterSimulcastTest, TestStrideEncodeDecode) {
TestVp8Simulcast::TestSaptioTemporalLayers333PatternEncoder(); InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestStrideEncodeDecode();
} }
TEST_F(TestSimulcastEncoderAdapter, TestSpatioTemporalLayers321PatternEncoder) { TEST(SimulcastEncoderAdapterSimulcastTest,
TestVp8Simulcast::TestSpatioTemporalLayers321PatternEncoder(); TestSpatioTemporalLayers333PatternEncoder) {
InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestSpatioTemporalLayers333PatternEncoder();
}
TEST(SimulcastEncoderAdapterSimulcastTest,
TestSpatioTemporalLayers321PatternEncoder) {
InternalEncoderFactory internal_encoder_factory;
auto fixture = CreateSpecificSimulcastTestFixture(&internal_encoder_factory);
fixture->TestSpatioTemporalLayers321PatternEncoder();
} }
class MockVideoEncoder; class MockVideoEncoder;
@ -312,7 +356,7 @@ class TestSimulcastEncoderAdapterFake : public ::testing::Test,
} }
void SetupCodec() { void SetupCodec() {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
rate_allocator_.reset(new SimulcastRateAllocator(codec_)); rate_allocator_.reset(new SimulcastRateAllocator(codec_));
EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200));
@ -460,7 +504,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, EncodedCallbackForDifferentEncoders) {
// with the lowest stream. // with the lowest stream.
TEST_F(TestSimulcastEncoderAdapterFake, ReusesEncodersInOrder) { TEST_F(TestSimulcastEncoderAdapterFake, ReusesEncodersInOrder) {
// Set up common settings for three streams. // Set up common settings for three streams.
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
rate_allocator_.reset(new SimulcastRateAllocator(codec_)); rate_allocator_.reset(new SimulcastRateAllocator(codec_));
adapter_->RegisterEncodeCompleteCallback(this); adapter_->RegisterEncodeCompleteCallback(this);
@ -658,7 +702,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, ReinitDoesNotReorderFrameSimulcastIdx) {
} }
TEST_F(TestSimulcastEncoderAdapterFake, SupportsNativeHandleForSingleStreams) { TEST_F(TestSimulcastEncoderAdapterFake, SupportsNativeHandleForSingleStreams) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.numberOfSimulcastStreams = 1; codec_.numberOfSimulcastStreams = 1;
EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200));
@ -671,7 +715,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, SupportsNativeHandleForSingleStreams) {
} }
TEST_F(TestSimulcastEncoderAdapterFake, SetRatesUnderMinBitrate) { TEST_F(TestSimulcastEncoderAdapterFake, SetRatesUnderMinBitrate) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.minBitrate = 50; codec_.minBitrate = 50;
codec_.numberOfSimulcastStreams = 1; codec_.numberOfSimulcastStreams = 1;
@ -700,7 +744,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, SetRatesUnderMinBitrate) {
TEST_F(TestSimulcastEncoderAdapterFake, SupportsImplementationName) { TEST_F(TestSimulcastEncoderAdapterFake, SupportsImplementationName) {
EXPECT_STREQ("SimulcastEncoderAdapter", adapter_->ImplementationName()); EXPECT_STREQ("SimulcastEncoderAdapter", adapter_->ImplementationName());
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
std::vector<const char*> encoder_names; std::vector<const char*> encoder_names;
encoder_names.push_back("codec1"); encoder_names.push_back("codec1");
@ -722,7 +766,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, SupportsImplementationName) {
TEST_F(TestSimulcastEncoderAdapterFake, TEST_F(TestSimulcastEncoderAdapterFake,
SupportsNativeHandleForMultipleStreams) { SupportsNativeHandleForMultipleStreams) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.numberOfSimulcastStreams = 3; codec_.numberOfSimulcastStreams = 3;
EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200));
@ -759,7 +803,7 @@ class FakeNativeBuffer : public VideoFrameBuffer {
TEST_F(TestSimulcastEncoderAdapterFake, TEST_F(TestSimulcastEncoderAdapterFake,
NativeHandleForwardingForMultipleStreams) { NativeHandleForwardingForMultipleStreams) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.numberOfSimulcastStreams = 3; codec_.numberOfSimulcastStreams = 3;
// High start bitrate, so all streams are enabled. // High start bitrate, so all streams are enabled.
@ -783,7 +827,7 @@ TEST_F(TestSimulcastEncoderAdapterFake,
} }
TEST_F(TestSimulcastEncoderAdapterFake, TestFailureReturnCodesFromEncodeCalls) { TEST_F(TestSimulcastEncoderAdapterFake, TestFailureReturnCodesFromEncodeCalls) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.numberOfSimulcastStreams = 3; codec_.numberOfSimulcastStreams = 3;
EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200)); EXPECT_EQ(0, adapter_->InitEncode(&codec_, 1, 1200));
@ -804,7 +848,7 @@ TEST_F(TestSimulcastEncoderAdapterFake, TestFailureReturnCodesFromEncodeCalls) {
} }
TEST_F(TestSimulcastEncoderAdapterFake, TestInitFailureCleansUpEncoders) { TEST_F(TestSimulcastEncoderAdapterFake, TestInitFailureCleansUpEncoders) {
TestVp8Simulcast::DefaultSettings( SimulcastTestFixtureImpl::DefaultSettings(
&codec_, static_cast<const int*>(kTestTemporalLayerProfile)); &codec_, static_cast<const int*>(kTestTemporalLayerProfile));
codec_.numberOfSimulcastStreams = 3; codec_.numberOfSimulcastStreams = 3;
helper_->factory()->set_init_encode_return_value( helper_->factory()->set_init_encode_return_value(
@ -814,5 +858,5 @@ TEST_F(TestSimulcastEncoderAdapterFake, TestInitFailureCleansUpEncoders) {
EXPECT_TRUE(helper_->factory()->encoders().empty()); EXPECT_TRUE(helper_->factory()->encoders().empty());
} }
} // namespace testing } // namespace test
} // namespace webrtc } // namespace webrtc

View File

@ -549,10 +549,11 @@ if (rtc_include_tests) {
} }
} }
rtc_source_set("simulcast_test_utility") { rtc_source_set("simulcast_test_fixture_impl") {
testonly = true testonly = true
sources = [ sources = [
"codecs/vp8/simulcast_test_utility.h", "codecs/vp8/simulcast_test_fixture_impl.cc",
"codecs/vp8/simulcast_test_fixture_impl.h",
] ]
if (!build_with_chromium && is_clang) { if (!build_with_chromium && is_clang) {
@ -565,8 +566,11 @@ if (rtc_include_tests) {
":video_codec_interface", ":video_codec_interface",
":video_coding", ":video_coding",
":webrtc_vp8_helpers", ":webrtc_vp8_helpers",
"../../:webrtc_common",
"../../api:simulcast_test_fixture_api",
"../../api/video:video_frame", "../../api/video:video_frame",
"../../api/video:video_frame_i420", "../../api/video:video_frame_i420",
"../../api/video_codecs:video_codecs_api",
"../../common_video:common_video", "../../common_video:common_video",
"../../rtc_base:checks", "../../rtc_base:checks",
"../../rtc_base:rtc_base_approved", "../../rtc_base:rtc_base_approved",
@ -767,8 +771,8 @@ if (rtc_include_tests) {
"codecs/test/videocodec_test_stats_impl_unittest.cc", "codecs/test/videocodec_test_stats_impl_unittest.cc",
"codecs/test/videoprocessor_unittest.cc", "codecs/test/videoprocessor_unittest.cc",
"codecs/vp8/default_temporal_layers_unittest.cc", "codecs/vp8/default_temporal_layers_unittest.cc",
"codecs/vp8/libvpx_vp8_simulcast_test.cc",
"codecs/vp8/screenshare_layers_unittest.cc", "codecs/vp8/screenshare_layers_unittest.cc",
"codecs/vp8/simulcast_unittest.cc",
"codecs/vp9/svc_config_unittest.cc", "codecs/vp9/svc_config_unittest.cc",
"codecs/vp9/svc_rate_allocator_unittest.cc", "codecs/vp9/svc_rate_allocator_unittest.cc",
"decoding_state_unittest.cc", "decoding_state_unittest.cc",
@ -809,7 +813,6 @@ if (rtc_include_tests) {
":codec_globals_headers", ":codec_globals_headers",
":encoded_frame", ":encoded_frame",
":mock_headers", ":mock_headers",
":simulcast_test_utility",
":video_codec_interface", ":video_codec_interface",
":video_codecs_test_framework", ":video_codecs_test_framework",
":video_coding", ":video_coding",
@ -823,6 +826,8 @@ if (rtc_include_tests) {
"..:module_api", "..:module_api",
"../..:webrtc_common", "../..:webrtc_common",
"../../:typedefs", "../../:typedefs",
"../../api:create_simulcast_test_fixture_api",
"../../api:simulcast_test_fixture_api",
"../../api:videocodec_test_fixture_api", "../../api:videocodec_test_fixture_api",
"../../api/video:video_frame", "../../api/video:video_frame",
"../../api/video:video_frame_i420", "../../api/video:video_frame_i420",
@ -842,6 +847,7 @@ if (rtc_include_tests) {
"../../system_wrappers:metrics_default", "../../system_wrappers:metrics_default",
"../../test:field_trial", "../../test:field_trial",
"../../test:fileutils", "../../test:fileutils",
"../../test:test_common",
"../../test:test_support", "../../test:test_support",
"../../test:video_test_common", "../../test:video_test_common",
"../../test:video_test_support", "../../test:video_test_support",

View File

@ -0,0 +1,108 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "api/test/create_simulcast_test_fixture.h"
#include "api/test/simulcast_test_fixture.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "rtc_base/ptr_util.h"
#include "test/function_video_decoder_factory.h"
#include "test/function_video_encoder_factory.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
std::unique_ptr<SimulcastTestFixture> CreateSpecificSimulcastTestFixture() {
std::unique_ptr<VideoEncoderFactory> encoder_factory =
rtc::MakeUnique<FunctionVideoEncoderFactory>(
[]() { return VP8Encoder::Create(); });
std::unique_ptr<VideoDecoderFactory> decoder_factory =
rtc::MakeUnique<FunctionVideoDecoderFactory>(
[]() { return VP8Decoder::Create(); });
return CreateSimulcastTestFixture(std::move(encoder_factory),
std::move(decoder_factory));
}
} // namespace
TEST(LibvpxVp8SimulcastTest, TestKeyFrameRequestsOnAllStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestKeyFrameRequestsOnAllStreams();
}
TEST(LibvpxVp8SimulcastTest, TestPaddingAllStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingAllStreams();
}
TEST(LibvpxVp8SimulcastTest, TestPaddingTwoStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingTwoStreams();
}
TEST(LibvpxVp8SimulcastTest, TestPaddingTwoStreamsOneMaxedOut) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingTwoStreamsOneMaxedOut();
}
TEST(LibvpxVp8SimulcastTest, TestPaddingOneStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingOneStream();
}
TEST(LibvpxVp8SimulcastTest, TestPaddingOneStreamTwoMaxedOut) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestPaddingOneStreamTwoMaxedOut();
}
TEST(LibvpxVp8SimulcastTest, TestSendAllStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSendAllStreams();
}
TEST(LibvpxVp8SimulcastTest, TestDisablingStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestDisablingStreams();
}
TEST(LibvpxVp8SimulcastTest, TestActiveStreams) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestActiveStreams();
}
TEST(LibvpxVp8SimulcastTest, TestSwitchingToOneStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSwitchingToOneStream();
}
TEST(LibvpxVp8SimulcastTest, TestSwitchingToOneOddStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSwitchingToOneOddStream();
}
TEST(LibvpxVp8SimulcastTest, TestSwitchingToOneSmallStream) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSwitchingToOneSmallStream();
}
TEST(LibvpxVp8SimulcastTest, TestSpatioTemporalLayers333PatternEncoder) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestSpatioTemporalLayers333PatternEncoder();
}
TEST(LibvpxVp8SimulcastTest, TestStrideEncodeDecode) {
auto fixture = CreateSpecificSimulcastTestFixture();
fixture->TestStrideEncodeDecode();
}
} // namespace test
} // namespace webrtc

View File

@ -0,0 +1,806 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/simulcast_test_fixture_impl.h"
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "api/video_codecs/sdp_video_format.h"
#include "common_video/include/video_frame.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp8/temporal_layers.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;
namespace webrtc {
namespace test {
namespace {
const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
template <typename T>
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
expected_values[0] = value0;
expected_values[1] = value1;
expected_values[2] = value2;
}
enum PlaneType {
kYPlane = 0,
kUPlane = 1,
kVPlane = 2,
kNumOfPlanes = 3,
};
} // namespace
class SimulcastTestFixtureImpl::Vp8TestEncodedImageCallback
: public EncodedImageCallback {
public:
Vp8TestEncodedImageCallback() : picture_id_(-1) {
memset(temporal_layer_, -1, sizeof(temporal_layer_));
memset(layer_sync_, false, sizeof(layer_sync_));
}
~Vp8TestEncodedImageCallback() {
delete[] encoded_key_frame_._buffer;
delete[] encoded_frame_._buffer;
}
virtual Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Only store the base layer.
if (codec_specific_info->codecSpecific.VP8.simulcastIdx == 0) {
if (encoded_image._frameType == kVideoFrameKey) {
delete[] encoded_key_frame_._buffer;
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
encoded_key_frame_._size = encoded_image._size;
encoded_key_frame_._length = encoded_image._length;
encoded_key_frame_._frameType = kVideoFrameKey;
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
memcpy(encoded_key_frame_._buffer, encoded_image._buffer,
encoded_image._length);
} else {
delete[] encoded_frame_._buffer;
encoded_frame_._buffer = new uint8_t[encoded_image._size];
encoded_frame_._size = encoded_image._size;
encoded_frame_._length = encoded_image._length;
memcpy(encoded_frame_._buffer, encoded_image._buffer,
encoded_image._length);
}
}
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.layerSync;
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.temporalIdx;
return Result(Result::OK, encoded_image._timeStamp);
}
void GetLastEncodedFrameInfo(int* picture_id,
int* temporal_layer,
bool* layer_sync,
int stream) {
*picture_id = picture_id_;
*temporal_layer = temporal_layer_[stream];
*layer_sync = layer_sync_[stream];
}
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
*encoded_key_frame = encoded_key_frame_;
}
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
*encoded_frame = encoded_frame_;
}
private:
EncodedImage encoded_key_frame_;
EncodedImage encoded_frame_;
int picture_id_;
int temporal_layer_[kNumberOfSimulcastStreams];
bool layer_sync_[kNumberOfSimulcastStreams];
};
class SimulcastTestFixtureImpl::Vp8TestDecodedImageCallback
: public DecodedImageCallback {
public:
Vp8TestDecodedImageCallback() : decoded_frames_(0) {}
int32_t Decoded(VideoFrame& decoded_image) override {
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
decoded_image.video_frame_buffer()->ToI420();
for (int i = 0; i < decoded_image.width(); ++i) {
EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
}
// TODO(mikhal): Verify the difference between U,V and the original.
for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
}
decoded_frames_++;
return 0;
}
int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
RTC_NOTREACHED();
return -1;
}
void Decoded(VideoFrame& decoded_image,
rtc::Optional<int32_t> decode_time_ms,
rtc::Optional<uint8_t> qp) override {
Decoded(decoded_image);
}
int DecodedFrames() { return decoded_frames_; }
private:
int decoded_frames_;
};
namespace {
void SetPlane(uint8_t* data, uint8_t value, int width, int height, int stride) {
for (int i = 0; i < height; i++, data += stride) {
// Setting allocated area to zero - setting only image size to
// requested values - will make it easier to distinguish between image
// size and frame size (accounting for stride).
memset(data, value, width);
memset(data + width, 0, stride - width);
}
}
// Fills in an I420Buffer from |plane_colors|.
void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
int plane_colors[kNumOfPlanes]) {
SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
buffer->height(), buffer->StrideY());
SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideU());
SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideV());
}
void ConfigureStream(int width,
int height,
int max_bitrate,
int min_bitrate,
int target_bitrate,
SimulcastStream* stream,
int num_temporal_layers) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->minBitrate = min_bitrate;
stream->targetBitrate = target_bitrate;
stream->numberOfTemporalLayers = num_temporal_layers;
stream->qpMax = 45;
stream->active = true;
}
} // namespace
void SimulcastTestFixtureImpl::DefaultSettings(
VideoCodec* settings,
const int* temporal_layer_profile) {
RTC_CHECK(settings);
memset(settings, 0, sizeof(VideoCodec));
settings->codecType = kVideoCodecVP8;
// 96 to 127 dynamic payload types for video codecs
settings->plType = 120;
settings->startBitrate = 300;
settings->minBitrate = 30;
settings->maxBitrate = 0;
settings->maxFramerate = 30;
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
settings->active = true;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
kMinBitrates[0], kTargetBitrates[0],
&settings->simulcastStream[0], temporal_layer_profile[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
kMinBitrates[1], kTargetBitrates[1],
&settings->simulcastStream[1], temporal_layer_profile[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
kMinBitrates[2], kTargetBitrates[2],
&settings->simulcastStream[2], temporal_layer_profile[2]);
settings->VP8()->denoisingOn = true;
settings->VP8()->automaticResizeOn = false;
settings->VP8()->frameDroppingOn = true;
settings->VP8()->keyFrameInterval = 3000;
}
SimulcastTestFixtureImpl::SimulcastTestFixtureImpl(
std::unique_ptr<VideoEncoderFactory> encoder_factory,
std::unique_ptr<VideoDecoderFactory> decoder_factory) {
encoder_ = encoder_factory->CreateVideoEncoder(SdpVideoFormat("VP8"));
decoder_ = decoder_factory->CreateVideoDecoder(SdpVideoFormat("VP8"));
SetUpCodec(kDefaultTemporalLayerProfile);
}
SimulcastTestFixtureImpl::~SimulcastTestFixtureImpl() {
encoder_->Release();
decoder_->Release();
}
void SimulcastTestFixtureImpl::SetUpCodec(const int* temporal_layer_profile) {
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
DefaultSettings(&settings_, temporal_layer_profile);
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
}
void SimulcastTestFixtureImpl::SetUpRateAllocator() {
rate_allocator_.reset(new SimulcastRateAllocator(settings_));
}
void SimulcastTestFixtureImpl::SetRates(uint32_t bitrate_kbps, uint32_t fps) {
encoder_->SetRateAllocation(
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}
void SimulcastTestFixtureImpl::RunActiveStreamsTest(
const std::vector<bool> active_streams) {
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
UpdateActiveStreams(active_streams);
// Set sufficient bitrate for all streams so we can test active without
// bitrate being an issue.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
ExpectStreams(kVideoFrameKey, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::UpdateActiveStreams(
const std::vector<bool> active_streams) {
ASSERT_EQ(static_cast<int>(active_streams.size()), kNumberOfSimulcastStreams);
for (size_t i = 0; i < active_streams.size(); ++i) {
settings_.simulcastStream[i].active = active_streams[i];
}
// Re initialize the allocator and encoder with the new settings.
// TODO(bugs.webrtc.org/8807): Currently, we do a full "hard"
// reconfiguration of the allocator and encoder. When the video bitrate
// allocator has support for updating active streams without a
// reinitialization, we can just call that here instead.
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
}
void SimulcastTestFixtureImpl::ExpectStreams(
FrameType frame_type,
const std::vector<bool> expected_streams_active) {
ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
kNumberOfSimulcastStreams);
if (expected_streams_active[0]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[1]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[2]) {
EXPECT_CALL(encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
}
}
void SimulcastTestFixtureImpl::ExpectStreams(FrameType frame_type,
int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
for (int i = 0; i < expected_video_streams; ++i) {
expected_streams_active[i] = true;
}
ExpectStreams(frame_type, expected_streams_active);
}
void SimulcastTestFixtureImpl::VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers) {
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
for (int i = 0; i < num_spatial_layers; i++) {
encoder_callback->GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, i);
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
EXPECT_EQ(expected_layer_sync[i], layer_sync);
}
}
// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void SimulcastTestFixtureImpl::TestKeyFrameRequestsOnAllStreams() {
SetRates(kMaxBitrates[2], 30); // To get all three streams.
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
frame_types[0] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[1] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[2] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingAllStreams() {
// We should always encode the base layer.
SetRates(kMinBitrates[0] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingTwoStreams() {
// We have just enough to get only the first stream and padding for two.
SetRates(kMinBitrates[0], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingTwoStreamsOneMaxedOut() {
// We are just below limit of sending second stream, so we should get
// the first stream maxed out (at |maxBitrate|), and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingOneStream() {
// We have just enough to send two streams, so padding for one stream.
SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestPaddingOneStreamTwoMaxedOut() {
// We are just below limit of sending third stream, so we should get
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestSendAllStreams() {
// We have just enough to send all streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestDisablingStreams() {
// We should get three media streams.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get the first stream and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We don't have enough bitrate for the thumbnail stream, but we should get
// it anyway with current configuration.
SetRates(kTargetBitrates[0] - 1, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should get all three streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestActiveStreams() {
// All streams on.
RunActiveStreamsTest({true, true, true});
// All streams off.
RunActiveStreamsTest({false, false, false});
// Low stream off.
RunActiveStreamsTest({false, true, true});
// Middle stream off.
RunActiveStreamsTest({true, false, true});
// High stream off.
RunActiveStreamsTest({true, true, false});
// Only low stream turned on.
RunActiveStreamsTest({true, false, false});
// Only middle stream turned on.
RunActiveStreamsTest({false, true, false});
// Only high stream turned on.
RunActiveStreamsTest({false, false, true});
}
void SimulcastTestFixtureImpl::SwitchingToOneStream(int width, int height) {
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.
settings_.VP8()->numberOfTemporalLayers = 1;
settings_.maxBitrate = 100;
settings_.startBitrate = 100;
settings_.width = width;
settings_.height = height;
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
settings_.simulcastStream[i].maxBitrate = 0;
settings_.simulcastStream[i].width = settings_.width;
settings_.simulcastStream[i].height = settings_.height;
settings_.simulcastStream[i].numberOfTemporalLayers = 1;
}
// Setting input image to new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// The for loop above did not set the bitrate of the highest layer.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].maxBitrate =
0;
// The highest layer has to correspond to the non-simulcast resolution.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
settings_.width;
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
settings_.height;
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
// Encode one frame and verify.
SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
Field(&EncodedImage::_encodedWidth, width),
Field(&EncodedImage::_encodedHeight, height)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// Switch back.
DefaultSettings(&settings_, kDefaultTemporalLayerProfile);
// Start at the lowest bitrate for enabling base stream.
settings_.startBitrate = kMinBitrates[0];
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
SetRates(settings_.startBitrate, 30);
ExpectStreams(kVideoFrameKey, 1);
// Resize |input_frame_| to the new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SimulcastTestFixtureImpl::TestSwitchingToOneStream() {
SwitchingToOneStream(1024, 768);
}
void SimulcastTestFixtureImpl::TestSwitchingToOneOddStream() {
SwitchingToOneStream(1023, 769);
}
void SimulcastTestFixtureImpl::TestSwitchingToOneSmallStream() {
SwitchingToOneStream(4, 4);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers333PatternEncoder() {
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers321PatternEncoder() {
int temporal_layer_profile[3] = {3, 2, 1};
SetUpCodec(temporal_layer_profile);
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
void SimulcastTestFixtureImpl::TestStrideEncodeDecode() {
Vp8TestEncodedImageCallback encoder_callback;
Vp8TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Setting two (possibly) problematic use cases for stride:
// 1. stride > width 2. stride_y != stride_uv/2
int stride_y = kDefaultWidth + 20;
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
stride_uv, stride_uv);
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(input_buffer_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(input_buffer_, plane_offset);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
EncodedImage encoded_frame;
// Only encoding one frame - so will be a key frame.
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL, 0));
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL, 0);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
} // namespace test
} // namespace webrtc

View File

@ -0,0 +1,88 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_FIXTURE_IMPL_H_
#define MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_FIXTURE_IMPL_H_
#include <memory>
#include <vector>
#include "api/test/simulcast_test_fixture.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_frame.h"
#include "api/video_codecs/video_decoder_factory.h"
#include "api/video_codecs/video_encoder_factory.h"
#include "common_types.h" // NOLINT(build/include)
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/include/mock/mock_video_codec_interface.h"
namespace webrtc {
namespace test {
class SimulcastTestFixtureImpl final : public SimulcastTestFixture {
public:
SimulcastTestFixtureImpl(
std::unique_ptr<VideoEncoderFactory> encoder_factory,
std::unique_ptr<VideoDecoderFactory> decoder_factory);
~SimulcastTestFixtureImpl() final;
// Implements SimulcastTestFixture.
void TestKeyFrameRequestsOnAllStreams() override;
void TestPaddingAllStreams() override;
void TestPaddingTwoStreams() override;
void TestPaddingTwoStreamsOneMaxedOut() override;
void TestPaddingOneStream() override;
void TestPaddingOneStreamTwoMaxedOut() override;
void TestSendAllStreams() override;
void TestDisablingStreams() override;
void TestActiveStreams() override;
void TestSwitchingToOneStream() override;
void TestSwitchingToOneOddStream() override;
void TestSwitchingToOneSmallStream() override;
void TestSpatioTemporalLayers333PatternEncoder() override;
void TestSpatioTemporalLayers321PatternEncoder() override;
void TestStrideEncodeDecode() override;
static void DefaultSettings(VideoCodec* settings,
const int* temporal_layer_profile);
private:
class Vp8TestEncodedImageCallback;
class Vp8TestDecodedImageCallback;
void SetUpCodec(const int* temporal_layer_profile);
void SetUpRateAllocator();
void SetRates(uint32_t bitrate_kbps, uint32_t fps);
void RunActiveStreamsTest(const std::vector<bool> active_streams);
void UpdateActiveStreams(const std::vector<bool> active_streams);
void ExpectStreams(FrameType frame_type,
const std::vector<bool> expected_streams_active);
void ExpectStreams(FrameType frame_type, int expected_video_streams);
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers);
void SwitchingToOneStream(int width, int height);
std::unique_ptr<VideoEncoder> encoder_;
MockEncodedImageCallback encoder_callback_;
std::unique_ptr<VideoDecoder> decoder_;
MockDecodedImageCallback decoder_callback_;
VideoCodec settings_;
rtc::scoped_refptr<I420Buffer> input_buffer_;
std::unique_ptr<VideoFrame> input_frame_;
std::unique_ptr<SimulcastRateAllocator> rate_allocator_;
};
} // namespace test
} // namespace webrtc
#endif // MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_FIXTURE_IMPL_H_

View File

@ -1,813 +0,0 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_UTILITY_H_
#define MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_UTILITY_H_
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "api/video/i420_buffer.h"
#include "api/video/video_frame.h"
#include "common_video/include/video_frame.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/codecs/vp8/temporal_layers.h"
#include "modules/video_coding/include/mock/mock_video_codec_interface.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AllOf;
using ::testing::Field;
using ::testing::Return;
namespace webrtc {
namespace testing {
const int kDefaultWidth = 1280;
const int kDefaultHeight = 720;
const int kNumberOfSimulcastStreams = 3;
const int kColorY = 66;
const int kColorU = 22;
const int kColorV = 33;
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
template <typename T>
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
expected_values[0] = value0;
expected_values[1] = value1;
expected_values[2] = value2;
}
enum PlaneType {
kYPlane = 0,
kUPlane = 1,
kVPlane = 2,
kNumOfPlanes = 3,
};
class Vp8TestEncodedImageCallback : public EncodedImageCallback {
public:
Vp8TestEncodedImageCallback() : picture_id_(-1) {
memset(temporal_layer_, -1, sizeof(temporal_layer_));
memset(layer_sync_, false, sizeof(layer_sync_));
}
~Vp8TestEncodedImageCallback() {
delete[] encoded_key_frame_._buffer;
delete[] encoded_frame_._buffer;
}
virtual Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) {
// Only store the base layer.
if (codec_specific_info->codecSpecific.VP8.simulcastIdx == 0) {
if (encoded_image._frameType == kVideoFrameKey) {
delete[] encoded_key_frame_._buffer;
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
encoded_key_frame_._size = encoded_image._size;
encoded_key_frame_._length = encoded_image._length;
encoded_key_frame_._frameType = kVideoFrameKey;
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
memcpy(encoded_key_frame_._buffer, encoded_image._buffer,
encoded_image._length);
} else {
delete[] encoded_frame_._buffer;
encoded_frame_._buffer = new uint8_t[encoded_image._size];
encoded_frame_._size = encoded_image._size;
encoded_frame_._length = encoded_image._length;
memcpy(encoded_frame_._buffer, encoded_image._buffer,
encoded_image._length);
}
}
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.layerSync;
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
codec_specific_info->codecSpecific.VP8.temporalIdx;
return Result(Result::OK, encoded_image._timeStamp);
}
void GetLastEncodedFrameInfo(int* picture_id,
int* temporal_layer,
bool* layer_sync,
int stream) {
*picture_id = picture_id_;
*temporal_layer = temporal_layer_[stream];
*layer_sync = layer_sync_[stream];
}
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
*encoded_key_frame = encoded_key_frame_;
}
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
*encoded_frame = encoded_frame_;
}
private:
EncodedImage encoded_key_frame_;
EncodedImage encoded_frame_;
int picture_id_;
int temporal_layer_[kNumberOfSimulcastStreams];
bool layer_sync_[kNumberOfSimulcastStreams];
};
class Vp8TestDecodedImageCallback : public DecodedImageCallback {
public:
Vp8TestDecodedImageCallback() : decoded_frames_(0) {}
int32_t Decoded(VideoFrame& decoded_image) override {
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
decoded_image.video_frame_buffer()->ToI420();
for (int i = 0; i < decoded_image.width(); ++i) {
EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
}
// TODO(mikhal): Verify the difference between U,V and the original.
for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
}
decoded_frames_++;
return 0;
}
int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
RTC_NOTREACHED();
return -1;
}
void Decoded(VideoFrame& decoded_image,
rtc::Optional<int32_t> decode_time_ms,
rtc::Optional<uint8_t> qp) override {
Decoded(decoded_image);
}
int DecodedFrames() { return decoded_frames_; }
private:
int decoded_frames_;
};
class TestVp8Simulcast : public ::testing::Test {
public:
static void SetPlane(uint8_t* data,
uint8_t value,
int width,
int height,
int stride) {
for (int i = 0; i < height; i++, data += stride) {
// Setting allocated area to zero - setting only image size to
// requested values - will make it easier to distinguish between image
// size and frame size (accounting for stride).
memset(data, value, width);
memset(data + width, 0, stride - width);
}
}
// Fills in an I420Buffer from |plane_colors|.
static void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
int plane_colors[kNumOfPlanes]) {
SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
buffer->height(), buffer->StrideY());
SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideU());
SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
buffer->ChromaHeight(), buffer->StrideV());
}
static void DefaultSettings(VideoCodec* settings,
const int* temporal_layer_profile) {
RTC_CHECK(settings);
memset(settings, 0, sizeof(VideoCodec));
settings->codecType = kVideoCodecVP8;
// 96 to 127 dynamic payload types for video codecs
settings->plType = 120;
settings->startBitrate = 300;
settings->minBitrate = 30;
settings->maxBitrate = 0;
settings->maxFramerate = 30;
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
settings->active = true;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
kMinBitrates[0], kTargetBitrates[0],
&settings->simulcastStream[0], temporal_layer_profile[0]);
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
kMinBitrates[1], kTargetBitrates[1],
&settings->simulcastStream[1], temporal_layer_profile[1]);
ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
kMinBitrates[2], kTargetBitrates[2],
&settings->simulcastStream[2], temporal_layer_profile[2]);
settings->VP8()->denoisingOn = true;
settings->VP8()->automaticResizeOn = false;
settings->VP8()->frameDroppingOn = true;
settings->VP8()->keyFrameInterval = 3000;
}
static void ConfigureStream(int width,
int height,
int max_bitrate,
int min_bitrate,
int target_bitrate,
SimulcastStream* stream,
int num_temporal_layers) {
assert(stream);
stream->width = width;
stream->height = height;
stream->maxBitrate = max_bitrate;
stream->minBitrate = min_bitrate;
stream->targetBitrate = target_bitrate;
stream->numberOfTemporalLayers = num_temporal_layers;
stream->qpMax = 45;
stream->active = true;
}
protected:
virtual std::unique_ptr<VP8Encoder> CreateEncoder() = 0;
virtual std::unique_ptr<VP8Decoder> CreateDecoder() = 0;
void SetUp() override {
encoder_ = CreateEncoder();
decoder_ = CreateDecoder();
SetUpCodec(kDefaultTemporalLayerProfile);
}
void TearDown() override {
encoder_->Release();
decoder_->Release();
encoder_.reset();
decoder_.reset();
}
void SetUpCodec(const int* temporal_layer_profile) {
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
DefaultSettings(&settings_, temporal_layer_profile);
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
}
void SetUpRateAllocator() {
rate_allocator_.reset(new SimulcastRateAllocator(settings_));
}
void SetRates(uint32_t bitrate_kbps, uint32_t fps) {
encoder_->SetRateAllocation(
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}
void RunActiveStreamsTest(const std::vector<bool> active_streams) {
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
UpdateActiveStreams(active_streams);
// Set sufficient bitrate for all streams so we can test active without
// bitrate being an issue.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
ExpectStreams(kVideoFrameKey, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void UpdateActiveStreams(const std::vector<bool> active_streams) {
ASSERT_EQ(static_cast<int>(active_streams.size()),
kNumberOfSimulcastStreams);
for (size_t i = 0; i < active_streams.size(); ++i) {
settings_.simulcastStream[i].active = active_streams[i];
}
// Re initialize the allocator and encoder with the new settings.
// TODO(bugs.webrtc.org/8807): Currently, we do a full "hard"
// reconfiguration of the allocator and encoder. When the video bitrate
// allocator has support for updating active streams without a
// reinitialization, we can just call that here instead.
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
}
void ExpectStreams(FrameType frame_type,
const std::vector<bool> expected_streams_active) {
ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
kNumberOfSimulcastStreams);
if (expected_streams_active[0]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[1]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[2]) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
AllOf(Field(&EncodedImage::_frameType, frame_type),
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
_, _))
.Times(1)
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
}
void ExpectStreams(FrameType frame_type, int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
for (int i = 0; i < expected_video_streams; ++i) {
expected_streams_active[i] = true;
}
ExpectStreams(frame_type, expected_streams_active);
}
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
const bool* expected_layer_sync,
int num_spatial_layers) {
int picture_id = -1;
int temporal_layer = -1;
bool layer_sync = false;
for (int i = 0; i < num_spatial_layers; i++) {
encoder_callback->GetLastEncodedFrameInfo(&picture_id, &temporal_layer,
&layer_sync, i);
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
EXPECT_EQ(expected_layer_sync[i], layer_sync);
}
}
// We currently expect all active streams to generate a key frame even though
// a key frame was only requested for some of them.
void TestKeyFrameRequestsOnAllStreams() {
SetRates(kMaxBitrates[2], 30); // To get all three streams.
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
frame_types[0] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[1] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
frame_types[2] = kVideoFrameKey;
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingAllStreams() {
// We should always encode the base layer.
SetRates(kMinBitrates[0] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreams() {
// We have just enough to get only the first stream and padding for two.
SetRates(kMinBitrates[0], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingTwoStreamsOneMaxedOut() {
// We are just below limit of sending second stream, so we should get
// the first stream maxed out (at |maxBitrate|), and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 1);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingOneStream() {
// We have just enough to send two streams, so padding for one stream.
SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestPaddingOneStreamTwoMaxedOut() {
// We are just below limit of sending third stream, so we should get
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 2);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestSendAllStreams() {
// We have just enough to send all streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestDisablingStreams() {
// We should get three media streams.
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
ExpectStreams(kVideoFrameKey, 3);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
ExpectStreams(kVideoFrameDelta, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get the first stream and padding for two.
SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We don't have enough bitrate for the thumbnail stream, but we should get
// it anyway with current configuration.
SetRates(kTargetBitrates[0] - 1, 30);
ExpectStreams(kVideoFrameDelta, 1);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should only get two streams and padding for one.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 2);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// We should get all three streams.
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
// We get a key frame because a new stream is being enabled.
ExpectStreams(kVideoFrameKey, 3);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestActiveStreams() {
// All streams on.
RunActiveStreamsTest({true, true, true});
// All streams off.
RunActiveStreamsTest({false, false, false});
// Low stream off.
RunActiveStreamsTest({false, true, true});
// Middle stream off.
RunActiveStreamsTest({true, false, true});
// High stream off.
RunActiveStreamsTest({true, true, false});
// Only low stream turned on.
RunActiveStreamsTest({true, false, false});
// Only middle stream turned on.
RunActiveStreamsTest({false, true, false});
// Only high stream turned on.
RunActiveStreamsTest({false, false, true});
}
void SwitchingToOneStream(int width, int height) {
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.
settings_.VP8()->numberOfTemporalLayers = 1;
settings_.maxBitrate = 100;
settings_.startBitrate = 100;
settings_.width = width;
settings_.height = height;
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
settings_.simulcastStream[i].maxBitrate = 0;
settings_.simulcastStream[i].width = settings_.width;
settings_.simulcastStream[i].height = settings_.height;
settings_.simulcastStream[i].numberOfTemporalLayers = 1;
}
// Setting input image to new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// The for loop above did not set the bitrate of the highest layer.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1]
.maxBitrate = 0;
// The highest layer has to correspond to the non-simulcast resolution.
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
settings_.width;
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
settings_.height;
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
// Encode one frame and verify.
SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
Field(&EncodedImage::_encodedWidth, width),
Field(&EncodedImage::_encodedHeight, height)),
_, _))
.Times(1)
.WillRepeatedly(Return(
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// Switch back.
DefaultSettings(&settings_, kDefaultTemporalLayerProfile);
// Start at the lowest bitrate for enabling base stream.
settings_.startBitrate = kMinBitrates[0];
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
SetRates(settings_.startBitrate, 30);
ExpectStreams(kVideoFrameKey, 1);
// Resize |input_frame_| to the new resolution.
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
input_buffer_->InitializeData();
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestSwitchingToOneStream() { SwitchingToOneStream(1024, 768); }
void TestSwitchingToOneOddStream() { SwitchingToOneStream(1023, 769); }
void TestSwitchingToOneSmallStream() { SwitchingToOneStream(4, 4); }
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
// temporal_layer id and layer_sync is expected for all streams.
void TestSaptioTemporalLayers333PatternEncoder() {
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
// Test the layer pattern and sync flag for various spatial-temporal patterns.
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
// 1 temporal layer for highest resolution.
// For this profile, we expect the temporal index pattern to be:
// 1st stream: 0, 2, 1, 2, ....
// 2nd stream: 0, 1, 0, 1, ...
// 3rd stream: -1, -1, -1, -1, ....
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
// should always have temporal layer idx set to kNoTemporalIdx = -1.
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
// TODO(marpan): Although this seems safe for now, we should fix this.
void TestSpatioTemporalLayers321PatternEncoder() {
int temporal_layer_profile[3] = {3, 2, 1};
SetUpCodec(temporal_layer_profile);
Vp8TestEncodedImageCallback encoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
int expected_temporal_idx[3] = {-1, -1, -1};
bool expected_layer_sync[3] = {false, false, false};
// First frame: #0.
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #1.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #2.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #3.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #4.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
// Next frame: #5.
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
VerifyTemporalIdxAndSyncForAllSpatialLayers(
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
}
void TestStrideEncodeDecode() {
Vp8TestEncodedImageCallback encoder_callback;
Vp8TestDecodedImageCallback decoder_callback;
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
SetRates(kMaxBitrates[2], 30); // To get all three streams.
// Setting two (possibly) problematic use cases for stride:
// 1. stride > width 2. stride_y != stride_uv/2
int stride_y = kDefaultWidth + 20;
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
stride_uv, stride_uv);
input_frame_.reset(
new VideoFrame(input_buffer_, 0, 0, webrtc::kVideoRotation_0));
// Set color.
int plane_offset[kNumOfPlanes];
plane_offset[kYPlane] = kColorY;
plane_offset[kUPlane] = kColorU;
plane_offset[kVPlane] = kColorV;
CreateImage(input_buffer_, plane_offset);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
// Change color.
plane_offset[kYPlane] += 1;
plane_offset[kUPlane] += 1;
plane_offset[kVPlane] += 1;
CreateImage(input_buffer_, plane_offset);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
EncodedImage encoded_frame;
// Only encoding one frame - so will be a key frame.
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL, 0));
encoder_callback.GetLastEncodedFrame(&encoded_frame);
decoder_->Decode(encoded_frame, false, NULL, 0);
EXPECT_EQ(2, decoder_callback.DecodedFrames());
}
std::unique_ptr<VP8Encoder> encoder_;
MockEncodedImageCallback encoder_callback_;
std::unique_ptr<VP8Decoder> decoder_;
MockDecodedImageCallback decoder_callback_;
VideoCodec settings_;
rtc::scoped_refptr<I420Buffer> input_buffer_;
std::unique_ptr<VideoFrame> input_frame_;
std::unique_ptr<SimulcastRateAllocator> rate_allocator_;
};
} // namespace testing
} // namespace webrtc
#endif // MODULES_VIDEO_CODING_CODECS_VP8_SIMULCAST_TEST_UTILITY_H_

View File

@ -1,82 +0,0 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/simulcast_test_utility.h"
namespace webrtc {
namespace testing {
class TestVp8Impl : public TestVp8Simulcast {
protected:
std::unique_ptr<VP8Encoder> CreateEncoder() override {
return VP8Encoder::Create();
}
std::unique_ptr<VP8Decoder> CreateDecoder() override {
return VP8Decoder::Create();
}
};
TEST_F(TestVp8Impl, TestKeyFrameRequestsOnAllStreams) {
TestVp8Simulcast::TestKeyFrameRequestsOnAllStreams();
}
TEST_F(TestVp8Impl, TestPaddingAllStreams) {
TestVp8Simulcast::TestPaddingAllStreams();
}
TEST_F(TestVp8Impl, TestPaddingTwoStreams) {
TestVp8Simulcast::TestPaddingTwoStreams();
}
TEST_F(TestVp8Impl, TestPaddingTwoStreamsOneMaxedOut) {
TestVp8Simulcast::TestPaddingTwoStreamsOneMaxedOut();
}
TEST_F(TestVp8Impl, TestPaddingOneStream) {
TestVp8Simulcast::TestPaddingOneStream();
}
TEST_F(TestVp8Impl, TestPaddingOneStreamTwoMaxedOut) {
TestVp8Simulcast::TestPaddingOneStreamTwoMaxedOut();
}
TEST_F(TestVp8Impl, TestSendAllStreams) {
TestVp8Simulcast::TestSendAllStreams();
}
TEST_F(TestVp8Impl, TestDisablingStreams) {
TestVp8Simulcast::TestDisablingStreams();
}
TEST_F(TestVp8Impl, TestActiveStreams) {
TestVp8Simulcast::TestActiveStreams();
}
TEST_F(TestVp8Impl, TestSwitchingToOneStream) {
TestVp8Simulcast::TestSwitchingToOneStream();
}
TEST_F(TestVp8Impl, TestSwitchingToOneOddStream) {
TestVp8Simulcast::TestSwitchingToOneOddStream();
}
TEST_F(TestVp8Impl, TestSwitchingToOneSmallStream) {
TestVp8Simulcast::TestSwitchingToOneSmallStream();
}
TEST_F(TestVp8Impl, TestSaptioTemporalLayers333PatternEncoder) {
TestVp8Simulcast::TestSaptioTemporalLayers333PatternEncoder();
}
TEST_F(TestVp8Impl, TestStrideEncodeDecode) {
TestVp8Simulcast::TestStrideEncodeDecode();
}
} // namespace testing
} // namespace webrtc

View File

@ -518,6 +518,7 @@ rtc_source_set("test_common") {
"fake_encoder.cc", "fake_encoder.cc",
"fake_encoder.h", "fake_encoder.h",
"fake_videorenderer.h", "fake_videorenderer.h",
"function_video_decoder_factory.h",
"function_video_encoder_factory.h", "function_video_encoder_factory.h",
"layer_filtering_transport.cc", "layer_filtering_transport.cc",
"layer_filtering_transport.h", "layer_filtering_transport.h",

View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef TEST_FUNCTION_VIDEO_DECODER_FACTORY_H_
#define TEST_FUNCTION_VIDEO_DECODER_FACTORY_H_
#include <functional>
#include <memory>
#include <utility>
#include <vector>
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_decoder_factory.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace test {
// A decoder factory producing decoders by calling a supplied create function.
class FunctionVideoDecoderFactory final : public VideoDecoderFactory {
public:
explicit FunctionVideoDecoderFactory(
std::function<std::unique_ptr<VideoDecoder>()> create)
: create_(std::move(create)) {}
// Unused by tests.
std::vector<SdpVideoFormat> GetSupportedFormats() const override {
RTC_NOTREACHED();
return {};
}
std::unique_ptr<VideoDecoder> CreateVideoDecoder(
const SdpVideoFormat& /* format */) override {
return create_();
}
private:
const std::function<std::unique_ptr<VideoDecoder>()> create_;
};
} // namespace test
} // namespace webrtc
#endif // TEST_FUNCTION_VIDEO_DECODER_FACTORY_H_

View File

@ -16,7 +16,9 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_encoder_factory.h" #include "api/video_codecs/video_encoder_factory.h"
#include "rtc_base/checks.h"
namespace webrtc { namespace webrtc {
namespace test { namespace test {