Revert "Enables/disables simulcast streams by allocating a bitrate of 0 to the spatial layer."

This reverts commit 18c4261339dc76b220e7c805e36b4ea6f3dd161d.

Reason for revert: Broke internal tests

Original change's description:
> Enables/disables simulcast streams by allocating a bitrate of 0 to the spatial layer.
> 
> Creates VideoStreams & VideoCodec.simulcastStreams with an active field, and then allocates 0 bitrate to simulcast streams that are inactive. This turns off the encoder for specific simulcast streams.
> 
> Bug: webrtc:8653
> Change-Id: Id93b03dcd8d1191a7d3300bd77882c8af96ee469
> Reviewed-on: https://webrtc-review.googlesource.com/37740
> Reviewed-by: Stefan Holmer <stefan@webrtc.org>
> Reviewed-by: Taylor Brandstetter <deadbeef@webrtc.org>
> Reviewed-by: Erik Språng <sprang@webrtc.org>
> Commit-Queue: Seth Hampson <shampson@webrtc.org>
> Cr-Commit-Position: refs/heads/master@{#21646}

TBR=deadbeef@webrtc.org,sprang@webrtc.org,stefan@webrtc.org,shampson@webrtc.org

Change-Id: I0aeb743cbd2e8d564aa732c937587c25a4c49b09
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: webrtc:8653
Reviewed-on: https://webrtc-review.googlesource.com/39883
Reviewed-by: Lu Liu <lliuu@webrtc.org>
Commit-Queue: Lu Liu <lliuu@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21647}
This commit is contained in:
Lu Liu
2018-01-17 00:28:14 +00:00
committed by Commit Bot
parent 18c4261339
commit 0f17f9ce28
18 changed files with 76 additions and 516 deletions

View File

@ -31,7 +31,6 @@ VideoCodec::VideoCodec()
minBitrate(0),
targetBitrate(0),
maxFramerate(0),
active(true),
qpMax(0),
numberOfSimulcastStreams(0),
simulcastStream(),

View File

@ -509,7 +509,6 @@ struct SimulcastStream {
unsigned int targetBitrate; // kilobits/sec.
unsigned int minBitrate; // kilobits/sec.
unsigned int qpMax; // minimum quality
bool active; // encoded and sent.
};
struct SpatialLayer {
@ -541,10 +540,6 @@ class VideoCodec {
uint32_t maxFramerate;
// This enables/disables VP9 and H264 encoding/sending by allocating
// 0 bitrate if inactive.
bool active;
unsigned int qpMax;
unsigned char numberOfSimulcastStreams;
SimulcastStream simulcastStream[kMaxSimulcastStreams];

View File

@ -73,10 +73,6 @@ TEST_F(TestSimulcastEncoderAdapter, TestDisablingStreams) {
TestVp8Simulcast::TestDisablingStreams();
}
TEST_F(TestSimulcastEncoderAdapter, TestActiveStreams) {
TestVp8Simulcast::TestActiveStreams();
}
TEST_F(TestSimulcastEncoderAdapter, TestSwitchingToOneStream) {
TestVp8Simulcast::TestSwitchingToOneStream();
}

View File

@ -37,92 +37,56 @@ void SimulcastRateAllocator::OnTemporalLayersCreated(int simulcast_id,
BitrateAllocation SimulcastRateAllocator::GetAllocation(
uint32_t total_bitrate_bps,
uint32_t framerate) {
BitrateAllocation allocated_bitrates_bps;
DistributeAllocationToSimulcastLayers(total_bitrate_bps,
&allocated_bitrates_bps);
DistributeAllocationToTemporalLayers(framerate, &allocated_bitrates_bps);
return allocated_bitrates_bps;
}
void SimulcastRateAllocator::DistributeAllocationToSimulcastLayers(
uint32_t total_bitrate_bps,
BitrateAllocation* allocated_bitrates_bps) {
uint32_t left_to_allocate = total_bitrate_bps;
if (codec_.maxBitrate && codec_.maxBitrate * 1000 < left_to_allocate)
left_to_allocate = codec_.maxBitrate * 1000;
BitrateAllocation allocated_bitrates_bps;
if (codec_.numberOfSimulcastStreams == 0) {
// No simulcast, just set the target as this has been capped already.
if (codec_.active) {
allocated_bitrates_bps->SetBitrate(
allocated_bitrates_bps.SetBitrate(
0, 0, std::max(codec_.minBitrate * 1000, left_to_allocate));
}
return;
}
// Find the first active layer. We don't allocate to inactive layers.
size_t active_layer = 0;
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
if (codec_.simulcastStream[active_layer].active) {
// Found the first active layer.
break;
}
}
// All streams could be inactive, and nothing more to do.
if (active_layer == codec_.numberOfSimulcastStreams) {
return;
}
} else {
// Always allocate enough bitrate for the minimum bitrate of the first
// active layer. Suspending below min bitrate is controlled outside the
// codec implementation and is not overridden by this.
left_to_allocate = std::max(
codec_.simulcastStream[active_layer].minBitrate * 1000, left_to_allocate);
// layer. Suspending below min bitrate is controlled outside the codec
// implementation and is not overridden by this.
left_to_allocate =
std::max(codec_.simulcastStream[0].minBitrate * 1000, left_to_allocate);
// Begin by allocating bitrate to simulcast streams, putting all bitrate in
// temporal layer 0. We'll then distribute this bitrate, across potential
// temporal layers, when stream allocation is done.
size_t top_active_layer = active_layer;
// Allocate up to the target bitrate for each active simulcast layer.
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
const SimulcastStream& stream = codec_.simulcastStream[active_layer];
if (!stream.active) {
continue;
}
// If we can't allocate to the current layer we can't allocate to higher
// layers because they require a higher minimum bitrate.
if (left_to_allocate < stream.minBitrate * 1000) {
// Allocate up to the target bitrate for each simulcast layer.
size_t layer = 0;
for (; layer < codec_.numberOfSimulcastStreams; ++layer) {
const SimulcastStream& stream = codec_.simulcastStream[layer];
if (left_to_allocate < stream.minBitrate * 1000)
break;
}
// We are allocating to this layer so it is the current active allocation.
top_active_layer = active_layer;
uint32_t allocation =
std::min(left_to_allocate, stream.targetBitrate * 1000);
allocated_bitrates_bps->SetBitrate(active_layer, 0, allocation);
allocated_bitrates_bps.SetBitrate(layer, 0, allocation);
RTC_DCHECK_LE(allocation, left_to_allocate);
left_to_allocate -= allocation;
}
// Next, try allocate remaining bitrate, up to max bitrate, in top active
// stream.
// Next, try allocate remaining bitrate, up to max bitrate, in top stream.
// TODO(sprang): Allocate up to max bitrate for all layers once we have a
// better idea of possible performance implications.
if (left_to_allocate > 0) {
const SimulcastStream& stream = codec_.simulcastStream[top_active_layer];
size_t active_layer = layer - 1;
const SimulcastStream& stream = codec_.simulcastStream[active_layer];
uint32_t bitrate_bps =
allocated_bitrates_bps->GetSpatialLayerSum(top_active_layer);
allocated_bitrates_bps.GetSpatialLayerSum(active_layer);
uint32_t allocation =
std::min(left_to_allocate, stream.maxBitrate * 1000 - bitrate_bps);
bitrate_bps += allocation;
RTC_DCHECK_LE(allocation, left_to_allocate);
left_to_allocate -= allocation;
allocated_bitrates_bps->SetBitrate(top_active_layer, 0, bitrate_bps);
allocated_bitrates_bps.SetBitrate(active_layer, 0, bitrate_bps);
}
}
}
void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
uint32_t framerate,
BitrateAllocation* allocated_bitrates_bps) {
const int num_spatial_streams =
std::max(1, static_cast<int>(codec_.numberOfSimulcastStreams));
@ -130,21 +94,16 @@ void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
// available temporal layers.
for (int simulcast_id = 0; simulcast_id < num_spatial_streams;
++simulcast_id) {
// TODO(shampson): Consider adding a continue here if the simulcast stream
// is inactive. Currently this is not added because the call
// below to OnRatesUpdated changes the TemporalLayer's
// state.
auto tl_it = temporal_layers_.find(simulcast_id);
if (tl_it == temporal_layers_.end())
continue; // TODO(sprang): If > 1 SS, assume default TL alloc?
uint32_t target_bitrate_kbps =
allocated_bitrates_bps->GetBitrate(simulcast_id, 0) / 1000;
allocated_bitrates_bps.GetBitrate(simulcast_id, 0) / 1000;
const uint32_t expected_allocated_bitrate_kbps = target_bitrate_kbps;
RTC_DCHECK_EQ(
target_bitrate_kbps,
allocated_bitrates_bps->GetSpatialLayerSum(simulcast_id) / 1000);
allocated_bitrates_bps.GetSpatialLayerSum(simulcast_id) / 1000);
const int num_temporal_streams = std::max<uint8_t>(
1, codec_.numberOfSimulcastStreams == 0
? codec_.VP8().numberOfTemporalLayers
@ -178,14 +137,14 @@ void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
uint64_t tl_allocation_sum_kbps = 0;
for (size_t tl_index = 0; tl_index < tl_allocation.size(); ++tl_index) {
uint32_t layer_rate_kbps = tl_allocation[tl_index];
if (layer_rate_kbps > 0) {
allocated_bitrates_bps->SetBitrate(simulcast_id, tl_index,
allocated_bitrates_bps.SetBitrate(simulcast_id, tl_index,
layer_rate_kbps * 1000);
}
tl_allocation_sum_kbps += layer_rate_kbps;
}
RTC_DCHECK_LE(tl_allocation_sum_kbps, expected_allocated_bitrate_kbps);
}
return allocated_bitrates_bps;
}
uint32_t SimulcastRateAllocator::GetPreferredBitrateBps(uint32_t framerate) {

View File

@ -39,12 +39,6 @@ class SimulcastRateAllocator : public VideoBitrateAllocator,
const VideoCodec& GetCodec() const;
private:
void DistributeAllocationToSimulcastLayers(
uint32_t total_bitrate_bps,
BitrateAllocation* allocated_bitrates_bps);
void DistributeAllocationToTemporalLayers(
uint32_t framerate,
BitrateAllocation* allocated_bitrates_bps);
const VideoCodec codec_;
std::map<uint32_t, TemporalLayers*> temporal_layers_;
std::unique_ptr<TemporalLayersFactory> tl_factory_;

View File

@ -203,7 +203,6 @@ class TestVp8Simulcast : public ::testing::Test {
settings->width = kDefaultWidth;
settings->height = kDefaultHeight;
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
settings->active = true;
ASSERT_EQ(3, kNumberOfSimulcastStreams);
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
kDefaultOutlierFrameSizePercent};
@ -239,7 +238,6 @@ class TestVp8Simulcast : public ::testing::Test {
stream->targetBitrate = target_bitrate;
stream->numberOfTemporalLayers = num_temporal_layers;
stream->qpMax = 45;
stream->active = true;
}
protected:
@ -284,22 +282,10 @@ class TestVp8Simulcast : public ::testing::Test {
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
}
void UpdateActiveStreams(const std::vector<bool> active_streams) {
ASSERT_EQ(static_cast<int>(active_streams.size()),
kNumberOfSimulcastStreams);
for (size_t i = 0; i < active_streams.size(); ++i) {
settings_.simulcastStream[i].active = active_streams[i];
}
// Re initialize the allocator and encoder with the new settings.
SetUpRateAllocator();
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
}
void ExpectStreams(FrameType frame_type,
const std::vector<bool> expected_streams_active) {
ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
kNumberOfSimulcastStreams);
if (expected_streams_active[0]) {
void ExpectStreams(FrameType frame_type, int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
if (expected_video_streams >= 1) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
@ -311,7 +297,7 @@ class TestVp8Simulcast : public ::testing::Test {
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[1]) {
if (expected_video_streams >= 2) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
@ -323,7 +309,7 @@ class TestVp8Simulcast : public ::testing::Test {
.WillRepeatedly(Return(EncodedImageCallback::Result(
EncodedImageCallback::Result::OK, 0)));
}
if (expected_streams_active[2]) {
if (expected_video_streams >= 3) {
EXPECT_CALL(
encoder_callback_,
OnEncodedImage(
@ -337,16 +323,6 @@ class TestVp8Simulcast : public ::testing::Test {
}
}
void ExpectStreams(FrameType frame_type, int expected_video_streams) {
ASSERT_GE(expected_video_streams, 0);
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
for (int i = 0; i < expected_video_streams; ++i) {
expected_streams_active[i] = true;
}
ExpectStreams(frame_type, expected_streams_active);
}
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
Vp8TestEncodedImageCallback* encoder_callback,
const int* expected_temporal_idx,
@ -525,43 +501,6 @@ class TestVp8Simulcast : public ::testing::Test {
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void TestActiveStreams() {
const int kEnoughBitrateAllStreams =
kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2];
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
kVideoFrameDelta);
// TODO(shampson): Currently turning off the base stream causes unexpected
// behavior in the libvpx encoder. The libvpx encoder labels key frames
// based upon the base stream. If the base stream is never enabled, it
// will continue to spit out encoded images labeled as key frames for the
// other streams that are enabled. Once this is fixed in libvpx, update this
// test to reflect that change.
// Only turn on the the base stream.
std::vector<bool> active_streams = {true, false, false};
UpdateActiveStreams(active_streams);
SetRates(kEnoughBitrateAllStreams, 30);
ExpectStreams(kVideoFrameKey, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
// Turn off only the middle stream.
active_streams = {true, false, true};
UpdateActiveStreams(active_streams);
SetRates(kEnoughBitrateAllStreams, 30);
ExpectStreams(kVideoFrameKey, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
ExpectStreams(kVideoFrameDelta, active_streams);
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
}
void SwitchingToOneStream(int width, int height) {
// Disable all streams except the last and set the bitrate of the last to
// 100 kbps. This verifies the way GTP switches to screenshare mode.

View File

@ -55,10 +55,6 @@ TEST_F(TestVp8Impl, TestDisablingStreams) {
TestVp8Simulcast::TestDisablingStreams();
}
TEST_F(TestVp8Impl, TestActiveStreams) {
TestVp8Simulcast::TestActiveStreams();
}
TEST_F(TestVp8Impl, TestSwitchingToOneStream) {
TestVp8Simulcast::TestSwitchingToOneStream();
}

View File

@ -24,7 +24,7 @@ BitrateAllocation DefaultVideoBitrateAllocator::GetAllocation(
uint32_t total_bitrate_bps,
uint32_t framerate) {
BitrateAllocation allocation;
if (total_bitrate_bps == 0 || !codec_.active)
if (total_bitrate_bps == 0)
return allocation;
if (total_bitrate_bps < codec_.minBitrate * 1000) {

View File

@ -45,13 +45,6 @@ TEST_F(DefaultVideoBitrateAllocatorTest, ZeroIsOff) {
EXPECT_EQ(0u, allocation.get_sum_bps());
}
TEST_F(DefaultVideoBitrateAllocatorTest, Inactive) {
codec_.active = false;
allocator_.reset(new DefaultVideoBitrateAllocator(codec_));
BitrateAllocation allocation = allocator_->GetAllocation(1, kMaxFramerate);
EXPECT_EQ(0u, allocation.get_sum_bps());
}
TEST_F(DefaultVideoBitrateAllocatorTest, CapsToMin) {
BitrateAllocation allocation = allocator_->GetAllocation(1, kMaxFramerate);
EXPECT_EQ(kMinBitrateBps, allocation.get_sum_bps());

View File

@ -51,7 +51,6 @@ class SimulcastRateAllocatorTest : public ::testing::TestWithParam<bool> {
codec_.minBitrate = kMinBitrateKbps;
codec_.targetBitrate = kTargetBitrateKbps;
codec_.maxBitrate = kMaxBitrateKbps;
codec_.active = true;
CreateAllocator();
}
virtual ~SimulcastRateAllocatorTest() {}
@ -70,9 +69,6 @@ class SimulcastRateAllocatorTest : public ::testing::TestWithParam<bool> {
uint32_t sum = 0;
for (size_t i = 0; i < S; ++i) {
uint32_t layer_bitrate = actual.GetSpatialLayerSum(i);
if (layer_bitrate == 0) {
EXPECT_FALSE(actual.IsSpatialLayerUsed(i));
}
EXPECT_EQ(expected[i] * 1000U, layer_bitrate) << "Mismatch at index "
<< i;
sum += layer_bitrate;
@ -100,34 +96,6 @@ class SimulcastRateAllocatorTest : public ::testing::TestWithParam<bool> {
}
}
void SetupCodecThreeSimulcastStreams(
const std::vector<bool>& active_streams) {
size_t num_streams = 3;
RTC_DCHECK_GE(active_streams.size(), num_streams);
SetupCodecTwoSimulcastStreams(active_streams);
codec_.numberOfSimulcastStreams = num_streams;
codec_.simulcastStream[2].minBitrate = 2000;
codec_.simulcastStream[2].targetBitrate = 3000;
codec_.simulcastStream[2].maxBitrate = 4000;
codec_.simulcastStream[2].active = active_streams[2];
}
void SetupCodecTwoSimulcastStreams(const std::vector<bool>& active_streams) {
size_t num_streams = 2;
RTC_DCHECK_GE(active_streams.size(), num_streams);
codec_.numberOfSimulcastStreams = num_streams;
codec_.maxBitrate = 0;
codec_.simulcastStream[0].minBitrate = 10;
codec_.simulcastStream[0].targetBitrate = 100;
codec_.simulcastStream[0].maxBitrate = 500;
codec_.simulcastStream[1].minBitrate = 50;
codec_.simulcastStream[1].targetBitrate = 500;
codec_.simulcastStream[1].maxBitrate = 1000;
for (size_t i = 0; i < num_streams; ++i) {
codec_.simulcastStream[i].active = active_streams[i];
}
}
virtual std::unique_ptr<TemporalLayersFactory> GetTlFactory() {
return std::unique_ptr<TemporalLayersFactory>(new TemporalLayersFactory());
}
@ -145,7 +113,6 @@ class SimulcastRateAllocatorTest : public ::testing::TestWithParam<bool> {
TEST_F(SimulcastRateAllocatorTest, NoSimulcastBelowMin) {
uint32_t expected[] = {codec_.minBitrate};
codec_.active = true;
ExpectEqual(expected, GetAllocation(codec_.minBitrate - 1));
ExpectEqual(expected, GetAllocation(1));
ExpectEqual(expected, GetAllocation(0));
@ -153,14 +120,12 @@ TEST_F(SimulcastRateAllocatorTest, NoSimulcastBelowMin) {
TEST_F(SimulcastRateAllocatorTest, NoSimulcastAboveMax) {
uint32_t expected[] = {codec_.maxBitrate};
codec_.active = true;
ExpectEqual(expected, GetAllocation(codec_.maxBitrate + 1));
ExpectEqual(expected, GetAllocation(std::numeric_limits<uint32_t>::max()));
}
TEST_F(SimulcastRateAllocatorTest, NoSimulcastNoMax) {
const uint32_t kMax = BitrateAllocation::kMaxBitrateBps / 1000;
codec_.active = true;
codec_.maxBitrate = 0;
CreateAllocator();
@ -169,7 +134,6 @@ TEST_F(SimulcastRateAllocatorTest, NoSimulcastNoMax) {
}
TEST_F(SimulcastRateAllocatorTest, NoSimulcastWithinLimits) {
codec_.active = true;
for (uint32_t bitrate = codec_.minBitrate; bitrate <= codec_.maxBitrate;
++bitrate) {
uint32_t expected[] = {bitrate};
@ -177,25 +141,12 @@ TEST_F(SimulcastRateAllocatorTest, NoSimulcastWithinLimits) {
}
}
// Tests that when we aren't using simulcast and the codec is marked inactive no
// bitrate will be allocated.
TEST_F(SimulcastRateAllocatorTest, NoSimulcastInactive) {
codec_.active = false;
uint32_t expected[] = {0};
CreateAllocator();
ExpectEqual(expected, GetAllocation(kMinBitrateKbps - 10));
ExpectEqual(expected, GetAllocation(kTargetBitrateKbps));
ExpectEqual(expected, GetAllocation(kMaxBitrateKbps + 10));
}
TEST_F(SimulcastRateAllocatorTest, SingleSimulcastBelowMin) {
// With simulcast, use the min bitrate from the ss spec instead of the global.
codec_.numberOfSimulcastStreams = 1;
const uint32_t kMin = codec_.minBitrate - 10;
codec_.simulcastStream[0].minBitrate = kMin;
codec_.simulcastStream[0].targetBitrate = kTargetBitrateKbps;
codec_.simulcastStream[0].active = true;
CreateAllocator();
uint32_t expected[] = {kMin};
@ -209,7 +160,6 @@ TEST_F(SimulcastRateAllocatorTest, SingleSimulcastAboveMax) {
codec_.simulcastStream[0].minBitrate = kMinBitrateKbps;
const uint32_t kMax = codec_.simulcastStream[0].maxBitrate + 1000;
codec_.simulcastStream[0].maxBitrate = kMax;
codec_.simulcastStream[0].active = true;
CreateAllocator();
uint32_t expected[] = {kMax};
@ -223,7 +173,6 @@ TEST_F(SimulcastRateAllocatorTest, SingleSimulcastWithinLimits) {
codec_.simulcastStream[0].minBitrate = kMinBitrateKbps;
codec_.simulcastStream[0].targetBitrate = kTargetBitrateKbps;
codec_.simulcastStream[0].maxBitrate = kMaxBitrateKbps;
codec_.simulcastStream[0].active = true;
CreateAllocator();
for (uint32_t bitrate = kMinBitrateKbps; bitrate <= kMaxBitrateKbps;
@ -233,23 +182,18 @@ TEST_F(SimulcastRateAllocatorTest, SingleSimulcastWithinLimits) {
}
}
TEST_F(SimulcastRateAllocatorTest, SingleSimulcastInactive) {
codec_.numberOfSimulcastStreams = 1;
codec_.simulcastStream[0].minBitrate = kMinBitrateKbps;
codec_.simulcastStream[0].targetBitrate = kTargetBitrateKbps;
codec_.simulcastStream[0].maxBitrate = kMaxBitrateKbps;
codec_.simulcastStream[0].active = false;
CreateAllocator();
uint32_t expected[] = {0};
ExpectEqual(expected, GetAllocation(kMinBitrateKbps - 10));
ExpectEqual(expected, GetAllocation(kTargetBitrateKbps));
ExpectEqual(expected, GetAllocation(kMaxBitrateKbps + 10));
}
TEST_F(SimulcastRateAllocatorTest, OneToThreeStreams) {
const std::vector<bool> active_streams(3, true);
SetupCodecThreeSimulcastStreams(active_streams);
codec_.numberOfSimulcastStreams = 3;
codec_.maxBitrate = 0;
codec_.simulcastStream[0].minBitrate = 10;
codec_.simulcastStream[0].targetBitrate = 100;
codec_.simulcastStream[0].maxBitrate = 500;
codec_.simulcastStream[1].minBitrate = 50;
codec_.simulcastStream[1].targetBitrate = 500;
codec_.simulcastStream[1].maxBitrate = 1000;
codec_.simulcastStream[2].minBitrate = 2000;
codec_.simulcastStream[2].targetBitrate = 3000;
codec_.simulcastStream[2].maxBitrate = 4000;
CreateAllocator();
{
@ -323,164 +267,6 @@ TEST_F(SimulcastRateAllocatorTest, OneToThreeStreams) {
codec_.simulcastStream[2].maxBitrate};
ExpectEqual(expected, GetAllocation(bitrate));
}
{
// Enough to max out all streams which will allocate the target amount to
// the lower streams.
const uint32_t bitrate = codec_.simulcastStream[0].maxBitrate +
codec_.simulcastStream[1].maxBitrate +
codec_.simulcastStream[2].maxBitrate;
uint32_t expected[] = {codec_.simulcastStream[0].targetBitrate,
codec_.simulcastStream[1].targetBitrate,
codec_.simulcastStream[2].maxBitrate};
ExpectEqual(expected, GetAllocation(bitrate));
}
}
// If three simulcast streams that are all inactive, none of them should be
// allocated bitrate.
TEST_F(SimulcastRateAllocatorTest, ThreeStreamsInactive) {
const std::vector<bool> active_streams(3, false);
SetupCodecThreeSimulcastStreams(active_streams);
CreateAllocator();
// Just enough to allocate the min.
const uint32_t min_bitrate = codec_.simulcastStream[0].minBitrate +
codec_.simulcastStream[1].minBitrate +
codec_.simulcastStream[2].minBitrate;
// Enough bitrate to allocate target to all streams.
const uint32_t target_bitrate = codec_.simulcastStream[0].targetBitrate +
codec_.simulcastStream[1].targetBitrate +
codec_.simulcastStream[2].targetBitrate;
// Enough bitrate to allocate max to all streams.
const uint32_t max_bitrate = codec_.simulcastStream[0].maxBitrate +
codec_.simulcastStream[1].maxBitrate +
codec_.simulcastStream[2].maxBitrate;
uint32_t expected[] = {0, 0, 0};
ExpectEqual(expected, GetAllocation(0));
ExpectEqual(expected, GetAllocation(min_bitrate));
ExpectEqual(expected, GetAllocation(target_bitrate));
ExpectEqual(expected, GetAllocation(max_bitrate));
}
// If there are two simulcast streams, we expect the high active stream to be
// allocated as if it is a single active stream.
TEST_F(SimulcastRateAllocatorTest, TwoStreamsLowInactive) {
const std::vector<bool> active_streams({false, true});
SetupCodecTwoSimulcastStreams(active_streams);
CreateAllocator();
const uint32_t kActiveStreamMinBitrate = codec_.simulcastStream[1].minBitrate;
const uint32_t kActiveStreamTargetBitrate =
codec_.simulcastStream[1].targetBitrate;
const uint32_t kActiveStreamMaxBitrate = codec_.simulcastStream[1].maxBitrate;
{
// Expect that the stream is always allocated its min bitrate.
uint32_t expected[] = {0, kActiveStreamMinBitrate};
ExpectEqual(expected, GetAllocation(0));
ExpectEqual(expected, GetAllocation(kActiveStreamMinBitrate - 10));
ExpectEqual(expected, GetAllocation(kActiveStreamMinBitrate));
}
{
// The stream should be allocated its target bitrate.
uint32_t expected[] = {0, kActiveStreamTargetBitrate};
ExpectEqual(expected, GetAllocation(kActiveStreamTargetBitrate));
}
{
// The stream should be allocated its max if the target input is sufficient.
uint32_t expected[] = {0, kActiveStreamMaxBitrate};
ExpectEqual(expected, GetAllocation(kActiveStreamMaxBitrate));
ExpectEqual(expected, GetAllocation(std::numeric_limits<uint32_t>::max()));
}
}
// If there are two simulcast streams, we expect the low active stream to be
// allocated as if it is a single active stream.
TEST_F(SimulcastRateAllocatorTest, TwoStreamsHighInactive) {
const std::vector<bool> active_streams({true, false});
SetupCodecTwoSimulcastStreams(active_streams);
CreateAllocator();
const uint32_t kActiveStreamMinBitrate = codec_.simulcastStream[0].minBitrate;
const uint32_t kActiveStreamTargetBitrate =
codec_.simulcastStream[0].targetBitrate;
const uint32_t kActiveStreamMaxBitrate = codec_.simulcastStream[0].maxBitrate;
{
// Expect that the stream is always allocated its min bitrate.
uint32_t expected[] = {kActiveStreamMinBitrate, 0};
ExpectEqual(expected, GetAllocation(0));
ExpectEqual(expected, GetAllocation(kActiveStreamMinBitrate - 10));
ExpectEqual(expected, GetAllocation(kActiveStreamMinBitrate));
}
{
// The stream should be allocated its target bitrate.
uint32_t expected[] = {kActiveStreamTargetBitrate, 0};
ExpectEqual(expected, GetAllocation(kActiveStreamTargetBitrate));
}
{
// The stream should be allocated its max if the target input is sufficent.
uint32_t expected[] = {kActiveStreamMaxBitrate, 0};
ExpectEqual(expected, GetAllocation(kActiveStreamMaxBitrate));
ExpectEqual(expected, GetAllocation(std::numeric_limits<uint32_t>::max()));
}
}
// If there are three simulcast streams and the middle stream is inactive, the
// other two streams should be allocated bitrate the same as if they are two
// active simulcast streams.
TEST_F(SimulcastRateAllocatorTest, ThreeStreamsMiddleInactive) {
const std::vector<bool> active_streams({true, false, true});
SetupCodecThreeSimulcastStreams(active_streams);
CreateAllocator();
{
const uint32_t kLowStreamMinBitrate = codec_.simulcastStream[0].minBitrate;
// The lowest stream should always be allocated its minimum bitrate.
uint32_t expected[] = {kLowStreamMinBitrate, 0, 0};
ExpectEqual(expected, GetAllocation(0));
ExpectEqual(expected, GetAllocation(kLowStreamMinBitrate - 10));
ExpectEqual(expected, GetAllocation(kLowStreamMinBitrate));
}
{
// The lowest stream gets its target bitrate.
uint32_t expected[] = {codec_.simulcastStream[0].targetBitrate, 0, 0};
ExpectEqual(expected,
GetAllocation(codec_.simulcastStream[0].targetBitrate));
}
{
// The lowest stream gets its max bitrate, but not enough for the high
// stream.
const uint32_t bitrate = codec_.simulcastStream[0].targetBitrate +
codec_.simulcastStream[2].minBitrate - 1;
uint32_t expected[] = {codec_.simulcastStream[0].maxBitrate, 0, 0};
ExpectEqual(expected, GetAllocation(bitrate));
}
{
// Both active streams get allocated target bitrate.
const uint32_t bitrate = codec_.simulcastStream[0].targetBitrate +
codec_.simulcastStream[2].targetBitrate;
uint32_t expected[] = {codec_.simulcastStream[0].targetBitrate, 0,
codec_.simulcastStream[2].targetBitrate};
ExpectEqual(expected, GetAllocation(bitrate));
}
{
// Lowest stream gets its target bitrate, high stream gets its max bitrate.
uint32_t bitrate = codec_.simulcastStream[0].targetBitrate +
codec_.simulcastStream[2].maxBitrate;
uint32_t expected[] = {codec_.simulcastStream[0].targetBitrate, 0,
codec_.simulcastStream[2].maxBitrate};
ExpectEqual(expected, GetAllocation(bitrate));
ExpectEqual(expected, GetAllocation(bitrate + 10));
ExpectEqual(expected, GetAllocation(std::numeric_limits<uint32_t>::max()));
}
}
TEST_F(SimulcastRateAllocatorTest, GetPreferredBitrateBps) {
@ -497,18 +283,15 @@ TEST_F(SimulcastRateAllocatorTest, GetPreferredBitrateSimulcast) {
codec_.maxBitrate = 999999;
codec_.simulcastStream[0].minBitrate = 10;
codec_.simulcastStream[0].targetBitrate = 100;
codec_.simulcastStream[0].active = true;
codec_.simulcastStream[0].maxBitrate = 500;
codec_.simulcastStream[1].minBitrate = 50;
codec_.simulcastStream[1].targetBitrate = 500;
codec_.simulcastStream[1].maxBitrate = 1000;
codec_.simulcastStream[1].active = true;
codec_.simulcastStream[2].minBitrate = 2000;
codec_.simulcastStream[2].targetBitrate = 3000;
codec_.simulcastStream[2].maxBitrate = 4000;
codec_.simulcastStream[2].active = true;
CreateAllocator();
uint32_t preferred_bitrate_kbps;
@ -522,7 +305,7 @@ TEST_F(SimulcastRateAllocatorTest, GetPreferredBitrateSimulcast) {
class ScreenshareRateAllocationTest : public SimulcastRateAllocatorTest {
public:
void SetupConferenceScreenshare(bool use_simulcast, bool active = true) {
void SetupConferenceScreenshare(bool use_simulcast) {
codec_.mode = VideoCodecMode::kScreensharing;
codec_.minBitrate = kMinBitrateKbps;
codec_.maxBitrate = kMaxBitrateKbps;
@ -532,12 +315,10 @@ class ScreenshareRateAllocationTest : public SimulcastRateAllocatorTest {
codec_.simulcastStream[0].targetBitrate = kTargetBitrateKbps;
codec_.simulcastStream[0].maxBitrate = kMaxBitrateKbps;
codec_.simulcastStream[0].numberOfTemporalLayers = 2;
codec_.simulcastStream[0].active = active;
} else {
codec_.numberOfSimulcastStreams = 0;
codec_.targetBitrate = kTargetBitrateKbps;
codec_.VP8()->numberOfTemporalLayers = 2;
codec_.active = active;
}
}
@ -592,17 +373,4 @@ TEST_P(ScreenshareRateAllocationTest, BitrateAboveTl1) {
allocation.GetBitrate(0, 1) / 1000);
}
// This tests when the screenshare is inactive it should be allocated 0 bitrate
// for all layers.
TEST_P(ScreenshareRateAllocationTest, InactiveScreenshare) {
SetupConferenceScreenshare(GetParam(), false);
CreateAllocator();
// Enough bitrate for TL0 and TL1.
uint32_t target_bitrate_kbps = (kTargetBitrateKbps + kMaxBitrateKbps) / 2;
BitrateAllocation allocation =
allocator_->GetAllocation(target_bitrate_kbps * 1000, kFramerateFps);
EXPECT_EQ(0U, allocation.get_sum_kbps());
}
} // namespace webrtc

View File

@ -192,15 +192,6 @@ VideoCodec VideoCodecInitializer::VideoEncoderConfigToVideoCodec(
video_codec.numberOfSimulcastStreams =
static_cast<unsigned char>(streams.size());
video_codec.minBitrate = streams[0].min_bitrate_bps / 1000;
bool codec_active = false;
for (const VideoStream& stream : streams) {
if (stream.active) {
codec_active = true;
break;
}
}
// Set active for the entire video codec for the non simulcast case.
video_codec.active = codec_active;
if (video_codec.minBitrate < kEncoderMinBitrateKbps)
video_codec.minBitrate = kEncoderMinBitrateKbps;
video_codec.timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
@ -240,7 +231,6 @@ VideoCodec VideoCodecInitializer::VideoEncoderConfigToVideoCodec(
sim_stream->qpMax = streams[i].max_qp;
sim_stream->numberOfTemporalLayers = static_cast<unsigned char>(
streams[i].temporal_layer_thresholds_bps.size() + 1);
sim_stream->active = streams[i].active;
video_codec.width =
std::max(video_codec.width, static_cast<uint16_t>(streams[i].width));

View File

@ -118,7 +118,6 @@ class VideoCodecInitializerTest : public ::testing::Test {
stream.target_bitrate_bps = kDefaultTargetBitrateBps;
stream.max_bitrate_bps = kDefaultMaxBitrateBps;
stream.max_qp = kDefaultMaxQp;
stream.active = true;
return stream;
}
@ -129,7 +128,6 @@ class VideoCodecInitializerTest : public ::testing::Test {
stream.max_bitrate_bps = 1000000;
stream.max_framerate = kScreenshareDefaultFramerate;
stream.temporal_layer_thresholds_bps.push_back(kScreenshareTl0BitrateBps);
stream.active = true;
return stream;
}
@ -157,20 +155,6 @@ TEST_F(VideoCodecInitializerTest, SingleStreamVp8Screenshare) {
EXPECT_EQ(kDefaultTargetBitrateBps, bitrate_allocation.get_sum_bps());
}
TEST_F(VideoCodecInitializerTest, SingleStreamVp8ScreenshareInactive) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 1, 1, true);
VideoStream inactive_stream = DefaultStream();
inactive_stream.active = false;
streams_.push_back(inactive_stream);
EXPECT_TRUE(InitializeCodec());
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
kDefaultTargetBitrateBps, kDefaultFrameRate);
EXPECT_EQ(1u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
EXPECT_EQ(0U, bitrate_allocation.get_sum_bps());
}
TEST_F(VideoCodecInitializerTest, TemporalLayeredVp8Screenshare) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 1, 2, true);
streams_.push_back(DefaultScreenshareStream());
@ -185,7 +169,7 @@ TEST_F(VideoCodecInitializerTest, TemporalLayeredVp8Screenshare) {
EXPECT_EQ(kScreenshareTl0BitrateBps, bitrate_allocation.GetBitrate(0, 0));
}
TEST_F(VideoCodecInitializerTest, SimulcastVp8Screenshare) {
TEST_F(VideoCodecInitializerTest, SimlucastVp8Screenshare) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 1, true);
streams_.push_back(DefaultScreenshareStream());
VideoStream video_stream = DefaultStream();
@ -206,31 +190,7 @@ TEST_F(VideoCodecInitializerTest, SimulcastVp8Screenshare) {
bitrate_allocation.GetSpatialLayerSum(1));
}
// Tests that when a video stream is inactive, then the bitrate allocation will
// be 0 for that stream.
TEST_F(VideoCodecInitializerTest, SimulcastVp8ScreenshareInactive) {
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 1, true);
streams_.push_back(DefaultScreenshareStream());
VideoStream inactive_video_stream = DefaultStream();
inactive_video_stream.active = false;
inactive_video_stream.max_framerate = kScreenshareDefaultFramerate;
streams_.push_back(inactive_video_stream);
EXPECT_TRUE(InitializeCodec());
EXPECT_EQ(2u, codec_out_.numberOfSimulcastStreams);
EXPECT_EQ(1u, codec_out_.VP8()->numberOfTemporalLayers);
const uint32_t target_bitrate =
streams_[0].target_bitrate_bps + streams_[1].target_bitrate_bps;
BitrateAllocation bitrate_allocation = bitrate_allocator_out_->GetAllocation(
target_bitrate, kScreenshareDefaultFramerate);
EXPECT_EQ(static_cast<uint32_t>(streams_[0].max_bitrate_bps),
bitrate_allocation.get_sum_bps());
EXPECT_EQ(static_cast<uint32_t>(streams_[0].max_bitrate_bps),
bitrate_allocation.GetSpatialLayerSum(0));
EXPECT_EQ(0U, bitrate_allocation.GetSpatialLayerSum(1));
}
TEST_F(VideoCodecInitializerTest, HighFpsSimulcastVp8Screenshare) {
TEST_F(VideoCodecInitializerTest, HighFpsSimlucastVp8Screenshare) {
// Two simulcast streams, the lower one using legacy settings (two temporal
// streams, 5fps), the higher one using 3 temporal streams and 30fps.
SetUpFor(VideoCodecType::kVideoCodecVP8, 2, 3, true);

View File

@ -50,7 +50,6 @@ std::vector<VideoStream> CreateVideoStreams(
std::min(bitrate_left_bps,
DefaultVideoStreamFactory::kMaxBitratePerStream[i]);
stream_settings[i].max_qp = 56;
stream_settings[i].active = true;
bitrate_left_bps -= stream_settings[i].target_bitrate_bps;
}

View File

@ -43,7 +43,6 @@ static void CodecSettings(VideoCodecType codec_type, VideoCodec* settings) {
settings->timing_frame_thresholds = {
kTestTimingFramesDelayMs, kTestOutlierFrameSizePercent,
};
settings->active = true;
*(settings->VP8()) = VideoEncoder::GetDefaultVp8Settings();
return;
case kVideoCodecVP9:
@ -62,7 +61,6 @@ static void CodecSettings(VideoCodecType codec_type, VideoCodec* settings) {
settings->timing_frame_thresholds = {
kTestTimingFramesDelayMs, kTestOutlierFrameSizePercent,
};
settings->active = true;
*(settings->VP9()) = VideoEncoder::GetDefaultVp9Settings();
return;
case kVideoCodecH264:
@ -81,7 +79,6 @@ static void CodecSettings(VideoCodecType codec_type, VideoCodec* settings) {
settings->timing_frame_thresholds = {
kTestTimingFramesDelayMs, kTestOutlierFrameSizePercent,
};
settings->active = true;
*(settings->H264()) = VideoEncoder::GetDefaultH264Settings();
return;
case kVideoCodecI420:
@ -98,7 +95,6 @@ static void CodecSettings(VideoCodecType codec_type, VideoCodec* settings) {
settings->height = kTestHeight;
settings->minBitrate = kTestMinBitrateKbps;
settings->numberOfSimulcastStreams = 0;
settings->active = true;
return;
case kVideoCodecRED:
case kVideoCodecULPFEC:

View File

@ -258,11 +258,8 @@ void PayloadRouter::OnBitrateAllocationUpdated(
// rtp stream, moving over the temporal layer allocation.
for (size_t si = 0; si < rtp_modules_.size(); ++si) {
// Don't send empty TargetBitrate messages on streams not being relayed.
if (!bitrate.IsSpatialLayerUsed(si)) {
// The next spatial layer could be used if the current one is
// inactive.
continue;
}
if (!bitrate.IsSpatialLayerUsed(si))
break;
BitrateAllocation layer_bitrate;
for (int tl = 0; tl < kMaxTemporalStreams; ++tl) {

View File

@ -32,7 +32,6 @@ namespace {
const int8_t kPayloadType = 96;
const uint32_t kSsrc1 = 12345;
const uint32_t kSsrc2 = 23456;
const uint32_t kSsrc3 = 34567;
const int16_t kPictureId = 123;
const int16_t kTl0PicIdx = 20;
const uint8_t kTemporalIdx = 1;
@ -187,38 +186,23 @@ TEST(PayloadRouterTest, SimulcastTargetBitrate) {
payload_router.OnBitrateAllocationUpdated(bitrate);
}
// If the middle of three streams is inactive the first and last streams should
// be asked to send the TargetBitrate message.
TEST(PayloadRouterTest, SimulcastTargetBitrateWithInactiveStream) {
// Set up three active rtp modules.
// Set up two active rtp modules.
NiceMock<MockRtpRtcp> rtp_1;
NiceMock<MockRtpRtcp> rtp_2;
NiceMock<MockRtpRtcp> rtp_3;
std::vector<RtpRtcp*> modules = {&rtp_1, &rtp_2, &rtp_3};
PayloadRouter payload_router(modules, {kSsrc1, kSsrc2, kSsrc3}, kPayloadType,
{});
std::vector<RtpRtcp*> modules = {&rtp_1, &rtp_2};
PayloadRouter payload_router(modules, {kSsrc1, kSsrc2}, kPayloadType, {});
payload_router.SetActive(true);
// Create bitrate allocation with bitrate only for the first and third stream.
// Create bitrate allocation with bitrate only for the first stream.
BitrateAllocation bitrate;
bitrate.SetBitrate(0, 0, 10000);
bitrate.SetBitrate(0, 1, 20000);
bitrate.SetBitrate(2, 0, 40000);
bitrate.SetBitrate(2, 1, 80000);
BitrateAllocation layer0_bitrate;
layer0_bitrate.SetBitrate(0, 0, 10000);
layer0_bitrate.SetBitrate(0, 1, 20000);
BitrateAllocation layer2_bitrate;
layer2_bitrate.SetBitrate(0, 0, 40000);
layer2_bitrate.SetBitrate(0, 1, 80000);
// Expect the first and third rtp module to be asked to send a TargetBitrate
// Expect only the first rtp module to be asked to send a TargetBitrate
// message. (No target bitrate with 0bps sent from the second one.)
EXPECT_CALL(rtp_1, SetVideoBitrateAllocation(layer0_bitrate)).Times(1);
EXPECT_CALL(rtp_1, SetVideoBitrateAllocation(bitrate)).Times(1);
EXPECT_CALL(rtp_2, SetVideoBitrateAllocation(_)).Times(0);
EXPECT_CALL(rtp_3, SetVideoBitrateAllocation(layer2_bitrate)).Times(1);
payload_router.OnBitrateAllocationUpdated(bitrate);
}

View File

@ -1200,7 +1200,6 @@ VideoStream VideoQualityTest::DefaultVideoStream(const Params& params,
stream.target_bitrate_bps = params.video[video_idx].target_bitrate_bps;
stream.max_bitrate_bps = params.video[video_idx].max_bitrate_bps;
stream.max_qp = kDefaultMaxQp;
stream.active = true;
// TODO(sprang): Can we make this less of a hack?
if (params.video[video_idx].num_temporal_layers == 2) {
stream.temporal_layer_thresholds_bps.push_back(stream.target_bitrate_bps);

View File

@ -960,8 +960,7 @@ void VideoSendStreamImpl::OnEncoderConfigurationChanged(
encoder_max_bitrate_bps_ = 0;
double stream_bitrate_priority_sum = 0;
for (const auto& stream : streams) {
// We don't want to allocate more bitrate than needed to inactive streams.
encoder_max_bitrate_bps_ += stream.active ? stream.max_bitrate_bps : 0;
encoder_max_bitrate_bps_ += stream.max_bitrate_bps;
if (stream.bitrate_priority) {
RTC_DCHECK_GT(*stream.bitrate_priority, 0);
stream_bitrate_priority_sum += *stream.bitrate_priority;
@ -969,9 +968,6 @@ void VideoSendStreamImpl::OnEncoderConfigurationChanged(
}
RTC_DCHECK_GT(stream_bitrate_priority_sum, 0);
encoder_bitrate_priority_ = stream_bitrate_priority_sum;
encoder_max_bitrate_bps_ =
std::max(static_cast<uint32_t>(encoder_min_bitrate_bps_),
encoder_max_bitrate_bps_);
max_padding_bitrate_ = CalculateMaxPadBitrateBps(
streams, min_transmit_bitrate_bps, config_->suspend_below_min_bitrate);