Merge commit 'upstream-main' into master
Bug: 261600888 Test: none, build files to be updated in follow up cl Change-Id: Ib520938290c6bbdee4a9f73b6419b6c947a96ec4
This commit is contained in:
@ -16,6 +16,7 @@ rtc_library("system_wrappers") {
|
||||
visibility = [ "*" ]
|
||||
sources = [
|
||||
"include/clock.h",
|
||||
"include/cpu_features_wrapper.h",
|
||||
"include/cpu_info.h",
|
||||
"include/ntp_time.h",
|
||||
"include/rtp_to_ntp_estimator.h",
|
||||
@ -30,13 +31,15 @@ rtc_library("system_wrappers") {
|
||||
defines = []
|
||||
libs = []
|
||||
deps = [
|
||||
":cpu_features_api",
|
||||
":field_trial",
|
||||
"../api:array_view",
|
||||
"../api/units:timestamp",
|
||||
"../modules:module_api_public",
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base:logging",
|
||||
"../rtc_base:safe_conversions",
|
||||
"../rtc_base:timeutils",
|
||||
"../rtc_base/synchronization:mutex",
|
||||
"../rtc_base/synchronization:rw_lock_wrapper",
|
||||
"../rtc_base/system:arch",
|
||||
"../rtc_base/system:rtc_export",
|
||||
]
|
||||
@ -50,15 +53,16 @@ rtc_library("system_wrappers") {
|
||||
"/nsprpub/pr/include",
|
||||
]
|
||||
} else {
|
||||
deps += [ ":cpu_features_android" ]
|
||||
sources += [ "source/cpu_features_android.cc" ]
|
||||
deps += [ "//third_party/android_sdk:cpu_features" ]
|
||||
}
|
||||
|
||||
libs += [ "log" ]
|
||||
}
|
||||
|
||||
if (is_linux) {
|
||||
if (is_linux || is_chromeos) {
|
||||
if (!build_with_chromium) {
|
||||
deps += [ ":cpu_features_linux" ]
|
||||
sources += [ "source/cpu_features_linux.cc" ]
|
||||
}
|
||||
|
||||
libs += [ "rt" ]
|
||||
@ -69,17 +73,10 @@ rtc_library("system_wrappers") {
|
||||
|
||||
# Windows needs ../rtc_base due to include of
|
||||
# webrtc/rtc_base/win32.h in source/clock.cc.
|
||||
deps += [ "../rtc_base" ]
|
||||
deps += [ "../rtc_base:win32" ]
|
||||
}
|
||||
|
||||
deps += [
|
||||
"../rtc_base:rtc_base_approved",
|
||||
"../rtc_base:rtc_numerics",
|
||||
]
|
||||
}
|
||||
|
||||
rtc_source_set("cpu_features_api") {
|
||||
sources = [ "include/cpu_features_wrapper.h" ]
|
||||
deps += [ "../rtc_base:rtc_numerics" ]
|
||||
}
|
||||
|
||||
rtc_library("field_trial") {
|
||||
@ -90,11 +87,16 @@ rtc_library("field_trial") {
|
||||
defines = [ "WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT" ]
|
||||
}
|
||||
deps = [
|
||||
"../experiments:registered_field_trials",
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base:logging",
|
||||
"../rtc_base:stringutils",
|
||||
"../rtc_base/containers:flat_set",
|
||||
]
|
||||
absl_deps = [
|
||||
"//third_party/abseil-cpp/absl/algorithm:container",
|
||||
"//third_party/abseil-cpp/absl/strings",
|
||||
]
|
||||
absl_deps = [ "//third_party/abseil-cpp/absl/strings" ]
|
||||
}
|
||||
|
||||
rtc_library("metrics") {
|
||||
@ -106,34 +108,32 @@ rtc_library("metrics") {
|
||||
}
|
||||
deps = [
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base:rtc_base_approved",
|
||||
"../rtc_base:macromagic",
|
||||
"../rtc_base:stringutils",
|
||||
"../rtc_base/synchronization:mutex",
|
||||
]
|
||||
absl_deps = [ "//third_party/abseil-cpp/absl/strings" ]
|
||||
}
|
||||
|
||||
if (is_android && !build_with_mozilla) {
|
||||
rtc_library("cpu_features_android") {
|
||||
sources = [ "source/cpu_features_android.c" ]
|
||||
|
||||
deps = [ "//third_party/android_sdk:cpu_features" ]
|
||||
rtc_library("denormal_disabler") {
|
||||
visibility = [ "*" ]
|
||||
public = [ "include/denormal_disabler.h" ]
|
||||
sources = [ "source/denormal_disabler.cc" ]
|
||||
deps = [
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base/system:arch",
|
||||
]
|
||||
if (is_clang) {
|
||||
cflags_cc = [ "-Wno-unused-private-field" ]
|
||||
}
|
||||
}
|
||||
|
||||
if (is_linux) {
|
||||
rtc_library("cpu_features_linux") {
|
||||
sources = [ "source/cpu_features_linux.c" ]
|
||||
deps = [
|
||||
":cpu_features_api",
|
||||
"../rtc_base/system:arch",
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
if (rtc_include_tests) {
|
||||
if (rtc_include_tests && !build_with_chromium) {
|
||||
rtc_test("system_wrappers_unittests") {
|
||||
testonly = true
|
||||
sources = [
|
||||
"source/clock_unittest.cc",
|
||||
"source/denormal_disabler_unittest.cc",
|
||||
"source/field_trial_unittest.cc",
|
||||
"source/metrics_default_unittest.cc",
|
||||
"source/metrics_unittest.cc",
|
||||
@ -142,18 +142,21 @@ if (rtc_include_tests) {
|
||||
]
|
||||
|
||||
deps = [
|
||||
":denormal_disabler",
|
||||
":field_trial",
|
||||
":metrics",
|
||||
":system_wrappers",
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base:rtc_base_approved",
|
||||
"../rtc_base:random",
|
||||
"../rtc_base:stringutils",
|
||||
"../test:rtc_expect_death",
|
||||
"../test:test_main",
|
||||
"../test:test_support",
|
||||
"//testing/gtest",
|
||||
"//third_party/abseil-cpp/absl/strings",
|
||||
]
|
||||
|
||||
absl_deps = [ "//third_party/abseil-cpp/absl/strings" ]
|
||||
|
||||
if (is_android) {
|
||||
deps += [ "//testing/android/native_test:native_test_support" ]
|
||||
|
||||
|
||||
@ -1,3 +1,2 @@
|
||||
henrika@webrtc.org
|
||||
mflodman@webrtc.org
|
||||
nisse@webrtc.org
|
||||
|
||||
@ -13,10 +13,10 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
|
||||
#include "api/units/timestamp.h"
|
||||
#include "rtc_base/synchronization/rw_lock_wrapper.h"
|
||||
#include "rtc_base/system/rtc_export.h"
|
||||
#include "system_wrappers/include/ntp_time.h"
|
||||
|
||||
@ -32,22 +32,20 @@ const double kMagicNtpFractionalUnit = 4.294967296E+9;
|
||||
class RTC_EXPORT Clock {
|
||||
public:
|
||||
virtual ~Clock() {}
|
||||
|
||||
// Return a timestamp relative to an unspecified epoch.
|
||||
virtual Timestamp CurrentTime() {
|
||||
return Timestamp::Micros(TimeInMicroseconds());
|
||||
}
|
||||
virtual int64_t TimeInMilliseconds() { return CurrentTime().ms(); }
|
||||
virtual int64_t TimeInMicroseconds() { return CurrentTime().us(); }
|
||||
virtual Timestamp CurrentTime() = 0;
|
||||
int64_t TimeInMilliseconds() { return CurrentTime().ms(); }
|
||||
int64_t TimeInMicroseconds() { return CurrentTime().us(); }
|
||||
|
||||
// Retrieve an NTP absolute timestamp.
|
||||
virtual NtpTime CurrentNtpTime() = 0;
|
||||
// Retrieve an NTP absolute timestamp (with an epoch of Jan 1, 1900).
|
||||
NtpTime CurrentNtpTime() { return ConvertTimestampToNtpTime(CurrentTime()); }
|
||||
int64_t CurrentNtpInMilliseconds() { return CurrentNtpTime().ToMs(); }
|
||||
|
||||
// Retrieve an NTP absolute timestamp in milliseconds.
|
||||
virtual int64_t CurrentNtpInMilliseconds() = 0;
|
||||
|
||||
// Converts an NTP timestamp to a millisecond timestamp.
|
||||
static int64_t NtpToMs(uint32_t seconds, uint32_t fractions) {
|
||||
return NtpTime(seconds, fractions).ToMs();
|
||||
// Converts between a relative timestamp returned by this clock, to NTP time.
|
||||
virtual NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) = 0;
|
||||
int64_t ConvertTimestampToNtpTimeInMilliseconds(int64_t timestamp_ms) {
|
||||
return ConvertTimestampToNtpTime(Timestamp::Millis(timestamp_ms)).ToMs();
|
||||
}
|
||||
|
||||
// Returns an instance of the real-time system clock implementation.
|
||||
@ -56,20 +54,15 @@ class RTC_EXPORT Clock {
|
||||
|
||||
class SimulatedClock : public Clock {
|
||||
public:
|
||||
// The constructors assume an epoch of Jan 1, 1970.
|
||||
explicit SimulatedClock(int64_t initial_time_us);
|
||||
explicit SimulatedClock(Timestamp initial_time);
|
||||
|
||||
~SimulatedClock() override;
|
||||
|
||||
// Return a timestamp relative to some arbitrary source; the source is fixed
|
||||
// for this clock.
|
||||
// Return a timestamp with an epoch of Jan 1, 1970.
|
||||
Timestamp CurrentTime() override;
|
||||
|
||||
// Retrieve an NTP absolute timestamp.
|
||||
NtpTime CurrentNtpTime() override;
|
||||
|
||||
// Converts an NTP timestamp to a millisecond timestamp.
|
||||
int64_t CurrentNtpInMilliseconds() override;
|
||||
NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override;
|
||||
|
||||
// Advance the simulated clock with a given number of milliseconds or
|
||||
// microseconds.
|
||||
@ -78,8 +71,12 @@ class SimulatedClock : public Clock {
|
||||
void AdvanceTime(TimeDelta delta);
|
||||
|
||||
private:
|
||||
Timestamp time_;
|
||||
std::unique_ptr<RWLockWrapper> lock_;
|
||||
// The time is read and incremented with relaxed order. Each thread will see
|
||||
// monotonically increasing time, and when threads post tasks or messages to
|
||||
// one another, the synchronization done as part of the message passing should
|
||||
// ensure that any causual chain of events on multiple threads also
|
||||
// corresponds to monotonically increasing time.
|
||||
std::atomic<int64_t> time_us_;
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -13,12 +13,10 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
namespace webrtc {
|
||||
|
||||
// List of features in x86.
|
||||
typedef enum { kSSE2, kSSE3 } CPUFeature;
|
||||
typedef enum { kSSE2, kSSE3, kAVX2 } CPUFeature;
|
||||
|
||||
// List of features in ARM.
|
||||
enum {
|
||||
@ -28,21 +26,17 @@ enum {
|
||||
kCPUFeatureLDREXSTREX = (1 << 3)
|
||||
};
|
||||
|
||||
typedef int (*WebRtc_CPUInfo)(CPUFeature feature);
|
||||
|
||||
// Returns true if the CPU supports the feature.
|
||||
extern WebRtc_CPUInfo WebRtc_GetCPUInfo;
|
||||
int GetCPUInfo(CPUFeature feature);
|
||||
|
||||
// No CPU feature is available => straight C path.
|
||||
extern WebRtc_CPUInfo WebRtc_GetCPUInfoNoASM;
|
||||
int GetCPUInfoNoASM(CPUFeature feature);
|
||||
|
||||
// Return the features in an ARM device.
|
||||
// It detects the features in the hardware platform, and returns supported
|
||||
// values in the above enum definition as a bitmask.
|
||||
extern uint64_t WebRtc_GetCPUFeaturesARM(void);
|
||||
uint64_t GetCPUFeaturesARM(void);
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // SYSTEM_WRAPPERS_INCLUDE_CPU_FEATURES_WRAPPER_H_
|
||||
|
||||
54
system_wrappers/include/denormal_disabler.h
Normal file
54
system_wrappers/include/denormal_disabler.h
Normal file
@ -0,0 +1,54 @@
|
||||
/*
|
||||
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef SYSTEM_WRAPPERS_INCLUDE_DENORMAL_DISABLER_H_
|
||||
#define SYSTEM_WRAPPERS_INCLUDE_DENORMAL_DISABLER_H_
|
||||
|
||||
#include "rtc_base/system/arch.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
// Activates the hardware (HW) way to flush denormals (see [1]) to zero as they
|
||||
// can very seriously impact performance. At destruction time restores the
|
||||
// denormals handling state read by the ctor; hence, supports nested calls.
|
||||
// Equals a no-op if the architecture is not x86 or ARM or if the compiler is
|
||||
// not CLANG.
|
||||
// [1] https://en.wikipedia.org/wiki/Denormal_number
|
||||
//
|
||||
// Example usage:
|
||||
//
|
||||
// void Foo() {
|
||||
// DenormalDisabler d;
|
||||
// ...
|
||||
// }
|
||||
class DenormalDisabler {
|
||||
public:
|
||||
// Ctor. If `enabled` is true and architecture and compiler are supported,
|
||||
// stores the HW settings for denormals, disables denormals and sets
|
||||
// `disabling_activated_` to true. Otherwise, only sets `disabling_activated_`
|
||||
// to false.
|
||||
explicit DenormalDisabler(bool enabled);
|
||||
DenormalDisabler(const DenormalDisabler&) = delete;
|
||||
DenormalDisabler& operator=(const DenormalDisabler&) = delete;
|
||||
// Dtor. If `disabling_activated_` is true, restores the denormals HW settings
|
||||
// read by the ctor before denormals were disabled. Otherwise it's a no-op.
|
||||
~DenormalDisabler();
|
||||
|
||||
// Returns true if architecture and compiler are supported.
|
||||
static bool IsSupported();
|
||||
|
||||
private:
|
||||
const int status_word_;
|
||||
const bool disabling_activated_;
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // SYSTEM_WRAPPERS_INCLUDE_DENORMAL_DISABLER_H_
|
||||
@ -13,6 +13,9 @@
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "rtc_base/containers/flat_set.h"
|
||||
|
||||
// Field trials allow webrtc clients (such as Chrome) to turn on feature code
|
||||
// in binaries out in the field and gather information with that.
|
||||
//
|
||||
@ -24,7 +27,7 @@
|
||||
// WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT (if GN is used this can be achieved
|
||||
// by setting the GN arg rtc_exclude_field_trial_default to true).
|
||||
// 2. Provide an implementation of:
|
||||
// std::string webrtc::field_trial::FindFullName(const std::string& trial).
|
||||
// std::string webrtc::field_trial::FindFullName(absl::string_view trial).
|
||||
//
|
||||
// They are designed to wire up directly to chrome field trials and to speed up
|
||||
// developers by reducing the need to wire APIs to control whether a feature is
|
||||
@ -61,18 +64,18 @@ namespace field_trial {
|
||||
// if the trial does not exists.
|
||||
//
|
||||
// Note: To keep things tidy append all the trial names with WebRTC.
|
||||
std::string FindFullName(const std::string& name);
|
||||
std::string FindFullName(absl::string_view name);
|
||||
|
||||
// Convenience method, returns true iff FindFullName(name) return a string that
|
||||
// starts with "Enabled".
|
||||
// TODO(tommi): Make sure all implementations support this.
|
||||
inline bool IsEnabled(const char* name) {
|
||||
inline bool IsEnabled(absl::string_view name) {
|
||||
return FindFullName(name).find("Enabled") == 0;
|
||||
}
|
||||
|
||||
// Convenience method, returns true iff FindFullName(name) return a string that
|
||||
// starts with "Disabled".
|
||||
inline bool IsDisabled(const char* name) {
|
||||
inline bool IsDisabled(absl::string_view name) {
|
||||
return FindFullName(name).find("Disabled") == 0;
|
||||
}
|
||||
|
||||
@ -84,17 +87,28 @@ void InitFieldTrialsFromString(const char* trials_string);
|
||||
|
||||
const char* GetFieldTrialString();
|
||||
|
||||
#ifndef WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
// Validates the given field trial string.
|
||||
bool FieldTrialsStringIsValid(const char* trials_string);
|
||||
bool FieldTrialsStringIsValid(absl::string_view trials_string);
|
||||
|
||||
// Merges two field trial strings.
|
||||
//
|
||||
// If a key (trial) exists twice with conflicting values (groups), the value
|
||||
// in 'second' takes precedence.
|
||||
// Shall only be called with valid FieldTrial strings.
|
||||
std::string MergeFieldTrialsStrings(const char* first, const char* second);
|
||||
#endif // WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
std::string MergeFieldTrialsStrings(absl::string_view first,
|
||||
absl::string_view second);
|
||||
|
||||
// This helper allows to temporary "register" a field trial within the current
|
||||
// scope. This is only useful for tests that use the global field trial string,
|
||||
// otherwise you can use `webrtc::FieldTrialsRegistry`.
|
||||
//
|
||||
// If you want to isolate changes to the global field trial string itself within
|
||||
// the current scope you should use `webrtc::test::ScopedFieldTrials`.
|
||||
class FieldTrialsAllowedInScopeForTesting {
|
||||
public:
|
||||
explicit FieldTrialsAllowedInScopeForTesting(flat_set<std::string> keys);
|
||||
~FieldTrialsAllowedInScopeForTesting();
|
||||
};
|
||||
|
||||
} // namespace field_trial
|
||||
} // namespace webrtc
|
||||
|
||||
@ -13,12 +13,14 @@
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "rtc_base/atomic_ops.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/string_utils.h"
|
||||
|
||||
#if defined(RTC_DISABLE_METRICS)
|
||||
#define RTC_METRICS_ENABLED 0
|
||||
@ -76,12 +78,12 @@ void NoOp(const Ts&...) {}
|
||||
// by setting the GN arg rtc_exclude_metrics_default to true).
|
||||
// 2. Provide implementations of:
|
||||
// Histogram* webrtc::metrics::HistogramFactoryGetCounts(
|
||||
// const std::string& name, int sample, int min, int max,
|
||||
// absl::string_view name, int sample, int min, int max,
|
||||
// int bucket_count);
|
||||
// Histogram* webrtc::metrics::HistogramFactoryGetEnumeration(
|
||||
// const std::string& name, int sample, int boundary);
|
||||
// absl::string_view name, int sample, int boundary);
|
||||
// void webrtc::metrics::HistogramAdd(
|
||||
// Histogram* histogram_pointer, const std::string& name, int sample);
|
||||
// Histogram* histogram_pointer, absl::string_view name, int sample);
|
||||
//
|
||||
// Example usage:
|
||||
//
|
||||
@ -163,7 +165,7 @@ void NoOp(const Ts&...) {}
|
||||
RTC_HISTOGRAM_ENUMERATION_SPARSE(name, sample, 2)
|
||||
|
||||
// Histogram for enumerators (evenly spaced buckets).
|
||||
// |boundary| should be above the max enumerator sample.
|
||||
// `boundary` should be above the max enumerator sample.
|
||||
//
|
||||
// TODO(qingsi): Refactor the default implementation given by RtcHistogram,
|
||||
// which is already sparse, and remove the boundary argument from the macro.
|
||||
@ -181,33 +183,29 @@ void NoOp(const Ts&...) {}
|
||||
RTC_HISTOGRAM_ENUMERATION(name, sample, 2)
|
||||
|
||||
// Histogram for enumerators (evenly spaced buckets).
|
||||
// |boundary| should be above the max enumerator sample.
|
||||
// `boundary` should be above the max enumerator sample.
|
||||
#define RTC_HISTOGRAM_ENUMERATION(name, sample, boundary) \
|
||||
RTC_HISTOGRAM_COMMON_BLOCK_SLOW( \
|
||||
name, sample, \
|
||||
webrtc::metrics::HistogramFactoryGetEnumeration(name, boundary))
|
||||
|
||||
// The name of the histogram should not vary.
|
||||
// TODO(asapersson): Consider changing string to const char*.
|
||||
#define RTC_HISTOGRAM_COMMON_BLOCK(constant_name, sample, \
|
||||
factory_get_invocation) \
|
||||
do { \
|
||||
static webrtc::metrics::Histogram* atomic_histogram_pointer = nullptr; \
|
||||
webrtc::metrics::Histogram* histogram_pointer = \
|
||||
rtc::AtomicOps::AcquireLoadPtr(&atomic_histogram_pointer); \
|
||||
if (!histogram_pointer) { \
|
||||
histogram_pointer = factory_get_invocation; \
|
||||
webrtc::metrics::Histogram* prev_pointer = \
|
||||
rtc::AtomicOps::CompareAndSwapPtr( \
|
||||
&atomic_histogram_pointer, \
|
||||
static_cast<webrtc::metrics::Histogram*>(nullptr), \
|
||||
histogram_pointer); \
|
||||
RTC_DCHECK(prev_pointer == nullptr || \
|
||||
prev_pointer == histogram_pointer); \
|
||||
} \
|
||||
if (histogram_pointer) { \
|
||||
webrtc::metrics::HistogramAdd(histogram_pointer, sample); \
|
||||
} \
|
||||
#define RTC_HISTOGRAM_COMMON_BLOCK(constant_name, sample, \
|
||||
factory_get_invocation) \
|
||||
do { \
|
||||
static std::atomic<webrtc::metrics::Histogram*> atomic_histogram_pointer( \
|
||||
nullptr); \
|
||||
webrtc::metrics::Histogram* histogram_pointer = \
|
||||
atomic_histogram_pointer.load(std::memory_order_acquire); \
|
||||
if (!histogram_pointer) { \
|
||||
histogram_pointer = factory_get_invocation; \
|
||||
webrtc::metrics::Histogram* null_histogram = nullptr; \
|
||||
atomic_histogram_pointer.compare_exchange_strong(null_histogram, \
|
||||
histogram_pointer); \
|
||||
} \
|
||||
if (histogram_pointer) { \
|
||||
webrtc::metrics::HistogramAdd(histogram_pointer, sample); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// The histogram is constructed/found for each call.
|
||||
@ -223,7 +221,7 @@ void NoOp(const Ts&...) {}
|
||||
// Helper macros.
|
||||
// Macros for calling a histogram with varying name (e.g. when using a metric
|
||||
// in different modes such as real-time vs screenshare). Fast, because pointer
|
||||
// is cached. |index| should be different for different names. Allowed |index|
|
||||
// is cached. `index` should be different for different names. Allowed `index`
|
||||
// values are 0, 1, and 2.
|
||||
#define RTC_HISTOGRAMS_COUNTS_100(index, name, sample) \
|
||||
RTC_HISTOGRAMS_COMMON(index, name, sample, \
|
||||
@ -270,7 +268,7 @@ void NoOp(const Ts&...) {}
|
||||
macro_invocation; \
|
||||
break; \
|
||||
default: \
|
||||
RTC_NOTREACHED(); \
|
||||
RTC_DCHECK_NOTREACHED(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
@ -363,7 +361,7 @@ namespace webrtc {
|
||||
namespace metrics {
|
||||
|
||||
// Time that should have elapsed for stats that are gathered once per call.
|
||||
enum { kMinRunTimeInSeconds = 10 };
|
||||
constexpr int kMinRunTimeInSeconds = 10;
|
||||
|
||||
class Histogram;
|
||||
|
||||
@ -371,32 +369,31 @@ class Histogram;
|
||||
// histogram).
|
||||
|
||||
// Get histogram for counters.
|
||||
Histogram* HistogramFactoryGetCounts(const std::string& name,
|
||||
Histogram* HistogramFactoryGetCounts(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
int bucket_count);
|
||||
|
||||
// Get histogram for counters with linear bucket spacing.
|
||||
Histogram* HistogramFactoryGetCountsLinear(const std::string& name,
|
||||
Histogram* HistogramFactoryGetCountsLinear(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
int bucket_count);
|
||||
|
||||
// Get histogram for enumerators.
|
||||
// |boundary| should be above the max enumerator sample.
|
||||
Histogram* HistogramFactoryGetEnumeration(const std::string& name,
|
||||
int boundary);
|
||||
// `boundary` should be above the max enumerator sample.
|
||||
Histogram* HistogramFactoryGetEnumeration(absl::string_view name, int boundary);
|
||||
|
||||
// Get sparse histogram for enumerators.
|
||||
// |boundary| should be above the max enumerator sample.
|
||||
Histogram* SparseHistogramFactoryGetEnumeration(const std::string& name,
|
||||
// `boundary` should be above the max enumerator sample.
|
||||
Histogram* SparseHistogramFactoryGetEnumeration(absl::string_view name,
|
||||
int boundary);
|
||||
|
||||
// Function for adding a |sample| to a histogram.
|
||||
// Function for adding a `sample` to a histogram.
|
||||
void HistogramAdd(Histogram* histogram_pointer, int sample);
|
||||
|
||||
struct SampleInfo {
|
||||
SampleInfo(const std::string& name, int min, int max, size_t bucket_count);
|
||||
SampleInfo(absl::string_view name, int min, int max, size_t bucket_count);
|
||||
~SampleInfo();
|
||||
|
||||
const std::string name;
|
||||
@ -412,25 +409,26 @@ void Enable();
|
||||
|
||||
// Gets histograms and clears all samples.
|
||||
void GetAndReset(
|
||||
std::map<std::string, std::unique_ptr<SampleInfo>>* histograms);
|
||||
std::map<std::string, std::unique_ptr<SampleInfo>, rtc::AbslStringViewCmp>*
|
||||
histograms);
|
||||
|
||||
// Functions below are mainly for testing.
|
||||
|
||||
// Clears all samples.
|
||||
void Reset();
|
||||
|
||||
// Returns the number of times the |sample| has been added to the histogram.
|
||||
int NumEvents(const std::string& name, int sample);
|
||||
// Returns the number of times the `sample` has been added to the histogram.
|
||||
int NumEvents(absl::string_view name, int sample);
|
||||
|
||||
// Returns the total number of added samples to the histogram.
|
||||
int NumSamples(const std::string& name);
|
||||
int NumSamples(absl::string_view name);
|
||||
|
||||
// Returns the minimum sample value (or -1 if the histogram has no samples).
|
||||
int MinSample(const std::string& name);
|
||||
int MinSample(absl::string_view name);
|
||||
|
||||
// Returns a map with keys the samples with at least one event and values the
|
||||
// number of events for that sample.
|
||||
std::map<int, int> Samples(const std::string& name);
|
||||
std::map<int, int> Samples(absl::string_view name);
|
||||
|
||||
} // namespace metrics
|
||||
} // namespace webrtc
|
||||
|
||||
@ -62,10 +62,10 @@ inline bool operator!=(const NtpTime& n1, const NtpTime& n2) {
|
||||
return !(n1 == n2);
|
||||
}
|
||||
|
||||
// Converts |int64_t| milliseconds to Q32.32-formatted fixed-point seconds.
|
||||
// Converts `int64_t` milliseconds to Q32.32-formatted fixed-point seconds.
|
||||
// Performs clamping if the result overflows or underflows.
|
||||
inline int64_t Int64MsToQ32x32(int64_t milliseconds) {
|
||||
// TODO(bugs.webrtc.org/10893): Change to use |rtc::saturated_cast| once the
|
||||
// TODO(bugs.webrtc.org/10893): Change to use `rtc::saturated_cast` once the
|
||||
// bug has been fixed.
|
||||
double result =
|
||||
std::round(milliseconds * (NtpTime::kFractionsPerSecond / 1000.0));
|
||||
@ -85,10 +85,10 @@ inline int64_t Int64MsToQ32x32(int64_t milliseconds) {
|
||||
return rtc::dchecked_cast<int64_t>(result);
|
||||
}
|
||||
|
||||
// Converts |int64_t| milliseconds to UQ32.32-formatted fixed-point seconds.
|
||||
// Converts `int64_t` milliseconds to UQ32.32-formatted fixed-point seconds.
|
||||
// Performs clamping if the result overflows or underflows.
|
||||
inline uint64_t Int64MsToUQ32x32(int64_t milliseconds) {
|
||||
// TODO(bugs.webrtc.org/10893): Change to use |rtc::saturated_cast| once the
|
||||
// TODO(bugs.webrtc.org/10893): Change to use `rtc::saturated_cast` once the
|
||||
// bug has been fixed.
|
||||
double result =
|
||||
std::round(milliseconds * (NtpTime::kFractionsPerSecond / 1000.0));
|
||||
@ -108,13 +108,13 @@ inline uint64_t Int64MsToUQ32x32(int64_t milliseconds) {
|
||||
return rtc::dchecked_cast<uint64_t>(result);
|
||||
}
|
||||
|
||||
// Converts Q32.32-formatted fixed-point seconds to |int64_t| milliseconds.
|
||||
// Converts Q32.32-formatted fixed-point seconds to `int64_t` milliseconds.
|
||||
inline int64_t Q32x32ToInt64Ms(int64_t q32x32) {
|
||||
return rtc::dchecked_cast<int64_t>(
|
||||
std::round(q32x32 * (1000.0 / NtpTime::kFractionsPerSecond)));
|
||||
}
|
||||
|
||||
// Converts UQ32.32-formatted fixed-point seconds to |int64_t| milliseconds.
|
||||
// Converts UQ32.32-formatted fixed-point seconds to `int64_t` milliseconds.
|
||||
inline int64_t UQ32x32ToInt64Ms(uint64_t q32x32) {
|
||||
return rtc::dchecked_cast<int64_t>(
|
||||
std::round(q32x32 * (1000.0 / NtpTime::kFractionsPerSecond)));
|
||||
|
||||
@ -18,60 +18,51 @@
|
||||
#include "absl/types/optional.h"
|
||||
#include "modules/include/module_common_types_public.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/numerics/moving_median_filter.h"
|
||||
#include "system_wrappers/include/ntp_time.h"
|
||||
|
||||
namespace webrtc {
|
||||
// Class for converting an RTP timestamp to the NTP domain in milliseconds.
|
||||
|
||||
// Converts an RTP timestamp to the NTP domain.
|
||||
// The class needs to be trained with (at least 2) RTP/NTP timestamp pairs from
|
||||
// RTCP sender reports before the convertion can be done.
|
||||
class RtpToNtpEstimator {
|
||||
public:
|
||||
RtpToNtpEstimator();
|
||||
~RtpToNtpEstimator();
|
||||
static constexpr int kMaxInvalidSamples = 3;
|
||||
|
||||
RtpToNtpEstimator() = default;
|
||||
RtpToNtpEstimator(const RtpToNtpEstimator&) = delete;
|
||||
RtpToNtpEstimator& operator=(const RtpToNtpEstimator&) = delete;
|
||||
~RtpToNtpEstimator() = default;
|
||||
|
||||
enum UpdateResult { kInvalidMeasurement, kSameMeasurement, kNewMeasurement };
|
||||
// Updates measurements with RTP/NTP timestamp pair from a RTCP sender report.
|
||||
UpdateResult UpdateMeasurements(NtpTime ntp, uint32_t rtp_timestamp);
|
||||
|
||||
// Converts an RTP timestamp to the NTP domain.
|
||||
// Returns invalid NtpTime (i.e. NtpTime(0)) on failure.
|
||||
NtpTime Estimate(uint32_t rtp_timestamp) const;
|
||||
|
||||
// Returns estimated rtp_timestamp frequency, or 0 on failure.
|
||||
double EstimatedFrequencyKhz() const;
|
||||
|
||||
private:
|
||||
// Estimated parameters from RTP and NTP timestamp pairs in `measurements_`.
|
||||
// Defines linear estimation: NtpTime (in units of 1s/2^32) =
|
||||
// `Parameters::slope` * rtp_timestamp + `Parameters::offset`.
|
||||
struct Parameters {
|
||||
double slope;
|
||||
double offset;
|
||||
};
|
||||
|
||||
// RTP and NTP timestamp pair from a RTCP SR report.
|
||||
struct RtcpMeasurement {
|
||||
RtcpMeasurement(uint32_t ntp_secs,
|
||||
uint32_t ntp_frac,
|
||||
int64_t unwrapped_timestamp);
|
||||
bool IsEqual(const RtcpMeasurement& other) const;
|
||||
|
||||
NtpTime ntp_time;
|
||||
int64_t unwrapped_rtp_timestamp;
|
||||
};
|
||||
|
||||
// Estimated parameters from RTP and NTP timestamp pairs in |measurements_|.
|
||||
struct Parameters {
|
||||
Parameters() : frequency_khz(0.0), offset_ms(0.0) {}
|
||||
|
||||
Parameters(double frequency_khz, double offset_ms)
|
||||
: frequency_khz(frequency_khz), offset_ms(offset_ms) {}
|
||||
|
||||
double frequency_khz;
|
||||
double offset_ms;
|
||||
};
|
||||
|
||||
// Updates measurements with RTP/NTP timestamp pair from a RTCP sender report.
|
||||
// |new_rtcp_sr| is set to true if a new report is added.
|
||||
bool UpdateMeasurements(uint32_t ntp_secs,
|
||||
uint32_t ntp_frac,
|
||||
uint32_t rtp_timestamp,
|
||||
bool* new_rtcp_sr);
|
||||
|
||||
// Converts an RTP timestamp to the NTP domain in milliseconds.
|
||||
// Returns true on success, false otherwise.
|
||||
bool Estimate(int64_t rtp_timestamp, int64_t* ntp_timestamp_ms) const;
|
||||
|
||||
// Returns estimated rtp to ntp linear transform parameters.
|
||||
const absl::optional<Parameters> params() const;
|
||||
|
||||
static const int kMaxInvalidSamples = 3;
|
||||
|
||||
private:
|
||||
void UpdateParameters();
|
||||
|
||||
int consecutive_invalid_samples_;
|
||||
int consecutive_invalid_samples_ = 0;
|
||||
std::list<RtcpMeasurement> measurements_;
|
||||
absl::optional<Parameters> params_;
|
||||
mutable TimestampUnwrapper unwrapper_;
|
||||
|
||||
6
system_wrappers/source/DEPS
Normal file
6
system_wrappers/source/DEPS
Normal file
@ -0,0 +1,6 @@
|
||||
specific_include_rules = {
|
||||
# TODO(bugs.webrtc.org/10335): Remove rule when global string is removed.
|
||||
"field_trial\.cc": [
|
||||
"+experiments/registered_field_trials.h",
|
||||
],
|
||||
}
|
||||
@ -10,259 +10,78 @@
|
||||
|
||||
#include "system_wrappers/include/clock.h"
|
||||
|
||||
#if defined(WEBRTC_WIN)
|
||||
|
||||
// Windows needs to be included before mmsystem.h
|
||||
#include "rtc_base/win32.h"
|
||||
|
||||
#include <mmsystem.h>
|
||||
|
||||
|
||||
#elif defined(WEBRTC_POSIX)
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <time.h>
|
||||
|
||||
#endif // defined(WEBRTC_POSIX)
|
||||
|
||||
#include "rtc_base/synchronization/mutex.h"
|
||||
#include "rtc_base/synchronization/rw_lock_wrapper.h"
|
||||
#include "rtc_base/time_utils.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
int64_t NtpOffsetUsCalledOnce() {
|
||||
constexpr int64_t kNtpJan1970Sec = 2208988800;
|
||||
int64_t clock_time = rtc::TimeMicros();
|
||||
int64_t utc_time = rtc::TimeUTCMicros();
|
||||
return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMicrosecsPerSec;
|
||||
}
|
||||
|
||||
NtpTime TimeMicrosToNtp(int64_t time_us) {
|
||||
static int64_t ntp_offset_us = NtpOffsetUsCalledOnce();
|
||||
|
||||
int64_t time_ntp_us = time_us + ntp_offset_us;
|
||||
RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported.
|
||||
|
||||
// Convert seconds to uint32 through uint64 for a well-defined cast.
|
||||
// A wrap around, which will happen in 2036, is expected for NTP time.
|
||||
uint32_t ntp_seconds =
|
||||
static_cast<uint64_t>(time_ntp_us / rtc::kNumMicrosecsPerSec);
|
||||
|
||||
// Scale fractions of the second to NTP resolution.
|
||||
constexpr int64_t kNtpFractionsInSecond = 1LL << 32;
|
||||
int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec;
|
||||
uint32_t ntp_fractions =
|
||||
us_fractions * kNtpFractionsInSecond / rtc::kNumMicrosecsPerSec;
|
||||
|
||||
return NtpTime(ntp_seconds, ntp_fractions);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
class RealTimeClock : public Clock {
|
||||
public:
|
||||
RealTimeClock() = default;
|
||||
|
||||
Timestamp CurrentTime() override {
|
||||
return Timestamp::Micros(rtc::TimeMicros());
|
||||
}
|
||||
// Return a timestamp in milliseconds relative to some arbitrary source; the
|
||||
// source is fixed for this clock.
|
||||
int64_t TimeInMilliseconds() override { return rtc::TimeMillis(); }
|
||||
|
||||
// Return a timestamp in microseconds relative to some arbitrary source; the
|
||||
// source is fixed for this clock.
|
||||
int64_t TimeInMicroseconds() override { return rtc::TimeMicros(); }
|
||||
|
||||
// Retrieve an NTP absolute timestamp.
|
||||
NtpTime CurrentNtpTime() override {
|
||||
timeval tv = CurrentTimeVal();
|
||||
double microseconds_in_seconds;
|
||||
uint32_t seconds;
|
||||
Adjust(tv, &seconds, µseconds_in_seconds);
|
||||
uint32_t fractions = static_cast<uint32_t>(
|
||||
microseconds_in_seconds * kMagicNtpFractionalUnit + 0.5);
|
||||
return NtpTime(seconds, fractions);
|
||||
}
|
||||
|
||||
// Retrieve an NTP absolute timestamp in milliseconds.
|
||||
int64_t CurrentNtpInMilliseconds() override {
|
||||
timeval tv = CurrentTimeVal();
|
||||
uint32_t seconds;
|
||||
double microseconds_in_seconds;
|
||||
Adjust(tv, &seconds, µseconds_in_seconds);
|
||||
return 1000 * static_cast<int64_t>(seconds) +
|
||||
static_cast<int64_t>(1000.0 * microseconds_in_seconds + 0.5);
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual timeval CurrentTimeVal() = 0;
|
||||
|
||||
static void Adjust(const timeval& tv,
|
||||
uint32_t* adjusted_s,
|
||||
double* adjusted_us_in_s) {
|
||||
*adjusted_s = tv.tv_sec + kNtpJan1970;
|
||||
*adjusted_us_in_s = tv.tv_usec / 1e6;
|
||||
|
||||
if (*adjusted_us_in_s >= 1) {
|
||||
*adjusted_us_in_s -= 1;
|
||||
++*adjusted_s;
|
||||
} else if (*adjusted_us_in_s < -1) {
|
||||
*adjusted_us_in_s += 1;
|
||||
--*adjusted_s;
|
||||
}
|
||||
NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override {
|
||||
return TimeMicrosToNtp(timestamp.us());
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(WINUWP)
|
||||
class WinUwpRealTimeClock final : public RealTimeClock {
|
||||
public:
|
||||
WinUwpRealTimeClock() = default;
|
||||
~WinUwpRealTimeClock() override {}
|
||||
|
||||
protected:
|
||||
timeval CurrentTimeVal() override {
|
||||
// The rtc::SystemTimeNanos() method is already time offset from a base
|
||||
// epoch value and might as be synchronized against an NTP time server as
|
||||
// an added bonus.
|
||||
auto nanos = rtc::SystemTimeNanos();
|
||||
|
||||
struct timeval tv;
|
||||
|
||||
tv.tv_sec = rtc::dchecked_cast<long>(nanos / 1000000000);
|
||||
tv.tv_usec = rtc::dchecked_cast<long>(nanos / 1000);
|
||||
|
||||
return tv;
|
||||
}
|
||||
};
|
||||
|
||||
#elif defined(WEBRTC_WIN)
|
||||
// TODO(pbos): Consider modifying the implementation to synchronize itself
|
||||
// against system time (update ref_point_) periodically to
|
||||
// prevent clock drift.
|
||||
class WindowsRealTimeClock : public RealTimeClock {
|
||||
public:
|
||||
WindowsRealTimeClock()
|
||||
: last_time_ms_(0),
|
||||
num_timer_wraps_(0),
|
||||
ref_point_(GetSystemReferencePoint()) {}
|
||||
|
||||
~WindowsRealTimeClock() override {}
|
||||
|
||||
protected:
|
||||
struct ReferencePoint {
|
||||
FILETIME file_time;
|
||||
LARGE_INTEGER counter_ms;
|
||||
};
|
||||
|
||||
timeval CurrentTimeVal() override {
|
||||
const uint64_t FILETIME_1970 = 0x019db1ded53e8000;
|
||||
|
||||
FILETIME StartTime;
|
||||
uint64_t Time;
|
||||
struct timeval tv;
|
||||
|
||||
// We can't use query performance counter since they can change depending on
|
||||
// speed stepping.
|
||||
GetTime(&StartTime);
|
||||
|
||||
Time = (((uint64_t)StartTime.dwHighDateTime) << 32) +
|
||||
(uint64_t)StartTime.dwLowDateTime;
|
||||
|
||||
// Convert the hecto-nano second time to tv format.
|
||||
Time -= FILETIME_1970;
|
||||
|
||||
tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000);
|
||||
tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10);
|
||||
return tv;
|
||||
}
|
||||
|
||||
void GetTime(FILETIME* current_time) {
|
||||
DWORD t;
|
||||
LARGE_INTEGER elapsed_ms;
|
||||
{
|
||||
MutexLock lock(&mutex_);
|
||||
// time MUST be fetched inside the critical section to avoid non-monotonic
|
||||
// last_time_ms_ values that'll register as incorrect wraparounds due to
|
||||
// concurrent calls to GetTime.
|
||||
t = timeGetTime();
|
||||
if (t < last_time_ms_)
|
||||
num_timer_wraps_++;
|
||||
last_time_ms_ = t;
|
||||
elapsed_ms.HighPart = num_timer_wraps_;
|
||||
}
|
||||
elapsed_ms.LowPart = t;
|
||||
elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart;
|
||||
|
||||
// Translate to 100-nanoseconds intervals (FILETIME resolution)
|
||||
// and add to reference FILETIME to get current FILETIME.
|
||||
ULARGE_INTEGER filetime_ref_as_ul;
|
||||
filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime;
|
||||
filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime;
|
||||
filetime_ref_as_ul.QuadPart +=
|
||||
static_cast<ULONGLONG>((elapsed_ms.QuadPart) * 1000 * 10);
|
||||
|
||||
// Copy to result
|
||||
current_time->dwHighDateTime = filetime_ref_as_ul.HighPart;
|
||||
current_time->dwLowDateTime = filetime_ref_as_ul.LowPart;
|
||||
}
|
||||
|
||||
static ReferencePoint GetSystemReferencePoint() {
|
||||
ReferencePoint ref = {};
|
||||
FILETIME ft0 = {};
|
||||
FILETIME ft1 = {};
|
||||
// Spin waiting for a change in system time. As soon as this change happens,
|
||||
// get the matching call for timeGetTime() as soon as possible. This is
|
||||
// assumed to be the most accurate offset that we can get between
|
||||
// timeGetTime() and system time.
|
||||
|
||||
// Set timer accuracy to 1 ms.
|
||||
timeBeginPeriod(1);
|
||||
GetSystemTimeAsFileTime(&ft0);
|
||||
do {
|
||||
GetSystemTimeAsFileTime(&ft1);
|
||||
|
||||
ref.counter_ms.QuadPart = timeGetTime();
|
||||
Sleep(0);
|
||||
} while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&
|
||||
(ft0.dwLowDateTime == ft1.dwLowDateTime));
|
||||
ref.file_time = ft1;
|
||||
timeEndPeriod(1);
|
||||
return ref;
|
||||
}
|
||||
|
||||
Mutex mutex_;
|
||||
DWORD last_time_ms_;
|
||||
LONG num_timer_wraps_;
|
||||
const ReferencePoint ref_point_;
|
||||
};
|
||||
|
||||
#elif defined(WEBRTC_POSIX)
|
||||
class UnixRealTimeClock : public RealTimeClock {
|
||||
public:
|
||||
UnixRealTimeClock() {}
|
||||
|
||||
~UnixRealTimeClock() override {}
|
||||
|
||||
protected:
|
||||
timeval CurrentTimeVal() override {
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
tz.tz_minuteswest = 0;
|
||||
tz.tz_dsttime = 0;
|
||||
gettimeofday(&tv, &tz);
|
||||
return tv;
|
||||
}
|
||||
};
|
||||
#endif // defined(WEBRTC_POSIX)
|
||||
|
||||
Clock* Clock::GetRealTimeClock() {
|
||||
#if defined(WINUWP)
|
||||
static Clock* const clock = new WinUwpRealTimeClock();
|
||||
#elif defined(WEBRTC_WIN)
|
||||
static Clock* const clock = new WindowsRealTimeClock();
|
||||
#elif defined(WEBRTC_POSIX)
|
||||
static Clock* const clock = new UnixRealTimeClock();
|
||||
#else
|
||||
static Clock* const clock = nullptr;
|
||||
#endif
|
||||
static Clock* const clock = new RealTimeClock();
|
||||
return clock;
|
||||
}
|
||||
|
||||
SimulatedClock::SimulatedClock(int64_t initial_time_us)
|
||||
: SimulatedClock(Timestamp::Micros(initial_time_us)) {}
|
||||
: time_us_(initial_time_us) {}
|
||||
|
||||
SimulatedClock::SimulatedClock(Timestamp initial_time)
|
||||
: time_(initial_time), lock_(RWLockWrapper::CreateRWLock()) {}
|
||||
: SimulatedClock(initial_time.us()) {}
|
||||
|
||||
SimulatedClock::~SimulatedClock() {}
|
||||
|
||||
Timestamp SimulatedClock::CurrentTime() {
|
||||
ReadLockScoped synchronize(*lock_);
|
||||
return time_;
|
||||
return Timestamp::Micros(time_us_.load(std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
NtpTime SimulatedClock::CurrentNtpTime() {
|
||||
int64_t now_ms = TimeInMilliseconds();
|
||||
uint32_t seconds = (now_ms / 1000) + kNtpJan1970;
|
||||
uint32_t fractions =
|
||||
static_cast<uint32_t>((now_ms % 1000) * kMagicNtpFractionalUnit / 1000);
|
||||
NtpTime SimulatedClock::ConvertTimestampToNtpTime(Timestamp timestamp) {
|
||||
int64_t now_us = timestamp.us();
|
||||
uint32_t seconds = (now_us / 1'000'000) + kNtpJan1970;
|
||||
uint32_t fractions = static_cast<uint32_t>(
|
||||
(now_us % 1'000'000) * kMagicNtpFractionalUnit / 1'000'000);
|
||||
return NtpTime(seconds, fractions);
|
||||
}
|
||||
|
||||
int64_t SimulatedClock::CurrentNtpInMilliseconds() {
|
||||
return TimeInMilliseconds() + 1000 * static_cast<int64_t>(kNtpJan1970);
|
||||
}
|
||||
|
||||
void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) {
|
||||
AdvanceTime(TimeDelta::Millis(milliseconds));
|
||||
}
|
||||
@ -271,9 +90,13 @@ void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) {
|
||||
AdvanceTime(TimeDelta::Micros(microseconds));
|
||||
}
|
||||
|
||||
// TODO(bugs.webrtc.org(12102): It's desirable to let a single thread own
|
||||
// advancement of the clock. We could then replace this read-modify-write
|
||||
// operation with just a thread checker. But currently, that breaks a couple of
|
||||
// tests, in particular, RepeatingTaskTest.ClockIntegration and
|
||||
// CallStatsTest.LastProcessedRtt.
|
||||
void SimulatedClock::AdvanceTime(TimeDelta delta) {
|
||||
WriteLockScoped synchronize(*lock_);
|
||||
time_ += delta;
|
||||
time_us_.fetch_add(delta.us(), std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -12,11 +12,14 @@
|
||||
|
||||
#include "rtc_base/system/arch.h"
|
||||
#include "system_wrappers/include/cpu_features_wrapper.h"
|
||||
#include "system_wrappers/include/field_trial.h"
|
||||
|
||||
#if defined(WEBRTC_ARCH_X86_FAMILY) && defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
// No CPU feature is available => straight C path.
|
||||
int GetCPUInfoNoASM(CPUFeature feature) {
|
||||
(void)feature;
|
||||
@ -24,6 +27,22 @@ int GetCPUInfoNoASM(CPUFeature feature) {
|
||||
}
|
||||
|
||||
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||||
|
||||
#if defined(WEBRTC_ENABLE_AVX2)
|
||||
// xgetbv returns the value of an Intel Extended Control Register (XCR).
|
||||
// Currently only XCR0 is defined by Intel so `xcr` should always be zero.
|
||||
static uint64_t xgetbv(uint32_t xcr) {
|
||||
#if defined(_MSC_VER)
|
||||
return _xgetbv(xcr);
|
||||
#else
|
||||
uint32_t eax, edx;
|
||||
|
||||
__asm__ volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
|
||||
return (static_cast<uint64_t>(edx) << 32) | eax;
|
||||
#endif // _MSC_VER
|
||||
}
|
||||
#endif // WEBRTC_ENABLE_AVX2
|
||||
|
||||
#ifndef _MSC_VER
|
||||
// Intrinsic for "cpuid".
|
||||
#if defined(__pic__) && defined(__i386__)
|
||||
@ -41,7 +60,7 @@ static inline void __cpuid(int cpu_info[4], int info_type) {
|
||||
__asm__ volatile("cpuid\n"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
|
||||
"=d"(cpu_info[3])
|
||||
: "a"(info_type));
|
||||
: "a"(info_type), "c"(0));
|
||||
}
|
||||
#endif
|
||||
#endif // _MSC_VER
|
||||
@ -49,7 +68,7 @@ static inline void __cpuid(int cpu_info[4], int info_type) {
|
||||
|
||||
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||||
// Actual feature detection for x86.
|
||||
static int GetCPUInfo(CPUFeature feature) {
|
||||
int GetCPUInfo(CPUFeature feature) {
|
||||
int cpu_info[4];
|
||||
__cpuid(cpu_info, 1);
|
||||
if (feature == kSSE2) {
|
||||
@ -58,15 +77,40 @@ static int GetCPUInfo(CPUFeature feature) {
|
||||
if (feature == kSSE3) {
|
||||
return 0 != (cpu_info[2] & 0x00000001);
|
||||
}
|
||||
#if defined(WEBRTC_ENABLE_AVX2)
|
||||
if (feature == kAVX2 &&
|
||||
!webrtc::field_trial::IsEnabled("WebRTC-Avx2SupportKillSwitch")) {
|
||||
int cpu_info7[4];
|
||||
__cpuid(cpu_info7, 0);
|
||||
int num_ids = cpu_info7[0];
|
||||
if (num_ids < 7) {
|
||||
return 0;
|
||||
}
|
||||
// Interpret CPU feature information.
|
||||
__cpuid(cpu_info7, 7);
|
||||
|
||||
// AVX instructions can be used when
|
||||
// a) AVX are supported by the CPU,
|
||||
// b) XSAVE is supported by the CPU,
|
||||
// c) XSAVE is enabled by the kernel.
|
||||
// Compiling with MSVC and /arch:AVX2 surprisingly generates BMI2
|
||||
// instructions (see crbug.com/1315519).
|
||||
return (cpu_info[2] & 0x10000000) != 0 /* AVX */ &&
|
||||
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
|
||||
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
|
||||
(xgetbv(0) & 0x00000006) == 6 /* XSAVE enabled by kernel */ &&
|
||||
(cpu_info7[1] & 0x00000020) != 0 /* AVX2 */ &&
|
||||
(cpu_info7[1] & 0x00000100) != 0 /* BMI2 */;
|
||||
}
|
||||
#endif // WEBRTC_ENABLE_AVX2
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
// Default to straight C for other platforms.
|
||||
static int GetCPUInfo(CPUFeature feature) {
|
||||
int GetCPUInfo(CPUFeature feature) {
|
||||
(void)feature;
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
WebRtc_CPUInfo WebRtc_GetCPUInfo = GetCPUInfo;
|
||||
WebRtc_CPUInfo WebRtc_GetCPUInfoNoASM = GetCPUInfoNoASM;
|
||||
} // namespace webrtc
|
||||
|
||||
@ -10,6 +10,10 @@
|
||||
|
||||
#include <cpu-features.h>
|
||||
|
||||
uint64_t WebRtc_GetCPUFeaturesARM(void) {
|
||||
namespace webrtc {
|
||||
|
||||
uint64_t GetCPUFeaturesARM(void) {
|
||||
return android_getCpuFeatures();
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
@ -8,32 +8,39 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <features.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <features.h>
|
||||
#ifndef __GLIBC_PREREQ
|
||||
#define __GLIBC_PREREQ(a, b) 0
|
||||
|
||||
#ifdef __GLIBC_PREREQ
|
||||
#define WEBRTC_GLIBC_PREREQ(a, b) __GLIBC_PREREQ(a, b)
|
||||
#else
|
||||
#define WEBRTC_GLIBC_PREREQ(a, b) 0
|
||||
#endif
|
||||
#if __GLIBC_PREREQ(2, 16)
|
||||
|
||||
#if WEBRTC_GLIBC_PREREQ(2, 16)
|
||||
#include <sys/auxv.h>
|
||||
#else
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <errno.h>
|
||||
#include <fcntl.h>
|
||||
#include <link.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include "rtc_base/system/arch.h"
|
||||
#include "system_wrappers/include/cpu_features_wrapper.h"
|
||||
|
||||
#if defined(WEBRTC_ARCH_ARM_FAMILY)
|
||||
#include <asm/hwcap.h>
|
||||
|
||||
uint64_t WebRtc_GetCPUFeaturesARM(void) {
|
||||
namespace webrtc {
|
||||
|
||||
uint64_t GetCPUFeaturesARM(void) {
|
||||
uint64_t result = 0;
|
||||
int architecture = 0;
|
||||
unsigned long hwcap = 0;
|
||||
uint64_t hwcap = 0;
|
||||
const char* platform = NULL;
|
||||
#if __GLIBC_PREREQ(2, 16)
|
||||
#if WEBRTC_GLIBC_PREREQ(2, 16)
|
||||
hwcap = getauxval(AT_HWCAP);
|
||||
platform = (const char*)getauxval(AT_PLATFORM);
|
||||
#else
|
||||
@ -57,8 +64,9 @@ uint64_t WebRtc_GetCPUFeaturesARM(void) {
|
||||
}
|
||||
close(fd);
|
||||
}
|
||||
#endif // __GLIBC_PREREQ(2,16)
|
||||
#endif // WEBRTC_GLIBC_PREREQ(2, 16)
|
||||
#if defined(__aarch64__)
|
||||
(void)platform;
|
||||
architecture = 8;
|
||||
if ((hwcap & HWCAP_FP) != 0)
|
||||
result |= kCPUFeatureVFPv3;
|
||||
@ -84,4 +92,6 @@ uint64_t WebRtc_GetCPUFeaturesARM(void) {
|
||||
result |= kCPUFeatureLDREXSTREX;
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
#endif // WEBRTC_ARCH_ARM_FAMILY
|
||||
@ -32,7 +32,7 @@ static int DetectNumberOfCores() {
|
||||
number_of_cores = static_cast<int>(si.dwNumberOfProcessors);
|
||||
#elif defined(WEBRTC_LINUX) || defined(WEBRTC_ANDROID)
|
||||
number_of_cores = static_cast<int>(sysconf(_SC_NPROCESSORS_ONLN));
|
||||
if (number_of_cores < 0) {
|
||||
if (number_of_cores <= 0) {
|
||||
RTC_LOG(LS_ERROR) << "Failed to get number of cores";
|
||||
number_of_cores = 1;
|
||||
}
|
||||
|
||||
107
system_wrappers/source/denormal_disabler.cc
Normal file
107
system_wrappers/source/denormal_disabler.cc
Normal file
@ -0,0 +1,107 @@
|
||||
/*
|
||||
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "system_wrappers/include/denormal_disabler.h"
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
#if defined(WEBRTC_ARCH_X86_FAMILY) && defined(__clang__)
|
||||
#define WEBRTC_DENORMAL_DISABLER_X86_SUPPORTED
|
||||
#endif
|
||||
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_X86_SUPPORTED) || \
|
||||
defined(WEBRTC_ARCH_ARM_FAMILY)
|
||||
#define WEBRTC_DENORMAL_DISABLER_SUPPORTED
|
||||
#endif
|
||||
|
||||
constexpr int kUnspecifiedStatusWord = -1;
|
||||
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_SUPPORTED)
|
||||
|
||||
// Control register bit mask to disable denormals on the hardware.
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_X86_SUPPORTED)
|
||||
// On x86 two bits are used: flush-to-zero (FTZ) and denormals-are-zero (DAZ).
|
||||
constexpr int kDenormalBitMask = 0x8040;
|
||||
#elif defined(WEBRTC_ARCH_ARM_FAMILY)
|
||||
// On ARM one bit is used: flush-to-zero (FTZ).
|
||||
constexpr int kDenormalBitMask = 1 << 24;
|
||||
#endif
|
||||
|
||||
// Reads the relevant CPU control register and returns its value for supported
|
||||
// architectures and compilers. Otherwise returns `kUnspecifiedStatusWord`.
|
||||
int ReadStatusWord() {
|
||||
int result = kUnspecifiedStatusWord;
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_X86_SUPPORTED)
|
||||
asm volatile("stmxcsr %0" : "=m"(result));
|
||||
#elif defined(WEBRTC_ARCH_ARM_FAMILY) && defined(WEBRTC_ARCH_32_BITS)
|
||||
asm volatile("vmrs %[result], FPSCR" : [result] "=r"(result));
|
||||
#elif defined(WEBRTC_ARCH_ARM_FAMILY) && defined(WEBRTC_ARCH_64_BITS)
|
||||
asm volatile("mrs %x[result], FPCR" : [result] "=r"(result));
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
// Writes `status_word` in the relevant CPU control register if the architecture
|
||||
// and the compiler are supported.
|
||||
void SetStatusWord(int status_word) {
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_X86_SUPPORTED)
|
||||
asm volatile("ldmxcsr %0" : : "m"(status_word));
|
||||
#elif defined(WEBRTC_ARCH_ARM_FAMILY) && defined(WEBRTC_ARCH_32_BITS)
|
||||
asm volatile("vmsr FPSCR, %[src]" : : [src] "r"(status_word));
|
||||
#elif defined(WEBRTC_ARCH_ARM_FAMILY) && defined(WEBRTC_ARCH_64_BITS)
|
||||
asm volatile("msr FPCR, %x[src]" : : [src] "r"(status_word));
|
||||
#endif
|
||||
}
|
||||
|
||||
// Returns true if the status word indicates that denormals are enabled.
|
||||
constexpr bool DenormalsEnabled(int status_word) {
|
||||
return (status_word & kDenormalBitMask) != kDenormalBitMask;
|
||||
}
|
||||
|
||||
#endif // defined(WEBRTC_DENORMAL_DISABLER_SUPPORTED)
|
||||
|
||||
} // namespace
|
||||
|
||||
#if defined(WEBRTC_DENORMAL_DISABLER_SUPPORTED)
|
||||
DenormalDisabler::DenormalDisabler(bool enabled)
|
||||
: status_word_(enabled ? ReadStatusWord() : kUnspecifiedStatusWord),
|
||||
disabling_activated_(enabled && DenormalsEnabled(status_word_)) {
|
||||
if (disabling_activated_) {
|
||||
RTC_DCHECK_NE(status_word_, kUnspecifiedStatusWord);
|
||||
SetStatusWord(status_word_ | kDenormalBitMask);
|
||||
RTC_DCHECK(!DenormalsEnabled(ReadStatusWord()));
|
||||
}
|
||||
}
|
||||
|
||||
bool DenormalDisabler::IsSupported() {
|
||||
return true;
|
||||
}
|
||||
|
||||
DenormalDisabler::~DenormalDisabler() {
|
||||
if (disabling_activated_) {
|
||||
RTC_DCHECK_NE(status_word_, kUnspecifiedStatusWord);
|
||||
SetStatusWord(status_word_);
|
||||
}
|
||||
}
|
||||
#else
|
||||
DenormalDisabler::DenormalDisabler(bool enabled)
|
||||
: status_word_(kUnspecifiedStatusWord), disabling_activated_(false) {}
|
||||
|
||||
bool DenormalDisabler::IsSupported() {
|
||||
return false;
|
||||
}
|
||||
|
||||
DenormalDisabler::~DenormalDisabler() = default;
|
||||
#endif
|
||||
|
||||
} // namespace webrtc
|
||||
146
system_wrappers/source/denormal_disabler_unittest.cc
Normal file
146
system_wrappers/source/denormal_disabler_unittest.cc
Normal file
@ -0,0 +1,146 @@
|
||||
/*
|
||||
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "system_wrappers/include/denormal_disabler.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
constexpr float kSmallest = std::numeric_limits<float>::min();
|
||||
|
||||
// Float values such that, if used as divisors of `kSmallest`, the division
|
||||
// produces a denormal or zero depending on whether denormals are enabled.
|
||||
constexpr float kDenormalDivisors[] = {123.125f, 97.0f, 32.0f, 5.0f, 1.5f};
|
||||
|
||||
// Returns true if the result of `dividend` / `divisor` is a denormal.
|
||||
// `dividend` and `divisor` must not be denormals.
|
||||
bool DivisionIsDenormal(float dividend, float divisor) {
|
||||
RTC_DCHECK_GE(std::fabsf(dividend), kSmallest);
|
||||
RTC_DCHECK_GE(std::fabsf(divisor), kSmallest);
|
||||
volatile float division = dividend / divisor;
|
||||
return division != 0.0f && std::fabsf(division) < kSmallest;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
class DenormalDisablerParametrization : public ::testing::TestWithParam<bool> {
|
||||
};
|
||||
|
||||
// Checks that +inf and -inf are not zeroed regardless of whether
|
||||
// architecture and compiler are supported.
|
||||
TEST_P(DenormalDisablerParametrization, InfNotZeroed) {
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/GetParam());
|
||||
constexpr float kMax = std::numeric_limits<float>::max();
|
||||
for (float x : {-2.0f, 2.0f}) {
|
||||
SCOPED_TRACE(x);
|
||||
volatile float multiplication = kMax * x;
|
||||
EXPECT_TRUE(std::isinf(multiplication));
|
||||
}
|
||||
}
|
||||
|
||||
// Checks that a NaN is not zeroed regardless of whether architecture and
|
||||
// compiler are supported.
|
||||
TEST_P(DenormalDisablerParametrization, NanNotZeroed) {
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/GetParam());
|
||||
volatile float kNan = std::sqrt(-1.0f);
|
||||
EXPECT_TRUE(std::isnan(kNan));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(DenormalDisabler,
|
||||
DenormalDisablerParametrization,
|
||||
::testing::Values(false, true),
|
||||
[](const ::testing::TestParamInfo<bool>& info) {
|
||||
return info.param ? "enabled" : "disabled";
|
||||
});
|
||||
|
||||
// Checks that denormals are not zeroed if `DenormalDisabler` is disabled and
|
||||
// architecture and compiler are supported.
|
||||
TEST(DenormalDisabler, DoNotZeroDenormalsIfDisabled) {
|
||||
if (!DenormalDisabler::IsSupported()) {
|
||||
GTEST_SKIP() << "Unsupported platform.";
|
||||
}
|
||||
ASSERT_TRUE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]))
|
||||
<< "Precondition not met: denormals must be enabled.";
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/false);
|
||||
for (float x : kDenormalDivisors) {
|
||||
SCOPED_TRACE(x);
|
||||
EXPECT_TRUE(DivisionIsDenormal(-kSmallest, x));
|
||||
EXPECT_TRUE(DivisionIsDenormal(kSmallest, x));
|
||||
}
|
||||
}
|
||||
|
||||
// Checks that denormals are zeroed if `DenormalDisabler` is enabled if
|
||||
// architecture and compiler are supported.
|
||||
TEST(DenormalDisabler, ZeroDenormals) {
|
||||
if (!DenormalDisabler::IsSupported()) {
|
||||
GTEST_SKIP() << "Unsupported platform.";
|
||||
}
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/true);
|
||||
for (float x : kDenormalDivisors) {
|
||||
SCOPED_TRACE(x);
|
||||
EXPECT_FALSE(DivisionIsDenormal(-kSmallest, x));
|
||||
EXPECT_FALSE(DivisionIsDenormal(kSmallest, x));
|
||||
}
|
||||
}
|
||||
|
||||
// Checks that the `DenormalDisabler` dtor re-enables denormals if previously
|
||||
// enabled and architecture and compiler are supported.
|
||||
TEST(DenormalDisabler, RestoreDenormalsEnabled) {
|
||||
if (!DenormalDisabler::IsSupported()) {
|
||||
GTEST_SKIP() << "Unsupported platform.";
|
||||
}
|
||||
ASSERT_TRUE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]))
|
||||
<< "Precondition not met: denormals must be enabled.";
|
||||
{
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/true);
|
||||
ASSERT_FALSE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]));
|
||||
}
|
||||
EXPECT_TRUE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]));
|
||||
}
|
||||
|
||||
// Checks that the `DenormalDisabler` dtor keeps denormals disabled if
|
||||
// architecture and compiler are supported and if previously disabled - i.e.,
|
||||
// nested usage is supported.
|
||||
TEST(DenormalDisabler, ZeroDenormalsNested) {
|
||||
if (!DenormalDisabler::IsSupported()) {
|
||||
GTEST_SKIP() << "Unsupported platform.";
|
||||
}
|
||||
DenormalDisabler d1(/*enabled=*/true);
|
||||
ASSERT_FALSE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]));
|
||||
{
|
||||
DenormalDisabler d2(/*enabled=*/true);
|
||||
ASSERT_FALSE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]));
|
||||
}
|
||||
EXPECT_FALSE(DivisionIsDenormal(kSmallest, kDenormalDivisors[0]));
|
||||
}
|
||||
|
||||
// Checks that `DenormalDisabler` does not zero denormals if architecture and
|
||||
// compiler are not supported.
|
||||
TEST(DenormalDisabler, DoNotZeroDenormalsIfUnsupported) {
|
||||
if (DenormalDisabler::IsSupported()) {
|
||||
GTEST_SKIP() << "This test should only run on platforms without support "
|
||||
"for DenormalDisabler.";
|
||||
}
|
||||
DenormalDisabler denormal_disabler(/*enabled=*/true);
|
||||
for (float x : kDenormalDivisors) {
|
||||
SCOPED_TRACE(x);
|
||||
EXPECT_TRUE(DivisionIsDenormal(-kSmallest, x));
|
||||
EXPECT_TRUE(DivisionIsDenormal(kSmallest, x));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
@ -13,9 +13,13 @@
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "absl/algorithm/container.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "experiments/registered_field_trials.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/containers/flat_set.h"
|
||||
#include "rtc_base/logging.h"
|
||||
#include "rtc_base/string_encode.h"
|
||||
|
||||
@ -26,9 +30,15 @@ namespace field_trial {
|
||||
|
||||
static const char* trials_init_string = NULL;
|
||||
|
||||
#ifndef WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
namespace {
|
||||
|
||||
constexpr char kPersistentStringSeparator = '/';
|
||||
|
||||
flat_set<std::string>& TestKeys() {
|
||||
static auto* test_keys = new flat_set<std::string>();
|
||||
return *test_keys;
|
||||
}
|
||||
|
||||
// Validates the given field trial string.
|
||||
// E.g.:
|
||||
// "WebRTC-experimentFoo/Enabled/WebRTC-experimentBar/Enabled100kbps/"
|
||||
@ -68,9 +78,10 @@ bool FieldTrialsStringIsValidInternal(const absl::string_view trials) {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
bool FieldTrialsStringIsValid(const char* trials_string) {
|
||||
bool FieldTrialsStringIsValid(absl::string_view trials_string) {
|
||||
return FieldTrialsStringIsValidInternal(trials_string);
|
||||
}
|
||||
|
||||
@ -78,18 +89,19 @@ void InsertOrReplaceFieldTrialStringsInMap(
|
||||
std::map<std::string, std::string>* fieldtrial_map,
|
||||
const absl::string_view trials_string) {
|
||||
if (FieldTrialsStringIsValidInternal(trials_string)) {
|
||||
std::vector<std::string> tokens;
|
||||
rtc::split(std::string(trials_string), '/', &tokens);
|
||||
std::vector<absl::string_view> tokens = rtc::split(trials_string, '/');
|
||||
// Skip last token which is empty due to trailing '/'.
|
||||
for (size_t idx = 0; idx < tokens.size() - 1; idx += 2) {
|
||||
(*fieldtrial_map)[tokens[idx]] = tokens[idx + 1];
|
||||
(*fieldtrial_map)[std::string(tokens[idx])] =
|
||||
std::string(tokens[idx + 1]);
|
||||
}
|
||||
} else {
|
||||
RTC_DCHECK(false) << "Invalid field trials string:" << trials_string;
|
||||
RTC_DCHECK_NOTREACHED() << "Invalid field trials string:" << trials_string;
|
||||
}
|
||||
}
|
||||
|
||||
std::string MergeFieldTrialsStrings(const char* first, const char* second) {
|
||||
std::string MergeFieldTrialsStrings(absl::string_view first,
|
||||
absl::string_view second) {
|
||||
std::map<std::string, std::string> fieldtrial_map;
|
||||
InsertOrReplaceFieldTrialStringsInMap(&fieldtrial_map, first);
|
||||
InsertOrReplaceFieldTrialStringsInMap(&fieldtrial_map, second);
|
||||
@ -102,11 +114,18 @@ std::string MergeFieldTrialsStrings(const char* first, const char* second) {
|
||||
return merged;
|
||||
}
|
||||
|
||||
std::string FindFullName(const std::string& name) {
|
||||
#ifndef WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
std::string FindFullName(absl::string_view name) {
|
||||
#if WEBRTC_STRICT_FIELD_TRIALS
|
||||
RTC_DCHECK(absl::c_linear_search(kRegisteredFieldTrials, name) ||
|
||||
TestKeys().contains(name))
|
||||
<< name << " is not registered.";
|
||||
#endif
|
||||
|
||||
if (trials_init_string == NULL)
|
||||
return std::string();
|
||||
|
||||
std::string trials_string(trials_init_string);
|
||||
absl::string_view trials_string(trials_init_string);
|
||||
if (trials_string.empty())
|
||||
return std::string();
|
||||
|
||||
@ -122,14 +141,14 @@ std::string FindFullName(const std::string& name) {
|
||||
if (field_value_end == trials_string.npos ||
|
||||
field_value_end == field_name_end + 1)
|
||||
break;
|
||||
std::string field_name(trials_string, next_item,
|
||||
field_name_end - next_item);
|
||||
std::string field_value(trials_string, field_name_end + 1,
|
||||
field_value_end - field_name_end - 1);
|
||||
absl::string_view field_name =
|
||||
trials_string.substr(next_item, field_name_end - next_item);
|
||||
absl::string_view field_value = trials_string.substr(
|
||||
field_name_end + 1, field_value_end - field_name_end - 1);
|
||||
next_item = field_value_end + 1;
|
||||
|
||||
if (name == field_name)
|
||||
return field_value;
|
||||
return std::string(field_value);
|
||||
}
|
||||
return std::string();
|
||||
}
|
||||
@ -138,12 +157,10 @@ std::string FindFullName(const std::string& name) {
|
||||
// Optionally initialize field trial from a string.
|
||||
void InitFieldTrialsFromString(const char* trials_string) {
|
||||
RTC_LOG(LS_INFO) << "Setting field trial string:" << trials_string;
|
||||
#ifndef WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
if (trials_string) {
|
||||
RTC_DCHECK(FieldTrialsStringIsValidInternal(trials_string))
|
||||
<< "Invalid field trials string:" << trials_string;
|
||||
};
|
||||
#endif // WEBRTC_EXCLUDE_FIELD_TRIAL_DEFAULT
|
||||
trials_init_string = trials_string;
|
||||
}
|
||||
|
||||
@ -151,5 +168,14 @@ const char* GetFieldTrialString() {
|
||||
return trials_init_string;
|
||||
}
|
||||
|
||||
FieldTrialsAllowedInScopeForTesting::FieldTrialsAllowedInScopeForTesting(
|
||||
flat_set<std::string> keys) {
|
||||
TestKeys() = std::move(keys);
|
||||
}
|
||||
|
||||
FieldTrialsAllowedInScopeForTesting::~FieldTrialsAllowedInScopeForTesting() {
|
||||
TestKeys().clear();
|
||||
}
|
||||
|
||||
} // namespace field_trial
|
||||
} // namespace webrtc
|
||||
|
||||
@ -11,7 +11,8 @@
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "rtc_base/constructor_magic.h"
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "rtc_base/string_utils.h"
|
||||
#include "rtc_base/synchronization/mutex.h"
|
||||
#include "rtc_base/thread_annotations.h"
|
||||
|
||||
@ -30,11 +31,14 @@ const int kMaxSampleMapSize = 300;
|
||||
|
||||
class RtcHistogram {
|
||||
public:
|
||||
RtcHistogram(const std::string& name, int min, int max, int bucket_count)
|
||||
RtcHistogram(absl::string_view name, int min, int max, int bucket_count)
|
||||
: min_(min), max_(max), info_(name, min, max, bucket_count) {
|
||||
RTC_DCHECK_GT(bucket_count, 0);
|
||||
}
|
||||
|
||||
RtcHistogram(const RtcHistogram&) = delete;
|
||||
RtcHistogram& operator=(const RtcHistogram&) = delete;
|
||||
|
||||
void Add(int sample) {
|
||||
sample = std::min(sample, max_);
|
||||
sample = std::max(sample, min_ - 1); // Underflow bucket.
|
||||
@ -99,8 +103,6 @@ class RtcHistogram {
|
||||
const int min_;
|
||||
const int max_;
|
||||
SampleInfo info_ RTC_GUARDED_BY(mutex_);
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(RtcHistogram);
|
||||
};
|
||||
|
||||
class RtcHistogramMap {
|
||||
@ -108,7 +110,10 @@ class RtcHistogramMap {
|
||||
RtcHistogramMap() {}
|
||||
~RtcHistogramMap() {}
|
||||
|
||||
Histogram* GetCountsHistogram(const std::string& name,
|
||||
RtcHistogramMap(const RtcHistogramMap&) = delete;
|
||||
RtcHistogramMap& operator=(const RtcHistogramMap&) = delete;
|
||||
|
||||
Histogram* GetCountsHistogram(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
int bucket_count) {
|
||||
@ -118,23 +123,24 @@ class RtcHistogramMap {
|
||||
return reinterpret_cast<Histogram*>(it->second.get());
|
||||
|
||||
RtcHistogram* hist = new RtcHistogram(name, min, max, bucket_count);
|
||||
map_[name].reset(hist);
|
||||
map_.emplace(name, hist);
|
||||
return reinterpret_cast<Histogram*>(hist);
|
||||
}
|
||||
|
||||
Histogram* GetEnumerationHistogram(const std::string& name, int boundary) {
|
||||
Histogram* GetEnumerationHistogram(absl::string_view name, int boundary) {
|
||||
MutexLock lock(&mutex_);
|
||||
const auto& it = map_.find(name);
|
||||
if (it != map_.end())
|
||||
return reinterpret_cast<Histogram*>(it->second.get());
|
||||
|
||||
RtcHistogram* hist = new RtcHistogram(name, 1, boundary, boundary + 1);
|
||||
map_[name].reset(hist);
|
||||
map_.emplace(name, hist);
|
||||
return reinterpret_cast<Histogram*>(hist);
|
||||
}
|
||||
|
||||
void GetAndReset(
|
||||
std::map<std::string, std::unique_ptr<SampleInfo>>* histograms) {
|
||||
void GetAndReset(std::map<std::string,
|
||||
std::unique_ptr<SampleInfo>,
|
||||
rtc::AbslStringViewCmp>* histograms) {
|
||||
MutexLock lock(&mutex_);
|
||||
for (const auto& kv : map_) {
|
||||
std::unique_ptr<SampleInfo> info = kv.second->GetAndReset();
|
||||
@ -150,25 +156,25 @@ class RtcHistogramMap {
|
||||
kv.second->Reset();
|
||||
}
|
||||
|
||||
int NumEvents(const std::string& name, int sample) const {
|
||||
int NumEvents(absl::string_view name, int sample) const {
|
||||
MutexLock lock(&mutex_);
|
||||
const auto& it = map_.find(name);
|
||||
return (it == map_.end()) ? 0 : it->second->NumEvents(sample);
|
||||
}
|
||||
|
||||
int NumSamples(const std::string& name) const {
|
||||
int NumSamples(absl::string_view name) const {
|
||||
MutexLock lock(&mutex_);
|
||||
const auto& it = map_.find(name);
|
||||
return (it == map_.end()) ? 0 : it->second->NumSamples();
|
||||
}
|
||||
|
||||
int MinSample(const std::string& name) const {
|
||||
int MinSample(absl::string_view name) const {
|
||||
MutexLock lock(&mutex_);
|
||||
const auto& it = map_.find(name);
|
||||
return (it == map_.end()) ? -1 : it->second->MinSample();
|
||||
}
|
||||
|
||||
std::map<int, int> Samples(const std::string& name) const {
|
||||
std::map<int, int> Samples(absl::string_view name) const {
|
||||
MutexLock lock(&mutex_);
|
||||
const auto& it = map_.find(name);
|
||||
return (it == map_.end()) ? std::map<int, int>() : it->second->Samples();
|
||||
@ -176,25 +182,21 @@ class RtcHistogramMap {
|
||||
|
||||
private:
|
||||
mutable Mutex mutex_;
|
||||
std::map<std::string, std::unique_ptr<RtcHistogram>> map_
|
||||
RTC_GUARDED_BY(mutex_);
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(RtcHistogramMap);
|
||||
std::map<std::string, std::unique_ptr<RtcHistogram>, rtc::AbslStringViewCmp>
|
||||
map_ RTC_GUARDED_BY(mutex_);
|
||||
};
|
||||
|
||||
// RtcHistogramMap is allocated upon call to Enable().
|
||||
// The histogram getter functions, which return pointer values to the histograms
|
||||
// in the map, are cached in WebRTC. Therefore, this memory is not freed by the
|
||||
// application (the memory will be reclaimed by the OS).
|
||||
static RtcHistogramMap* volatile g_rtc_histogram_map = nullptr;
|
||||
static std::atomic<RtcHistogramMap*> g_rtc_histogram_map(nullptr);
|
||||
|
||||
void CreateMap() {
|
||||
RtcHistogramMap* map = rtc::AtomicOps::AcquireLoadPtr(&g_rtc_histogram_map);
|
||||
RtcHistogramMap* map = g_rtc_histogram_map.load(std::memory_order_acquire);
|
||||
if (map == nullptr) {
|
||||
RtcHistogramMap* new_map = new RtcHistogramMap();
|
||||
RtcHistogramMap* old_map = rtc::AtomicOps::CompareAndSwapPtr(
|
||||
&g_rtc_histogram_map, static_cast<RtcHistogramMap*>(nullptr), new_map);
|
||||
if (old_map != nullptr)
|
||||
if (!g_rtc_histogram_map.compare_exchange_strong(map, new_map))
|
||||
delete new_map;
|
||||
}
|
||||
}
|
||||
@ -202,15 +204,15 @@ void CreateMap() {
|
||||
// Set the first time we start using histograms. Used to make sure Enable() is
|
||||
// not called thereafter.
|
||||
#if RTC_DCHECK_IS_ON
|
||||
static volatile int g_rtc_histogram_called = 0;
|
||||
static std::atomic<int> g_rtc_histogram_called(0);
|
||||
#endif
|
||||
|
||||
// Gets the map (or nullptr).
|
||||
RtcHistogramMap* GetMap() {
|
||||
#if RTC_DCHECK_IS_ON
|
||||
rtc::AtomicOps::ReleaseStore(&g_rtc_histogram_called, 1);
|
||||
g_rtc_histogram_called.store(1, std::memory_order_release);
|
||||
#endif
|
||||
return g_rtc_histogram_map;
|
||||
return g_rtc_histogram_map.load();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
@ -222,7 +224,7 @@ RtcHistogramMap* GetMap() {
|
||||
// Creates (or finds) histogram.
|
||||
// The returned histogram pointer is cached (and used for adding samples in
|
||||
// subsequent calls).
|
||||
Histogram* HistogramFactoryGetCounts(const std::string& name,
|
||||
Histogram* HistogramFactoryGetCounts(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
int bucket_count) {
|
||||
@ -235,7 +237,7 @@ Histogram* HistogramFactoryGetCounts(const std::string& name,
|
||||
// Creates (or finds) histogram.
|
||||
// The returned histogram pointer is cached (and used for adding samples in
|
||||
// subsequent calls).
|
||||
Histogram* HistogramFactoryGetCountsLinear(const std::string& name,
|
||||
Histogram* HistogramFactoryGetCountsLinear(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
int bucket_count) {
|
||||
@ -250,7 +252,7 @@ Histogram* HistogramFactoryGetCountsLinear(const std::string& name,
|
||||
// Creates (or finds) histogram.
|
||||
// The returned histogram pointer is cached (and used for adding samples in
|
||||
// subsequent calls).
|
||||
Histogram* HistogramFactoryGetEnumeration(const std::string& name,
|
||||
Histogram* HistogramFactoryGetEnumeration(absl::string_view name,
|
||||
int boundary) {
|
||||
RtcHistogramMap* map = GetMap();
|
||||
if (!map)
|
||||
@ -260,12 +262,12 @@ Histogram* HistogramFactoryGetEnumeration(const std::string& name,
|
||||
}
|
||||
|
||||
// Our default implementation reuses the non-sparse histogram.
|
||||
Histogram* SparseHistogramFactoryGetEnumeration(const std::string& name,
|
||||
Histogram* SparseHistogramFactoryGetEnumeration(absl::string_view name,
|
||||
int boundary) {
|
||||
return HistogramFactoryGetEnumeration(name, boundary);
|
||||
}
|
||||
|
||||
// Fast path. Adds |sample| to cached |histogram_pointer|.
|
||||
// Fast path. Adds `sample` to cached `histogram_pointer`.
|
||||
void HistogramAdd(Histogram* histogram_pointer, int sample) {
|
||||
RtcHistogram* ptr = reinterpret_cast<RtcHistogram*>(histogram_pointer);
|
||||
ptr->Add(sample);
|
||||
@ -273,7 +275,7 @@ void HistogramAdd(Histogram* histogram_pointer, int sample) {
|
||||
|
||||
#endif // WEBRTC_EXCLUDE_METRICS_DEFAULT
|
||||
|
||||
SampleInfo::SampleInfo(const std::string& name,
|
||||
SampleInfo::SampleInfo(absl::string_view name,
|
||||
int min,
|
||||
int max,
|
||||
size_t bucket_count)
|
||||
@ -283,15 +285,16 @@ SampleInfo::~SampleInfo() {}
|
||||
|
||||
// Implementation of global functions in metrics.h.
|
||||
void Enable() {
|
||||
RTC_DCHECK(g_rtc_histogram_map == nullptr);
|
||||
RTC_DCHECK(g_rtc_histogram_map.load() == nullptr);
|
||||
#if RTC_DCHECK_IS_ON
|
||||
RTC_DCHECK_EQ(0, rtc::AtomicOps::AcquireLoad(&g_rtc_histogram_called));
|
||||
RTC_DCHECK_EQ(0, g_rtc_histogram_called.load(std::memory_order_acquire));
|
||||
#endif
|
||||
CreateMap();
|
||||
}
|
||||
|
||||
void GetAndReset(
|
||||
std::map<std::string, std::unique_ptr<SampleInfo>>* histograms) {
|
||||
std::map<std::string, std::unique_ptr<SampleInfo>, rtc::AbslStringViewCmp>*
|
||||
histograms) {
|
||||
histograms->clear();
|
||||
RtcHistogramMap* map = GetMap();
|
||||
if (map)
|
||||
@ -304,22 +307,22 @@ void Reset() {
|
||||
map->Reset();
|
||||
}
|
||||
|
||||
int NumEvents(const std::string& name, int sample) {
|
||||
int NumEvents(absl::string_view name, int sample) {
|
||||
RtcHistogramMap* map = GetMap();
|
||||
return map ? map->NumEvents(name, sample) : 0;
|
||||
}
|
||||
|
||||
int NumSamples(const std::string& name) {
|
||||
int NumSamples(absl::string_view name) {
|
||||
RtcHistogramMap* map = GetMap();
|
||||
return map ? map->NumSamples(name) : 0;
|
||||
}
|
||||
|
||||
int MinSample(const std::string& name) {
|
||||
int MinSample(absl::string_view name) {
|
||||
RtcHistogramMap* map = GetMap();
|
||||
return map ? map->MinSample(name) : -1;
|
||||
}
|
||||
|
||||
std::map<int, int> Samples(const std::string& name) {
|
||||
std::map<int, int> Samples(absl::string_view name) {
|
||||
RtcHistogramMap* map = GetMap();
|
||||
return map ? map->Samples(name) : std::map<int, int>();
|
||||
}
|
||||
|
||||
@ -14,6 +14,7 @@
|
||||
#include <utility>
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/string_utils.h"
|
||||
#include "system_wrappers/include/metrics.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
@ -24,10 +25,10 @@ namespace {
|
||||
const int kSample = 22;
|
||||
const char kName[] = "Name";
|
||||
|
||||
int NumSamples(
|
||||
const std::string& name,
|
||||
const std::map<std::string, std::unique_ptr<metrics::SampleInfo>>&
|
||||
histograms) {
|
||||
int NumSamples(absl::string_view name,
|
||||
const std::map<std::string,
|
||||
std::unique_ptr<metrics::SampleInfo>,
|
||||
rtc::AbslStringViewCmp>& histograms) {
|
||||
const auto it = histograms.find(name);
|
||||
if (it == histograms.end())
|
||||
return 0;
|
||||
@ -39,10 +40,11 @@ int NumSamples(
|
||||
return num_samples;
|
||||
}
|
||||
|
||||
int NumEvents(const std::string& name,
|
||||
int NumEvents(absl::string_view name,
|
||||
int sample,
|
||||
const std::map<std::string, std::unique_ptr<metrics::SampleInfo>>&
|
||||
histograms) {
|
||||
const std::map<std::string,
|
||||
std::unique_ptr<metrics::SampleInfo>,
|
||||
rtc::AbslStringViewCmp>& histograms) {
|
||||
const auto it = histograms.find(name);
|
||||
if (it == histograms.end())
|
||||
return 0;
|
||||
@ -118,7 +120,9 @@ TEST_F(MetricsDefaultTest, Underflow) {
|
||||
}
|
||||
|
||||
TEST_F(MetricsDefaultTest, GetAndReset) {
|
||||
std::map<std::string, std::unique_ptr<metrics::SampleInfo>> histograms;
|
||||
std::map<std::string, std::unique_ptr<metrics::SampleInfo>,
|
||||
rtc::AbslStringViewCmp>
|
||||
histograms;
|
||||
metrics::GetAndReset(&histograms);
|
||||
EXPECT_EQ(0u, histograms.size());
|
||||
RTC_HISTOGRAM_PERCENTAGE("Histogram1", 4);
|
||||
@ -154,7 +158,9 @@ TEST_F(MetricsDefaultTest, TestMinMaxBucket) {
|
||||
const std::string kName = "MinMaxCounts100";
|
||||
RTC_HISTOGRAM_COUNTS_100(kName, 4);
|
||||
|
||||
std::map<std::string, std::unique_ptr<metrics::SampleInfo>> histograms;
|
||||
std::map<std::string, std::unique_ptr<metrics::SampleInfo>,
|
||||
rtc::AbslStringViewCmp>
|
||||
histograms;
|
||||
metrics::GetAndReset(&histograms);
|
||||
EXPECT_EQ(1u, histograms.size());
|
||||
EXPECT_EQ(kName, histograms.begin()->second->name);
|
||||
|
||||
@ -10,6 +10,7 @@
|
||||
|
||||
#include "system_wrappers/include/metrics.h"
|
||||
|
||||
#include "absl/strings/string_view.h"
|
||||
#include "test/gmock.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
@ -22,10 +23,10 @@ namespace webrtc {
|
||||
namespace {
|
||||
const int kSample = 22;
|
||||
|
||||
void AddSparseSample(const std::string& name, int sample) {
|
||||
void AddSparseSample(absl::string_view name, int sample) {
|
||||
RTC_HISTOGRAM_COUNTS_SPARSE_100(name, sample);
|
||||
}
|
||||
void AddSampleWithVaryingName(int index, const std::string& name, int sample) {
|
||||
void AddSampleWithVaryingName(int index, absl::string_view name, int sample) {
|
||||
RTC_HISTOGRAMS_COUNTS_100(index, name, sample);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
@ -56,7 +56,6 @@ TEST(NtpTimeTest, ToMsMeansToNtpMilliseconds) {
|
||||
SimulatedClock clock(0x123456789abc);
|
||||
|
||||
NtpTime ntp = clock.CurrentNtpTime();
|
||||
EXPECT_EQ(ntp.ToMs(), Clock::NtpToMs(ntp.seconds(), ntp.fractions()));
|
||||
EXPECT_EQ(ntp.ToMs(), clock.CurrentNtpInMilliseconds());
|
||||
}
|
||||
|
||||
|
||||
@ -18,132 +18,85 @@
|
||||
#include "api/array_view.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/logging.h"
|
||||
#include "rtc_base/numerics/safe_conversions.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
// Maximum number of RTCP SR reports to use to map between RTP and NTP.
|
||||
const size_t kNumRtcpReportsToUse = 20;
|
||||
constexpr size_t kNumRtcpReportsToUse = 20;
|
||||
// Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big
|
||||
// enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around
|
||||
// half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of
|
||||
// wrap-around period it is impossible to unwrap RTP timestamps correctly.
|
||||
const int kMaxAllowedRtcpNtpIntervalMs = 60 * 60 * 1000;
|
||||
constexpr uint64_t kMaxAllowedRtcpNtpInterval = uint64_t{60 * 60} << 32;
|
||||
} // namespace
|
||||
|
||||
bool Contains(const std::list<RtpToNtpEstimator::RtcpMeasurement>& measurements,
|
||||
const RtpToNtpEstimator::RtcpMeasurement& other) {
|
||||
for (const auto& measurement : measurements) {
|
||||
if (measurement.IsEqual(other))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Given x[] and y[] writes out such k and b that line y=k*x+b approximates
|
||||
// given points in the best way (Least Squares Method).
|
||||
bool LinearRegression(rtc::ArrayView<const double> x,
|
||||
rtc::ArrayView<const double> y,
|
||||
double* k,
|
||||
double* b) {
|
||||
size_t n = x.size();
|
||||
void RtpToNtpEstimator::UpdateParameters() {
|
||||
size_t n = measurements_.size();
|
||||
if (n < 2)
|
||||
return false;
|
||||
return;
|
||||
|
||||
if (y.size() != n)
|
||||
return false;
|
||||
// Run linear regression:
|
||||
// Given x[] and y[] writes out such k and b that line y=k*x+b approximates
|
||||
// given points in the best way (Least Squares Method).
|
||||
auto x = [](const RtcpMeasurement& m) {
|
||||
return static_cast<double>(m.unwrapped_rtp_timestamp);
|
||||
};
|
||||
auto y = [](const RtcpMeasurement& m) {
|
||||
return static_cast<double>(static_cast<uint64_t>(m.ntp_time));
|
||||
};
|
||||
|
||||
double avg_x = 0;
|
||||
double avg_y = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
avg_x += x[i];
|
||||
avg_y += y[i];
|
||||
for (const RtcpMeasurement& m : measurements_) {
|
||||
avg_x += x(m);
|
||||
avg_y += y(m);
|
||||
}
|
||||
avg_x /= n;
|
||||
avg_y /= n;
|
||||
|
||||
double variance_x = 0;
|
||||
double covariance_xy = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
double normalized_x = x[i] - avg_x;
|
||||
double normalized_y = y[i] - avg_y;
|
||||
for (const RtcpMeasurement& m : measurements_) {
|
||||
double normalized_x = x(m) - avg_x;
|
||||
double normalized_y = y(m) - avg_y;
|
||||
variance_x += normalized_x * normalized_x;
|
||||
covariance_xy += normalized_x * normalized_y;
|
||||
}
|
||||
|
||||
if (std::fabs(variance_x) < 1e-8)
|
||||
return false;
|
||||
|
||||
*k = static_cast<double>(covariance_xy / variance_x);
|
||||
*b = static_cast<double>(avg_y - (*k) * avg_x);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
RtpToNtpEstimator::RtcpMeasurement::RtcpMeasurement(uint32_t ntp_secs,
|
||||
uint32_t ntp_frac,
|
||||
int64_t unwrapped_timestamp)
|
||||
: ntp_time(ntp_secs, ntp_frac),
|
||||
unwrapped_rtp_timestamp(unwrapped_timestamp) {}
|
||||
|
||||
bool RtpToNtpEstimator::RtcpMeasurement::IsEqual(
|
||||
const RtcpMeasurement& other) const {
|
||||
// Use || since two equal timestamps will result in zero frequency and in
|
||||
// RtpToNtpMs, |rtp_timestamp_ms| is estimated by dividing by the frequency.
|
||||
return (ntp_time == other.ntp_time) ||
|
||||
(unwrapped_rtp_timestamp == other.unwrapped_rtp_timestamp);
|
||||
}
|
||||
|
||||
// Class for converting an RTP timestamp to the NTP domain.
|
||||
RtpToNtpEstimator::RtpToNtpEstimator() : consecutive_invalid_samples_(0) {}
|
||||
|
||||
RtpToNtpEstimator::~RtpToNtpEstimator() {}
|
||||
|
||||
void RtpToNtpEstimator::UpdateParameters() {
|
||||
if (measurements_.size() < 2)
|
||||
return;
|
||||
|
||||
std::vector<double> x;
|
||||
std::vector<double> y;
|
||||
x.reserve(measurements_.size());
|
||||
y.reserve(measurements_.size());
|
||||
for (auto it = measurements_.begin(); it != measurements_.end(); ++it) {
|
||||
x.push_back(it->unwrapped_rtp_timestamp);
|
||||
y.push_back(it->ntp_time.ToMs());
|
||||
}
|
||||
double slope, offset;
|
||||
|
||||
if (!LinearRegression(x, y, &slope, &offset)) {
|
||||
return;
|
||||
}
|
||||
|
||||
params_.emplace(1 / slope, offset);
|
||||
double k = covariance_xy / variance_x;
|
||||
double b = avg_y - k * avg_x;
|
||||
params_ = {{.slope = k, .offset = b}};
|
||||
}
|
||||
|
||||
bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs,
|
||||
uint32_t ntp_frac,
|
||||
uint32_t rtp_timestamp,
|
||||
bool* new_rtcp_sr) {
|
||||
*new_rtcp_sr = false;
|
||||
|
||||
RtpToNtpEstimator::UpdateResult RtpToNtpEstimator::UpdateMeasurements(
|
||||
NtpTime ntp,
|
||||
uint32_t rtp_timestamp) {
|
||||
int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp);
|
||||
|
||||
RtcpMeasurement new_measurement(ntp_secs, ntp_frac, unwrapped_rtp_timestamp);
|
||||
RtcpMeasurement new_measurement = {
|
||||
.ntp_time = ntp, .unwrapped_rtp_timestamp = unwrapped_rtp_timestamp};
|
||||
|
||||
if (Contains(measurements_, new_measurement)) {
|
||||
// RTCP SR report already added.
|
||||
return true;
|
||||
for (const RtcpMeasurement& measurement : measurements_) {
|
||||
// Use || since two equal timestamps will result in zero frequency.
|
||||
if (measurement.ntp_time == ntp ||
|
||||
measurement.unwrapped_rtp_timestamp == unwrapped_rtp_timestamp) {
|
||||
return kSameMeasurement;
|
||||
}
|
||||
}
|
||||
|
||||
if (!new_measurement.ntp_time.Valid())
|
||||
return false;
|
||||
return kInvalidMeasurement;
|
||||
|
||||
int64_t ntp_ms_new = new_measurement.ntp_time.ToMs();
|
||||
uint64_t ntp_new = static_cast<uint64_t>(new_measurement.ntp_time);
|
||||
bool invalid_sample = false;
|
||||
if (!measurements_.empty()) {
|
||||
int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp;
|
||||
int64_t old_ntp_ms = measurements_.front().ntp_time.ToMs();
|
||||
if (ntp_ms_new <= old_ntp_ms ||
|
||||
ntp_ms_new > old_ntp_ms + kMaxAllowedRtcpNtpIntervalMs) {
|
||||
uint64_t old_ntp = static_cast<uint64_t>(measurements_.front().ntp_time);
|
||||
if (ntp_new <= old_ntp || ntp_new > old_ntp + kMaxAllowedRtcpNtpInterval) {
|
||||
invalid_sample = true;
|
||||
} else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) {
|
||||
RTC_LOG(LS_WARNING)
|
||||
@ -158,7 +111,7 @@ bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs,
|
||||
if (invalid_sample) {
|
||||
++consecutive_invalid_samples_;
|
||||
if (consecutive_invalid_samples_ < kMaxInvalidSamples) {
|
||||
return false;
|
||||
return kInvalidMeasurement;
|
||||
}
|
||||
RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, "
|
||||
"clearing measurements.";
|
||||
@ -172,37 +125,29 @@ bool RtpToNtpEstimator::UpdateMeasurements(uint32_t ntp_secs,
|
||||
measurements_.pop_back();
|
||||
|
||||
measurements_.push_front(new_measurement);
|
||||
*new_rtcp_sr = true;
|
||||
|
||||
// List updated, calculate new parameters.
|
||||
UpdateParameters();
|
||||
return true;
|
||||
return kNewMeasurement;
|
||||
}
|
||||
|
||||
bool RtpToNtpEstimator::Estimate(int64_t rtp_timestamp,
|
||||
int64_t* ntp_timestamp_ms) const {
|
||||
NtpTime RtpToNtpEstimator::Estimate(uint32_t rtp_timestamp) const {
|
||||
if (!params_)
|
||||
return false;
|
||||
return NtpTime();
|
||||
|
||||
int64_t rtp_timestamp_unwrapped = unwrapper_.Unwrap(rtp_timestamp);
|
||||
double estimated =
|
||||
static_cast<double>(unwrapper_.Unwrap(rtp_timestamp)) * params_->slope +
|
||||
params_->offset + 0.5f;
|
||||
|
||||
// params_calculated_ should not be true unless ms params.frequency_khz has
|
||||
// been calculated to something non zero.
|
||||
RTC_DCHECK_NE(params_->frequency_khz, 0.0);
|
||||
double rtp_ms =
|
||||
static_cast<double>(rtp_timestamp_unwrapped) / params_->frequency_khz +
|
||||
params_->offset_ms + 0.5f;
|
||||
|
||||
if (rtp_ms < 0)
|
||||
return false;
|
||||
|
||||
*ntp_timestamp_ms = rtp_ms;
|
||||
|
||||
return true;
|
||||
return NtpTime(rtc::saturated_cast<uint64_t>(estimated));
|
||||
}
|
||||
|
||||
const absl::optional<RtpToNtpEstimator::Parameters> RtpToNtpEstimator::params()
|
||||
const {
|
||||
return params_;
|
||||
double RtpToNtpEstimator::EstimatedFrequencyKhz() const {
|
||||
if (!params_.has_value()) {
|
||||
return 0.0;
|
||||
}
|
||||
static constexpr double kNtpUnitPerMs = 4.294967296E6; // 2^32 / 1000.
|
||||
return kNtpUnitPerMs / params_->slope;
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -17,332 +17,249 @@
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
const uint32_t kOneMsInNtpFrac = 4294967;
|
||||
const uint32_t kOneHourInNtpSec = 60 * 60;
|
||||
const uint32_t kTimestampTicksPerMs = 90;
|
||||
constexpr uint64_t kOneMsInNtp = 4294967;
|
||||
constexpr uint64_t kOneHourInNtp = uint64_t{60 * 60} << 32;
|
||||
constexpr uint32_t kTimestampTicksPerMs = 90;
|
||||
} // namespace
|
||||
|
||||
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp -= kTimestampTicksPerMs;
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(kOneMsInNtp), 0),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// No wraparound will be detected, since we are not allowed to wrap below 0,
|
||||
// but there will be huge rtp timestamp jump, e.g. old_timestamp = 0,
|
||||
// new_timestamp = 4294967295, which should be detected.
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 * kOneMsInNtp),
|
||||
-kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp_Wraparound_Detected) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0xFFFFFFFE;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += 2 * kOneMsInNtpFrac;
|
||||
timestamp += 2 * kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp -= kTimestampTicksPerMs;
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFE),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + 2 * kOneMsInNtp),
|
||||
0xFFFFFFFE + 2 * kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Expected to fail since the older RTCP has a smaller RTP timestamp than the
|
||||
// newer (old:10, new:4294967206).
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + 3 * kOneMsInNtp),
|
||||
0xFFFFFFFE + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, NewRtcpWrapped) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0xFFFFFFFF;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
int64_t timestamp_ms = -1;
|
||||
EXPECT_TRUE(estimator.Estimate(0xFFFFFFFF, ×tamp_ms));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
|
||||
0xFFFFFFFF + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Since this RTP packet has the same timestamp as the RTCP packet constructed
|
||||
// at time 0 it should be mapped to 0 as well.
|
||||
EXPECT_EQ(0, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, RtpWrapped) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0xFFFFFFFF - 2 * kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1),
|
||||
0xFFFFFFFF - 2 * kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
|
||||
0xFFFFFFFF - kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
int64_t timestamp_ms = -1;
|
||||
EXPECT_TRUE(
|
||||
estimator.Estimate(0xFFFFFFFF - 2 * kTimestampTicksPerMs, ×tamp_ms));
|
||||
// Since this RTP packet has the same timestamp as the RTCP packet constructed
|
||||
// at time 0 it should be mapped to 0 as well.
|
||||
EXPECT_EQ(0, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF - 2 * kTimestampTicksPerMs),
|
||||
NtpTime(1));
|
||||
// Two kTimestampTicksPerMs advanced.
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_EQ(2, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1 + 2 * kOneMsInNtp));
|
||||
// Wrapped rtp.
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_EQ(3, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF + kTimestampTicksPerMs),
|
||||
NtpTime(1 + 3 * kOneMsInNtp));
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0xFFFFFFFF;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
timestamp -= 2 * kTimestampTicksPerMs;
|
||||
int64_t timestamp_ms = 0xFFFFFFFF;
|
||||
EXPECT_FALSE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
|
||||
0xFFFFFFFF + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
EXPECT_FALSE(estimator.Estimate(0xFFFFFFFF - kTimestampTicksPerMs).Valid());
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0xFFFFFFFF;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
timestamp -= kTimestampTicksPerMs;
|
||||
int64_t timestamp_ms = -1;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
|
||||
0xFFFFFFFF + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
// Constructed at the same time as the first RTCP and should therefore be
|
||||
// mapped to zero.
|
||||
EXPECT_EQ(0, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
|
||||
}
|
||||
|
||||
TEST(WrapAroundTests, GracefullyHandleRtpJump) {
|
||||
RtpToNtpEstimator estimator;
|
||||
bool new_sr;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 1;
|
||||
uint32_t timestamp = 0;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp -= kTimestampTicksPerMs;
|
||||
int64_t timestamp_ms = -1;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
|
||||
0xFFFFFFFF + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
// Constructed at the same time as the first RTCP and should therefore be
|
||||
// mapped to zero.
|
||||
EXPECT_EQ(0, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
|
||||
|
||||
timestamp -= 0xFFFFF;
|
||||
uint32_t timestamp = 0xFFFFFFFF - 0xFFFFF;
|
||||
uint64_t ntp_raw = 1 + 2 * kOneMsInNtp;
|
||||
for (int i = 0; i < RtpToNtpEstimator::kMaxInvalidSamples - 1; ++i) {
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
ntp_raw += kOneMsInNtp;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
}
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
ntp_raw += kOneMsInNtp;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
timestamp_ms = -1;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
// 6 milliseconds has passed since the start of the test.
|
||||
EXPECT_EQ(6, timestamp_ms);
|
||||
EXPECT_EQ(estimator.Estimate(timestamp), NtpTime(ntp_raw));
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForZeroNtp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 0;
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_FALSE(new_sr);
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(0), 0x12345678),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForEqualNtp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 699925050;
|
||||
NtpTime ntp(0, 699925050);
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Ntp time already added, list not updated.
|
||||
++timestamp;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_FALSE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp + 1),
|
||||
RtpToNtpEstimator::kSameMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForOldNtp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 1;
|
||||
uint32_t ntp_frac = 699925050;
|
||||
uint64_t ntp_raw = 699925050;
|
||||
NtpTime ntp(ntp_raw);
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
// Old ntp time, list not updated.
|
||||
ntp_frac -= kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw - kOneMsInNtp),
|
||||
timestamp + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForTooNewNtp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 1;
|
||||
uint32_t ntp_frac = 699925050;
|
||||
|
||||
uint64_t ntp_raw = 699925050;
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
// Ntp time from far future, list not updated.
|
||||
ntp_sec += kOneHourInNtpSec * 2;
|
||||
timestamp += kTimestampTicksPerMs * 10;
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw + 2 * kOneHourInNtp),
|
||||
timestamp + 10 * kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForEqualTimestamp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 2;
|
||||
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Timestamp already added, list not updated.
|
||||
++ntp_frac;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_FALSE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(3), timestamp),
|
||||
RtpToNtpEstimator::kSameMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, FailsForOldRtpTimestamp) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 0;
|
||||
uint32_t ntp_frac = 2;
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Old timestamp, list not updated.
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp -= kTimestampTicksPerMs;
|
||||
EXPECT_FALSE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_FALSE(new_sr);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 + kOneMsInNtp),
|
||||
timestamp - kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kInvalidMeasurement);
|
||||
}
|
||||
|
||||
TEST(UpdateRtcpMeasurementTests, VerifyParameters) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 1;
|
||||
uint32_t ntp_frac = 2;
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
EXPECT_FALSE(estimator.params());
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(kOneMsInNtp), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
EXPECT_DOUBLE_EQ(estimator.EstimatedFrequencyKhz(), 0.0);
|
||||
|
||||
// Add second report, parameters should be calculated.
|
||||
ntp_frac += kOneMsInNtpFrac;
|
||||
timestamp += kTimestampTicksPerMs;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(estimator.params());
|
||||
EXPECT_DOUBLE_EQ(90.0, estimator.params()->frequency_khz);
|
||||
EXPECT_NE(0.0, estimator.params()->offset_ms);
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 * kOneMsInNtp),
|
||||
timestamp + kTimestampTicksPerMs),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
EXPECT_NEAR(estimator.EstimatedFrequencyKhz(), kTimestampTicksPerMs, 0.01);
|
||||
}
|
||||
|
||||
TEST(RtpToNtpTests, FailsForNoParameters) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 1;
|
||||
uint32_t ntp_frac = 2;
|
||||
uint32_t timestamp = 0x12345678;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
// Parameters are not calculated, conversion of RTP to NTP time should fail.
|
||||
EXPECT_FALSE(estimator.params());
|
||||
int64_t timestamp_ms = -1;
|
||||
EXPECT_FALSE(estimator.Estimate(timestamp, ×tamp_ms));
|
||||
EXPECT_DOUBLE_EQ(estimator.EstimatedFrequencyKhz(), 0.0);
|
||||
EXPECT_FALSE(estimator.Estimate(timestamp).Valid());
|
||||
}
|
||||
|
||||
TEST(RtpToNtpTests, AveragesErrorOut) {
|
||||
RtpToNtpEstimator estimator;
|
||||
uint32_t ntp_sec = 1;
|
||||
uint32_t ntp_frac = 90000000; // More than 1 ms.
|
||||
uint64_t ntp_raw = 90000000; // More than 1 ms.
|
||||
ASSERT_GT(ntp_raw, kOneMsInNtp);
|
||||
uint32_t timestamp = 0x12345678;
|
||||
const int kNtpSecStep = 1; // 1 second.
|
||||
const int kRtpTicksPerMs = 90;
|
||||
const int kRtpStep = kRtpTicksPerMs * 1000;
|
||||
bool new_sr;
|
||||
EXPECT_TRUE(
|
||||
estimator.UpdateMeasurements(ntp_sec, ntp_frac, timestamp, &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
constexpr uint64_t kNtpSecStep = uint64_t{1} << 32; // 1 second.
|
||||
constexpr int kRtpTicksPerMs = 90;
|
||||
constexpr int kRtpStep = kRtpTicksPerMs * 1000;
|
||||
|
||||
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
Random rand(1123536L);
|
||||
for (size_t i = 0; i < 1000; i++) {
|
||||
// Advance both timestamps by exactly 1 second.
|
||||
ntp_sec += kNtpSecStep;
|
||||
ntp_raw += kNtpSecStep;
|
||||
timestamp += kRtpStep;
|
||||
// Add upto 1ms of errors to NTP and RTP timestamps passed to estimator.
|
||||
EXPECT_TRUE(estimator.UpdateMeasurements(
|
||||
ntp_sec,
|
||||
ntp_frac + rand.Rand(-static_cast<int>(kOneMsInNtpFrac),
|
||||
static_cast<int>(kOneMsInNtpFrac)),
|
||||
timestamp + rand.Rand(-kRtpTicksPerMs, kRtpTicksPerMs), &new_sr));
|
||||
EXPECT_TRUE(new_sr);
|
||||
EXPECT_EQ(
|
||||
estimator.UpdateMeasurements(
|
||||
NtpTime(ntp_raw + rand.Rand(-int{kOneMsInNtp}, int{kOneMsInNtp})),
|
||||
timestamp + rand.Rand(-kRtpTicksPerMs, kRtpTicksPerMs)),
|
||||
RtpToNtpEstimator::kNewMeasurement);
|
||||
|
||||
int64_t estimated_ntp_ms;
|
||||
EXPECT_TRUE(estimator.Estimate(timestamp, &estimated_ntp_ms));
|
||||
NtpTime estimated_ntp = estimator.Estimate(timestamp);
|
||||
EXPECT_TRUE(estimated_ntp.Valid());
|
||||
// Allow upto 2 ms of error.
|
||||
EXPECT_NEAR(NtpTime(ntp_sec, ntp_frac).ToMs(), estimated_ntp_ms, 2);
|
||||
EXPECT_NEAR(ntp_raw, static_cast<uint64_t>(estimated_ntp), 2 * kOneMsInNtp);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user