Moved codec-specific audio packet splitting into decoders.

There's still some code run specifically for Opus w/ FEC. It will be
addressed in a separate CL.

BUG=webrtc:5805

Review-Url: https://codereview.webrtc.org/2326003002
Cr-Commit-Position: refs/heads/master@{#14319}
This commit is contained in:
ossu
2016-09-21 01:57:31 -07:00
committed by Commit bot
parent 3442579fd7
commit 0d526d558b
26 changed files with 571 additions and 685 deletions

View File

@ -25,14 +25,6 @@ class MockPayloadSplitter : public PayloadSplitter {
int(PacketList* packet_list, DecoderDatabase* decoder_database));
MOCK_METHOD2(CheckRedPayloads,
int(PacketList* packet_list, const DecoderDatabase& decoder_database));
MOCK_METHOD2(SplitAudio,
int(PacketList* packet_list, const DecoderDatabase& decoder_database));
MOCK_METHOD4(SplitBySamples,
void(const Packet* packet, size_t bytes_per_ms,
uint32_t timestamps_per_ms, PacketList* new_packets));
MOCK_METHOD4(SplitByFrames,
int(const Packet* packet, size_t bytes_per_frame,
uint32_t timestamps_per_frame, PacketList* new_packets));
};
} // namespace webrtc

View File

@ -658,21 +658,6 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
}
}
// Split payloads into smaller chunks. This also verifies that all payloads
// are of a known payload type.
ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
if (ret != PayloadSplitter::kOK) {
PacketBuffer::DeleteAllPackets(&packet_list);
switch (ret) {
case PayloadSplitter::kUnknownPayloadType:
return kUnknownRtpPayloadType;
case PayloadSplitter::kFrameSplitError:
return kFrameSplitError;
default:
return kOtherError;
}
}
// Update bandwidth estimate, if the packet is not comfort noise.
if (!packet_list.empty() &&
!decoder_database_->IsComfortNoise(main_header.payloadType)) {
@ -710,7 +695,7 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
const RTPHeader& original_header = packet->header;
for (auto& result : results) {
RTC_DCHECK(result.frame);
// Reuse the packet if possible
// Reuse the packet if possible.
if (!packet) {
packet.reset(new Packet);
packet->header = original_header;

View File

@ -336,9 +336,6 @@ TEST_F(NetEqImplTest, InsertPacket) {
EXPECT_CALL(*mock_payload_splitter_, SplitFec(_, _))
.Times(2)
.WillRepeatedly(Return(PayloadSplitter::kOK));
EXPECT_CALL(*mock_payload_splitter_, SplitAudio(_, _))
.Times(2)
.WillRepeatedly(Return(PayloadSplitter::kOK));
// Insert first packet.
neteq_->InsertPacket(rtp_header, payload, kFirstReceiveTime);

View File

@ -212,214 +212,4 @@ int PayloadSplitter::CheckRedPayloads(PacketList* packet_list,
return num_deleted_packets;
}
int PayloadSplitter::SplitAudio(PacketList* packet_list,
const DecoderDatabase& decoder_database) {
PacketList::iterator it = packet_list->begin();
// Iterate through all packets in |packet_list|.
while (it != packet_list->end()) {
Packet* packet = (*it); // Just to make the notation more intuitive.
// Get codec type for this payload.
const DecoderDatabase::DecoderInfo* info =
decoder_database.GetDecoderInfo(packet->header.payloadType);
if (!info) {
LOG(LS_WARNING) << "SplitAudio unknown payload type";
return kUnknownPayloadType;
}
PacketList new_packets;
switch (info->codec_type) {
case NetEqDecoder::kDecoderPCMu:
case NetEqDecoder::kDecoderPCMa: {
// 8 bytes per ms; 8 timestamps per ms.
SplitBySamples(packet, 8, 8, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCMu_2ch:
case NetEqDecoder::kDecoderPCMa_2ch: {
// 2 * 8 bytes per ms; 8 timestamps per ms.
SplitBySamples(packet, 2 * 8, 8, &new_packets);
break;
}
case NetEqDecoder::kDecoderG722: {
// 8 bytes per ms; 16 timestamps per ms.
SplitBySamples(packet, 8, 16, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16B: {
// 16 bytes per ms; 8 timestamps per ms.
SplitBySamples(packet, 16, 8, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bwb: {
// 32 bytes per ms; 16 timestamps per ms.
SplitBySamples(packet, 32, 16, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bswb32kHz: {
// 64 bytes per ms; 32 timestamps per ms.
SplitBySamples(packet, 64, 32, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bswb48kHz: {
// 96 bytes per ms; 48 timestamps per ms.
SplitBySamples(packet, 96, 48, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16B_2ch: {
// 2 * 16 bytes per ms; 8 timestamps per ms.
SplitBySamples(packet, 2 * 16, 8, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bwb_2ch: {
// 2 * 32 bytes per ms; 16 timestamps per ms.
SplitBySamples(packet, 2 * 32, 16, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch: {
// 2 * 64 bytes per ms; 32 timestamps per ms.
SplitBySamples(packet, 2 * 64, 32, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch: {
// 2 * 96 bytes per ms; 48 timestamps per ms.
SplitBySamples(packet, 2 * 96, 48, &new_packets);
break;
}
case NetEqDecoder::kDecoderPCM16B_5ch: {
// 5 * 16 bytes per ms; 8 timestamps per ms.
SplitBySamples(packet, 5 * 16, 8, &new_packets);
break;
}
case NetEqDecoder::kDecoderILBC: {
size_t bytes_per_frame;
int timestamps_per_frame;
if (packet->payload.size() >= 950) {
LOG(LS_WARNING) << "SplitAudio too large iLBC payload";
return kTooLargePayload;
}
if (packet->payload.size() % 38 == 0) {
// 20 ms frames.
bytes_per_frame = 38;
timestamps_per_frame = 160;
} else if (packet->payload.size() % 50 == 0) {
// 30 ms frames.
bytes_per_frame = 50;
timestamps_per_frame = 240;
} else {
LOG(LS_WARNING) << "SplitAudio invalid iLBC payload";
return kFrameSplitError;
}
int ret = SplitByFrames(packet, bytes_per_frame, timestamps_per_frame,
&new_packets);
if (ret < 0) {
return ret;
} else if (ret == kNoSplit) {
// Do not split at all. Simply advance to the next packet in the list.
++it;
// We do not have any new packets to insert, and should not delete the
// old one. Skip the code after the switch case, and jump straight to
// the next packet in the while loop.
continue;
}
break;
}
default: {
// Do not split at all. Simply advance to the next packet in the list.
++it;
// We do not have any new packets to insert, and should not delete the
// old one. Skip the code after the switch case, and jump straight to
// the next packet in the while loop.
continue;
}
}
// Insert new packets into original list, before the element pointed to by
// iterator |it|.
packet_list->splice(it, new_packets, new_packets.begin(),
new_packets.end());
// Delete old packet payload.
delete (*it);
// Remove |it| from the packet list. This operation effectively moves the
// iterator |it| to the next packet in the list. Thus, we do not have to
// increment it manually.
it = packet_list->erase(it);
}
return kOK;
}
void PayloadSplitter::SplitBySamples(const Packet* packet,
size_t bytes_per_ms,
uint32_t timestamps_per_ms,
PacketList* new_packets) {
assert(packet);
assert(new_packets);
size_t split_size_bytes = packet->payload.size();
// Find a "chunk size" >= 20 ms and < 40 ms.
size_t min_chunk_size = bytes_per_ms * 20;
// Reduce the split size by half as long as |split_size_bytes| is at least
// twice the minimum chunk size (so that the resulting size is at least as
// large as the minimum chunk size).
while (split_size_bytes >= 2 * min_chunk_size) {
split_size_bytes >>= 1;
}
uint32_t timestamps_per_chunk = static_cast<uint32_t>(
split_size_bytes * timestamps_per_ms / bytes_per_ms);
uint32_t timestamp = packet->header.timestamp;
const uint8_t* payload_ptr = packet->payload.data();
size_t len = packet->payload.size();
while (len >= (2 * split_size_bytes)) {
Packet* new_packet = new Packet;
new_packet->header = packet->header;
new_packet->header.timestamp = timestamp;
timestamp += timestamps_per_chunk;
new_packet->primary = packet->primary;
new_packet->payload.SetData(payload_ptr, split_size_bytes);
payload_ptr += split_size_bytes;
new_packets->push_back(new_packet);
len -= split_size_bytes;
}
if (len > 0) {
Packet* new_packet = new Packet;
new_packet->header = packet->header;
new_packet->header.timestamp = timestamp;
new_packet->primary = packet->primary;
new_packet->payload.SetData(payload_ptr, len);
new_packets->push_back(new_packet);
}
}
int PayloadSplitter::SplitByFrames(const Packet* packet,
size_t bytes_per_frame,
uint32_t timestamps_per_frame,
PacketList* new_packets) {
if (packet->payload.size() % bytes_per_frame != 0) {
LOG(LS_WARNING) << "SplitByFrames length mismatch";
return kFrameSplitError;
}
if (packet->payload.size() == bytes_per_frame) {
// Special case. Do not split the payload.
return kNoSplit;
}
uint32_t timestamp = packet->header.timestamp;
const uint8_t* payload_ptr = packet->payload.data();
size_t len = packet->payload.size();
while (len > 0) {
assert(len >= bytes_per_frame);
Packet* new_packet = new Packet;
new_packet->header = packet->header;
new_packet->header.timestamp = timestamp;
timestamp += timestamps_per_frame;
new_packet->primary = packet->primary;
new_packet->payload.SetData(payload_ptr, bytes_per_frame);
payload_ptr += bytes_per_frame;
new_packets->push_back(new_packet);
len -= bytes_per_frame;
}
return kOK;
}
} // namespace webrtc

View File

@ -20,16 +20,14 @@ namespace webrtc {
class DecoderDatabase;
// This class handles splitting of payloads into smaller parts.
// The class does not have any member variables, and the methods could have
// been made static. The reason for not making them static is testability.
// With this design, the splitting functionality can be mocked during testing
// of the NetEqImpl class.
// For RED and FEC the splitting is done internally. Other codecs' packets are
// split by calling AudioDecoder::SplitPacket.
class PayloadSplitter {
public:
enum SplitterReturnCodes {
kOK = 0,
kNoSplit = 1,
kTooLargePayload = -1,
kFrameSplitError = -2,
kUnknownPayloadType = -3,
kRedLengthMismatch = -4,
@ -60,29 +58,7 @@ class PayloadSplitter {
virtual int CheckRedPayloads(PacketList* packet_list,
const DecoderDatabase& decoder_database);
// Iterates through |packet_list| and, if possible, splits each audio payload
// into suitable size chunks. The result is written back to |packet_list| as
// new packets. The decoder database is needed to get information about which
// payload type each packet contains.
virtual int SplitAudio(PacketList* packet_list,
const DecoderDatabase& decoder_database);
private:
// Splits the payload in |packet|. The payload is assumed to be from a
// sample-based codec.
virtual void SplitBySamples(const Packet* packet,
size_t bytes_per_ms,
uint32_t timestamps_per_ms,
PacketList* new_packets);
// Splits the payload in |packet|. The payload will be split into chunks of
// size |bytes_per_frame|, corresponding to a |timestamps_per_frame|
// RTP timestamps.
virtual int SplitByFrames(const Packet* packet,
size_t bytes_per_frame,
uint32_t timestamps_per_frame,
PacketList* new_packets);
RTC_DISALLOW_COPY_AND_ASSIGN(PayloadSplitter);
};

View File

@ -152,7 +152,7 @@ void VerifyPacket(const Packet* packet,
EXPECT_EQ(primary, packet->primary);
ASSERT_FALSE(packet->payload.empty());
for (size_t i = 0; i < packet->payload.size(); ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
ASSERT_EQ(payload_value, packet->payload.data()[i]);
}
}
@ -344,376 +344,6 @@ TEST(RedPayloadSplitter, WrongPayloadLength) {
packet_list.pop_front();
}
// Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not
// get split.
TEST(AudioPayloadSplitter, NonSplittable) {
// Set up packets with different RTP payload types. The actual values do not
// matter, since we are mocking the decoder database anyway.
PacketList packet_list;
for (uint8_t i = 0; i < 6; ++i) {
// Let the payload type be |i|, and the payload value 10 * |i|.
packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
std::unique_ptr<DecoderDatabase::DecoderInfo> info0(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISAC, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(info0.get()));
std::unique_ptr<DecoderDatabase::DecoderInfo> info1(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISACswb, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(info1.get()));
std::unique_ptr<DecoderDatabase::DecoderInfo> info2(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderRED, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(2))
.WillRepeatedly(Return(info2.get()));
std::unique_ptr<DecoderDatabase::DecoderInfo> info3(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderAVT, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(3))
.WillRepeatedly(Return(info3.get()));
std::unique_ptr<DecoderDatabase::DecoderInfo> info4(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderCNGnb, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(4))
.WillRepeatedly(Return(info4.get()));
std::unique_ptr<DecoderDatabase::DecoderInfo> info5(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderArbitrary, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(5))
.WillRepeatedly(Return(info5.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(6u, packet_list.size());
// Check that all payloads are intact.
uint8_t payload_type = 0;
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber,
kBaseTimestamp, 10 * payload_type);
++payload_type;
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test unknown payload type.
TEST(AudioPayloadSplitter, UnknownPayloadType) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 4711; // Random number.
packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0));
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return NULL when asked for decoder info.
// This signals that the decoder database does not recognize the payload type.
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(ReturnNull());
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kUnknownPayloadType,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> {
protected:
virtual void SetUp() {
decoder_type_ = GetParam();
switch (decoder_type_) {
case NetEqDecoder::kDecoderPCMu:
case NetEqDecoder::kDecoderPCMa:
bytes_per_ms_ = 8;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCMu_2ch:
case NetEqDecoder::kDecoderPCMa_2ch:
bytes_per_ms_ = 2 * 8;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderG722:
bytes_per_ms_ = 8;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16B:
bytes_per_ms_ = 16;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCM16Bwb:
bytes_per_ms_ = 32;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16Bswb32kHz:
bytes_per_ms_ = 64;
samples_per_ms_ = 32;
break;
case NetEqDecoder::kDecoderPCM16Bswb48kHz:
bytes_per_ms_ = 96;
samples_per_ms_ = 48;
break;
case NetEqDecoder::kDecoderPCM16B_2ch:
bytes_per_ms_ = 2 * 16;
samples_per_ms_ = 8;
break;
case NetEqDecoder::kDecoderPCM16Bwb_2ch:
bytes_per_ms_ = 2 * 32;
samples_per_ms_ = 16;
break;
case NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch:
bytes_per_ms_ = 2 * 64;
samples_per_ms_ = 32;
break;
case NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch:
bytes_per_ms_ = 2 * 96;
samples_per_ms_ = 48;
break;
case NetEqDecoder::kDecoderPCM16B_5ch:
bytes_per_ms_ = 5 * 16;
samples_per_ms_ = 8;
break;
default:
assert(false);
break;
}
}
size_t bytes_per_ms_;
int samples_per_ms_;
NetEqDecoder decoder_type_;
};
// Test splitting sample-based payloads.
TEST_P(SplitBySamplesTest, PayloadSizes) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) {
// The payload values are set to be the same as the payload_size, so that
// one can distinguish from which packet the split payloads come from.
size_t payload_size_bytes = payload_size_ms * bytes_per_ms_;
packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes,
payload_size_ms));
}
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
// (Sample rate is set to 8000 Hz, but does not matter.)
std::unique_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(decoder_type_, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
// The payloads are expected to be split as follows:
// 10 ms -> 10 ms
// 20 ms -> 20 ms
// 30 ms -> 30 ms
// 40 ms -> 20 + 20 ms
// 50 ms -> 25 + 25 ms
// 60 ms -> 30 + 30 ms
int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30};
int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60};
int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30};
size_t expected_num_packets =
sizeof(expected_size_ms) / sizeof(expected_size_ms[0]);
EXPECT_EQ(expected_num_packets, packet_list.size());
PacketList::iterator it = packet_list.begin();
int i = 0;
while (it != packet_list.end()) {
size_t length_bytes = expected_size_ms[i] * bytes_per_ms_;
uint32_t expected_timestamp = kBaseTimestamp +
expected_timestamp_offset_ms[i] * samples_per_ms_;
VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber,
expected_timestamp, expected_payload_value[i]);
delete (*it);
it = packet_list.erase(it);
++i;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
INSTANTIATE_TEST_CASE_P(
PayloadSplitter,
SplitBySamplesTest,
::testing::Values(NetEqDecoder::kDecoderPCMu,
NetEqDecoder::kDecoderPCMa,
NetEqDecoder::kDecoderPCMu_2ch,
NetEqDecoder::kDecoderPCMa_2ch,
NetEqDecoder::kDecoderG722,
NetEqDecoder::kDecoderPCM16B,
NetEqDecoder::kDecoderPCM16Bwb,
NetEqDecoder::kDecoderPCM16Bswb32kHz,
NetEqDecoder::kDecoderPCM16Bswb48kHz,
NetEqDecoder::kDecoderPCM16B_2ch,
NetEqDecoder::kDecoderPCM16Bwb_2ch,
NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch,
NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch,
NetEqDecoder::kDecoderPCM16B_5ch));
class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > {
protected:
virtual void SetUp() {
const std::pair<int, int> parameters = GetParam();
num_frames_ = parameters.first;
frame_length_ms_ = parameters.second;
frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50;
}
size_t num_frames_;
int frame_length_ms_;
size_t frame_length_bytes_;
};
// Test splitting sample-based payloads.
TEST_P(SplitIlbcTest, NumFrames) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
const int frame_length_samples = frame_length_ms_ * 8;
size_t payload_length_bytes = frame_length_bytes_ * num_frames_;
Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0);
// Fill payload with increasing integers {0, 1, 2, ...}.
for (size_t i = 0; i < packet->payload.size(); ++i) {
packet->payload[i] = static_cast<uint8_t>(i);
}
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
// Tell the mock decoder database to return DecoderInfo structs with different
// codec types.
// Use scoped pointers to avoid having to delete them later.
std::unique_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(num_frames_, packet_list.size());
PacketList::iterator it = packet_list.begin();
int frame_num = 0;
uint8_t payload_value = 0;
while (it != packet_list.end()) {
Packet* packet = (*it);
EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num,
packet->header.timestamp);
EXPECT_EQ(frame_length_bytes_, packet->payload.size());
EXPECT_EQ(kPayloadType, packet->header.payloadType);
EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber);
EXPECT_EQ(true, packet->primary);
ASSERT_FALSE(packet->payload.empty());
for (size_t i = 0; i < packet->payload.size(); ++i) {
EXPECT_EQ(payload_value, packet->payload[i]);
++payload_value;
}
delete (*it);
it = packet_list.erase(it);
++frame_num;
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Test 1 through 5 frames of 20 and 30 ms size.
// Also test the maximum number of frames in one packet for 20 and 30 ms.
// The maximum is defined by the largest payload length that can be uniquely
// resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms).
INSTANTIATE_TEST_CASE_P(
PayloadSplitter, SplitIlbcTest,
::testing::Values(std::pair<int, int>(1, 20), // 1 frame, 20 ms.
std::pair<int, int>(2, 20), // 2 frames, 20 ms.
std::pair<int, int>(3, 20), // And so on.
std::pair<int, int>(4, 20),
std::pair<int, int>(5, 20),
std::pair<int, int>(24, 20),
std::pair<int, int>(1, 30),
std::pair<int, int>(2, 30),
std::pair<int, int>(3, 30),
std::pair<int, int>(4, 30),
std::pair<int, int>(5, 30),
std::pair<int, int>(18, 30)));
// Test too large payload size.
TEST(IlbcPayloadSplitter, TooLargePayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 950;
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
std::unique_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kTooLargePayload,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
// Payload not an integer number of frames.
TEST(IlbcPayloadSplitter, UnevenPayload) {
PacketList packet_list;
static const uint8_t kPayloadType = 17; // Just a random number.
size_t kPayloadLengthBytes = 39; // Not an even number of frames.
Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0);
packet_list.push_back(packet);
MockDecoderDatabase decoder_database;
std::unique_ptr<DecoderDatabase::DecoderInfo> info(
new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, ""));
EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType))
.WillRepeatedly(Return(info.get()));
PayloadSplitter splitter;
EXPECT_EQ(PayloadSplitter::kFrameSplitError,
splitter.SplitAudio(&packet_list, decoder_database));
EXPECT_EQ(1u, packet_list.size());
// Delete the packets and payloads to avoid having the test leak memory.
PacketList::iterator it = packet_list.begin();
while (it != packet_list.end()) {
delete (*it);
it = packet_list.erase(it);
}
// The destructor is called when decoder_database goes out of scope.
EXPECT_CALL(decoder_database, Die());
}
TEST(FecPayloadSplitter, MixedPayload) {
PacketList packet_list;
DecoderDatabase decoder_database(CreateBuiltinAudioDecoderFactory());