Use TimeDelta and Timestamp in VCMJitterEstimator

* Uses DataSize to represent incoming and outgoing bytes.
* Puts units into doubles as they enter the Kalman filter
* Moved to its own GN target.

Change-Id: I1e7d5486a00a7158d418f553a6c77f9dd56bf3c2
Bug: webrtc:13756
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/253121
Reviewed-by: Åsa Persson <asapersson@webrtc.org>
Commit-Queue: Evan Shrubsole <eshr@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36143}
This commit is contained in:
Evan Shrubsole
2022-03-07 13:21:51 +01:00
committed by WebRTC LUCI CQ
parent a5f3c20f2d
commit 13e42a88df
9 changed files with 355 additions and 298 deletions

View File

@ -14,6 +14,9 @@
#include "absl/types/optional.h"
#include "api/array_view.h"
#include "api/units/data_size.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "modules/video_coding/jitter_estimator.h"
#include "rtc_base/experiments/jitter_upper_bound_experiment.h"
#include "rtc_base/numerics/histogram_percentile_counter.h"
@ -33,10 +36,6 @@ class TestVCMJitterEstimator : public ::testing::Test {
estimator_ = std::make_unique<VCMJitterEstimator>(&fake_clock_);
}
void AdvanceClock(int64_t microseconds) {
fake_clock_.AdvanceTimeMicroseconds(microseconds);
}
SimulatedClock fake_clock_;
std::unique_ptr<VCMJitterEstimator> estimator_;
};
@ -46,11 +45,16 @@ class ValueGenerator {
public:
explicit ValueGenerator(int32_t amplitude)
: amplitude_(amplitude), counter_(0) {}
virtual ~ValueGenerator() {}
int64_t Delay() const { return ((counter_ % 11) - 5) * amplitude_; }
virtual ~ValueGenerator() = default;
uint32_t FrameSize() const { return 1000 + Delay(); }
TimeDelta Delay() const {
return TimeDelta::Millis((counter_ % 11) - 5) * amplitude_;
}
DataSize FrameSize() const {
return DataSize::Bytes(1000 + Delay().ms() / 5);
}
void Advance() { ++counter_; }
@ -62,12 +66,13 @@ class ValueGenerator {
// 5 fps, disable jitter delay altogether.
TEST_F(TestVCMJitterEstimator, TestLowRate) {
ValueGenerator gen(10);
uint64_t time_delta_us = rtc::kNumMicrosecsPerSec / 5;
TimeDelta time_delta = 1 / Frequency::Hertz(5);
for (int i = 0; i < 60; ++i) {
estimator_->UpdateEstimate(gen.Delay(), gen.FrameSize());
AdvanceClock(time_delta_us);
fake_clock_.AdvanceTime(time_delta);
if (i > 2)
EXPECT_EQ(estimator_->GetJitterEstimate(0, absl::nullopt), 0);
EXPECT_EQ(estimator_->GetJitterEstimate(0, absl::nullopt),
TimeDelta::Zero());
gen.Advance();
}
}
@ -78,12 +83,13 @@ TEST_F(TestVCMJitterEstimator, TestLowRateDisabled) {
SetUp();
ValueGenerator gen(10);
uint64_t time_delta_us = rtc::kNumMicrosecsPerSec / 5;
TimeDelta time_delta = 1 / Frequency::Hertz(5);
for (int i = 0; i < 60; ++i) {
estimator_->UpdateEstimate(gen.Delay(), gen.FrameSize());
AdvanceClock(time_delta_us);
fake_clock_.AdvanceTime(time_delta);
if (i > 2)
EXPECT_GT(estimator_->GetJitterEstimate(0, absl::nullopt), 0);
EXPECT_GT(estimator_->GetJitterEstimate(0, absl::nullopt),
TimeDelta::Zero());
gen.Advance();
}
}
@ -97,7 +103,7 @@ TEST_F(TestVCMJitterEstimator, TestUpperBound) {
percentiles(1000) {}
double upper_bound;
double rtt_mult;
absl::optional<double> rtt_mult_add_cap_ms;
absl::optional<TimeDelta> rtt_mult_add_cap_ms;
rtc::HistogramPercentileCounter percentiles;
};
std::vector<TestContext> test_cases(4);
@ -113,11 +119,11 @@ TEST_F(TestVCMJitterEstimator, TestUpperBound) {
// Large upper bound, rtt_mult = 1, and large rtt_mult addition cap value.
test_cases[2].upper_bound = 1000.0;
test_cases[2].rtt_mult = 1.0;
test_cases[2].rtt_mult_add_cap_ms = 200.0;
test_cases[2].rtt_mult_add_cap_ms = TimeDelta::Millis(200);
// Large upper bound, rtt_mult = 1, and small rtt_mult addition cap value.
test_cases[3].upper_bound = 1000.0;
test_cases[3].rtt_mult = 1.0;
test_cases[3].rtt_mult_add_cap_ms = 10.0;
test_cases[3].rtt_mult_add_cap_ms = TimeDelta::Millis(10);
// Test jitter buffer upper_bound and rtt_mult addition cap sizes.
for (TestContext& context : test_cases) {
@ -130,16 +136,17 @@ TEST_F(TestVCMJitterEstimator, TestUpperBound) {
SetUp();
ValueGenerator gen(50);
uint64_t time_delta_us = rtc::kNumMicrosecsPerSec / 30;
constexpr int64_t kRttMs = 250;
TimeDelta time_delta = 1 / Frequency::Hertz(30);
constexpr TimeDelta kRtt = TimeDelta::Millis(250);
for (int i = 0; i < 100; ++i) {
estimator_->UpdateEstimate(gen.Delay(), gen.FrameSize());
AdvanceClock(time_delta_us);
fake_clock_.AdvanceTime(time_delta);
estimator_->FrameNacked(); // To test rtt_mult.
estimator_->UpdateRtt(kRttMs); // To test rtt_mult.
estimator_->UpdateRtt(kRtt); // To test rtt_mult.
context.percentiles.Add(
static_cast<uint32_t>(estimator_->GetJitterEstimate(
context.rtt_mult, context.rtt_mult_add_cap_ms)));
estimator_
->GetJitterEstimate(context.rtt_mult, context.rtt_mult_add_cap_ms)
.ms());
gen.Advance();
}
}