Reland: Use CRYPTO_BUFFER APIs instead of X509 when building with BoringSSL.

Using CRYPTO_BUFFERs instead of legacy X509 objects offers memory and
security gains, and will provide binary size improvements as well once
the default list of built-in certificates can be removed; the code
dealing with them still depends on the X509 API.

Implemented by splitting openssl_identity and openssl_certificate
into BoringSSL and vanilla OpenSSL implementations.

No-Try: True
Bug: webrtc:11410
Change-Id: I86ddb361b94ad85b15ebb8743490de83632ca53f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/196941
Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#32818}
This commit is contained in:
Taylor Brandstetter
2020-12-10 16:23:03 -08:00
committed by Commit Bot
parent c1ad1ff178
commit 165c618bb9
24 changed files with 1620 additions and 279 deletions

View File

@ -20,10 +20,8 @@
#endif // WEBRTC_WIN
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <stdint.h>
#include "absl/memory/memory.h"
@ -35,160 +33,6 @@
namespace rtc {
// We could have exposed a myriad of parameters for the crypto stuff,
// but keeping it simple seems best.
// Generate a key pair. Caller is responsible for freeing the returned object.
static EVP_PKEY* MakeKey(const KeyParams& key_params) {
RTC_LOG(LS_INFO) << "Making key pair";
EVP_PKEY* pkey = EVP_PKEY_new();
if (key_params.type() == KT_RSA) {
int key_length = key_params.rsa_params().mod_size;
BIGNUM* exponent = BN_new();
RSA* rsa = RSA_new();
if (!pkey || !exponent || !rsa ||
!BN_set_word(exponent, key_params.rsa_params().pub_exp) ||
!RSA_generate_key_ex(rsa, key_length, exponent, nullptr) ||
!EVP_PKEY_assign_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
BN_free(exponent);
RSA_free(rsa);
RTC_LOG(LS_ERROR) << "Failed to make RSA key pair";
return nullptr;
}
// ownership of rsa struct was assigned, don't free it.
BN_free(exponent);
} else if (key_params.type() == KT_ECDSA) {
if (key_params.ec_curve() == EC_NIST_P256) {
EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
// Ensure curve name is included when EC key is serialized.
// Without this call, OpenSSL versions before 1.1.0 will create
// certificates that don't work for TLS.
// This is a no-op for BoringSSL and OpenSSL 1.1.0+
EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE);
if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) ||
!EVP_PKEY_assign_EC_KEY(pkey, ec_key)) {
EVP_PKEY_free(pkey);
EC_KEY_free(ec_key);
RTC_LOG(LS_ERROR) << "Failed to make EC key pair";
return nullptr;
}
// ownership of ec_key struct was assigned, don't free it.
} else {
// Add generation of any other curves here.
EVP_PKEY_free(pkey);
RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve";
return nullptr;
}
} else {
EVP_PKEY_free(pkey);
RTC_LOG(LS_ERROR) << "Key type requested not understood";
return nullptr;
}
RTC_LOG(LS_INFO) << "Returning key pair";
return pkey;
}
OpenSSLKeyPair* OpenSSLKeyPair::Generate(const KeyParams& key_params) {
EVP_PKEY* pkey = MakeKey(key_params);
if (!pkey) {
openssl::LogSSLErrors("Generating key pair");
return nullptr;
}
return new OpenSSLKeyPair(pkey);
}
OpenSSLKeyPair* OpenSSLKeyPair::FromPrivateKeyPEMString(
const std::string& pem_string) {
BIO* bio = BIO_new_mem_buf(const_cast<char*>(pem_string.c_str()), -1);
if (!bio) {
RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer.";
return nullptr;
}
BIO_set_mem_eof_return(bio, 0);
EVP_PKEY* pkey =
PEM_read_bio_PrivateKey(bio, nullptr, nullptr, const_cast<char*>("\0"));
BIO_free(bio); // Frees the BIO, but not the pointed-to string.
if (!pkey) {
RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string.";
return nullptr;
}
if (EVP_PKEY_missing_parameters(pkey) != 0) {
RTC_LOG(LS_ERROR)
<< "The resulting key pair is missing public key parameters.";
EVP_PKEY_free(pkey);
return nullptr;
}
return new OpenSSLKeyPair(pkey);
}
OpenSSLKeyPair::~OpenSSLKeyPair() {
EVP_PKEY_free(pkey_);
}
OpenSSLKeyPair* OpenSSLKeyPair::GetReference() {
AddReference();
return new OpenSSLKeyPair(pkey_);
}
void OpenSSLKeyPair::AddReference() {
EVP_PKEY_up_ref(pkey_);
}
std::string OpenSSLKeyPair::PrivateKeyToPEMString() const {
BIO* temp_memory_bio = BIO_new(BIO_s_mem());
if (!temp_memory_bio) {
RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio";
RTC_NOTREACHED();
return "";
}
if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0,
nullptr, nullptr)) {
RTC_LOG_F(LS_ERROR) << "Failed to write private key";
BIO_free(temp_memory_bio);
RTC_NOTREACHED();
return "";
}
BIO_write(temp_memory_bio, "\0", 1);
char* buffer;
BIO_get_mem_data(temp_memory_bio, &buffer);
std::string priv_key_str = buffer;
BIO_free(temp_memory_bio);
return priv_key_str;
}
std::string OpenSSLKeyPair::PublicKeyToPEMString() const {
BIO* temp_memory_bio = BIO_new(BIO_s_mem());
if (!temp_memory_bio) {
RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio";
RTC_NOTREACHED();
return "";
}
if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) {
RTC_LOG_F(LS_ERROR) << "Failed to write public key";
BIO_free(temp_memory_bio);
RTC_NOTREACHED();
return "";
}
BIO_write(temp_memory_bio, "\0", 1);
char* buffer;
BIO_get_mem_data(temp_memory_bio, &buffer);
std::string pub_key_str = buffer;
BIO_free(temp_memory_bio);
return pub_key_str;
}
bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const {
return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1;
}
bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const {
return !(*this == other);
}
OpenSSLIdentity::OpenSSLIdentity(
std::unique_ptr<OpenSSLKeyPair> key_pair,
std::unique_ptr<OpenSSLCertificate> certificate)
@ -211,8 +55,7 @@ OpenSSLIdentity::~OpenSSLIdentity() = default;
std::unique_ptr<OpenSSLIdentity> OpenSSLIdentity::CreateInternal(
const SSLIdentityParams& params) {
std::unique_ptr<OpenSSLKeyPair> key_pair(
OpenSSLKeyPair::Generate(params.key_params));
auto key_pair = OpenSSLKeyPair::Generate(params.key_params);
if (key_pair) {
std::unique_ptr<OpenSSLCertificate> certificate(
OpenSSLCertificate::Generate(key_pair.get(), params));
@ -221,7 +64,7 @@ std::unique_ptr<OpenSSLIdentity> OpenSSLIdentity::CreateInternal(
new OpenSSLIdentity(std::move(key_pair), std::move(certificate)));
}
}
RTC_LOG(LS_INFO) << "Identity generation failed";
RTC_LOG(LS_ERROR) << "Identity generation failed";
return nullptr;
}
@ -256,8 +99,7 @@ std::unique_ptr<SSLIdentity> OpenSSLIdentity::CreateFromPEMStrings(
return nullptr;
}
std::unique_ptr<OpenSSLKeyPair> key_pair(
OpenSSLKeyPair::FromPrivateKeyPEMString(private_key));
auto key_pair = OpenSSLKeyPair::FromPrivateKeyPEMString(private_key);
if (!key_pair) {
RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string.";
return nullptr;
@ -298,8 +140,7 @@ std::unique_ptr<SSLIdentity> OpenSSLIdentity::CreateFromPEMChainStrings(
return nullptr;
}
std::unique_ptr<OpenSSLKeyPair> key_pair(
OpenSSLKeyPair::FromPrivateKeyPEMString(private_key));
auto key_pair = OpenSSLKeyPair::FromPrivateKeyPEMString(private_key);
if (!key_pair) {
RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string.";
return nullptr;
@ -320,8 +161,8 @@ const SSLCertChain& OpenSSLIdentity::cert_chain() const {
std::unique_ptr<SSLIdentity> OpenSSLIdentity::CloneInternal() const {
// We cannot use std::make_unique here because the referenced OpenSSLIdentity
// constructor is private.
return absl::WrapUnique(new OpenSSLIdentity(
absl::WrapUnique(key_pair_->GetReference()), cert_chain_->Clone()));
return absl::WrapUnique(
new OpenSSLIdentity(key_pair_->Clone(), cert_chain_->Clone()));
}
bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) {