Removed sync packet support from NetEq.

I could not find a single place it was used, outside of the unittests
for the sync packet support itself.

Review-Url: https://codereview.webrtc.org/2309303002
Cr-Commit-Position: refs/heads/master@{#14130}
This commit is contained in:
ossu
2016-09-08 04:52:55 -07:00
committed by Commit bot
parent 2c993ce505
commit 17e3fa1fb4
7 changed files with 24 additions and 366 deletions

View File

@ -128,8 +128,7 @@ class NetEq {
kDecodedTooMuch,
kFrameSplitError,
kRedundancySplitError,
kPacketBufferCorruption,
kSyncPacketNotAccepted
kPacketBufferCorruption
};
// Creates a new NetEq object, with parameters set in |config|. The |config|
@ -149,18 +148,6 @@ class NetEq {
rtc::ArrayView<const uint8_t> payload,
uint32_t receive_timestamp) = 0;
// Inserts a sync-packet into packet queue. Sync-packets are decoded to
// silence and are intended to keep AV-sync intact in an event of long packet
// losses when Video NACK is enabled but Audio NACK is not. Clients of NetEq
// might insert sync-packet when they observe that buffer level of NetEq is
// decreasing below a certain threshold, defined by the application.
// Sync-packets should have the same payload type as the last audio payload
// type, i.e. they cannot have DTMF or CNG payload type, nor a codec change
// can be implied by inserting a sync-packet.
// Returns kOk on success, kFail on failure.
virtual int InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
uint32_t receive_timestamp) = 0;
// Instructs NetEq to deliver 10 ms of audio data. The data is written to
// |audio_frame|. All data in |audio_frame| is wiped; |data_|, |speech_type_|,
// |num_channels_|, |sample_rate_hz_|, |samples_per_channel_|, and

View File

@ -137,21 +137,7 @@ int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket");
rtc::CritScope lock(&crit_sect_);
int error =
InsertPacketInternal(rtp_header, payload, receive_timestamp, false);
if (error != 0) {
error_code_ = error;
return kFail;
}
return kOK;
}
int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
uint32_t receive_timestamp) {
rtc::CritScope lock(&crit_sect_);
const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
int error =
InsertPacketInternal(rtp_header, kSyncPayload, receive_timestamp, true);
InsertPacketInternal(rtp_header, payload, receive_timestamp);
if (error != 0) {
error_code_ = error;
return kFail;
@ -522,31 +508,12 @@ Operations NetEqImpl::last_operation_for_test() const {
int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
rtc::ArrayView<const uint8_t> payload,
uint32_t receive_timestamp,
bool is_sync_packet) {
uint32_t receive_timestamp) {
if (payload.empty()) {
LOG_F(LS_ERROR) << "payload is empty";
return kInvalidPointer;
}
// Sanity checks for sync-packets.
if (is_sync_packet) {
if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
decoder_database_->IsRed(rtp_header.header.payloadType) ||
decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
<< static_cast<int>(rtp_header.header.payloadType);
return kSyncPacketNotAccepted;
}
if (first_packet_ || !current_rtp_payload_type_ ||
rtp_header.header.payloadType != *current_rtp_payload_type_ ||
rtp_header.header.ssrc != ssrc_) {
// Even if |current_rtp_payload_type_| is empty, sync-packet isn't
// accepted.
LOG_F(LS_ERROR)
<< "Changing codec, SSRC or first packet with sync-packet.";
return kSyncPacketNotAccepted;
}
}
PacketList packet_list;
RTPHeader main_header;
{
@ -565,7 +532,6 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
packet->primary = true;
// Waiting time will be set upon inserting the packet in the buffer.
RTC_DCHECK(!packet->waiting_time);
packet->sync_packet = is_sync_packet;
// Insert packet in a packet list.
packet_list.push_back(packet);
// Save main payloads header for later.
@ -601,12 +567,10 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
}
// Update RTCP statistics, only for regular packets.
if (!is_sync_packet)
rtcp_.Update(main_header, receive_timestamp);
// Check for RED payload type, and separate payloads into several packets.
if (decoder_database_->IsRed(main_header.payloadType)) {
assert(!is_sync_packet); // We had a sanity check for this.
if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
PacketBuffer::DeleteAllPackets(&packet_list);
return kRedundancySplitError;
@ -637,7 +601,6 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
assert(current_packet);
assert(!current_packet->payload.empty());
if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
assert(!current_packet->sync_packet); // We had a sanity check for this.
DtmfEvent event;
int ret = DtmfBuffer::ParseEvent(current_packet->header.timestamp,
current_packet->payload.data(),
@ -670,8 +633,7 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
}
// Split payloads into smaller chunks. This also verifies that all payloads
// are of a known payload type. SplitAudio() method is protected against
// sync-packets.
// are of a known payload type.
ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
if (ret != PayloadSplitter::kOK) {
PacketBuffer::DeleteAllPackets(&packet_list);
@ -685,9 +647,8 @@ int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
}
}
// Update bandwidth estimate, if the packet is not sync-packet nor comfort
// noise.
if (!packet_list.empty() && !packet_list.front()->sync_packet &&
// Update bandwidth estimate, if the packet is not comfort noise.
if (!packet_list.empty() &&
!decoder_database_->IsComfortNoise(main_header.payloadType)) {
// The list can be empty here if we got nothing but DTMF payloads.
AudioDecoder* decoder =
@ -1462,13 +1423,7 @@ int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation,
packet_list->pop_front();
const size_t payload_length = packet->payload.size();
int decode_length;
if (packet->sync_packet) {
// Decode to silence with the same frame size as the last decode.
memset(&decoded_buffer_[*decoded_length], 0,
decoder_frame_length_ * decoder->Channels() *
sizeof(decoded_buffer_[0]));
decode_length = rtc::checked_cast<int>(decoder_frame_length_);
} else if (!packet->primary) {
if (!packet->primary) {
// This is a redundant payload; call the special decoder method.
decode_length = decoder->DecodeRedundant(
packet->payload.data(), packet->payload.size(), fs_hz_,
@ -1974,9 +1929,6 @@ int NetEqImpl::ExtractPackets(size_t required_samples,
AudioDecoder* decoder = decoder_database_->GetDecoder(
packet->header.payloadType);
if (decoder) {
if (packet->sync_packet) {
packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
} else {
if (packet->primary) {
packet_duration = decoder->PacketDuration(packet->payload.data(),
packet->payload.size());
@ -1985,7 +1937,6 @@ int NetEqImpl::ExtractPackets(size_t required_samples,
packet->payload.data(), packet->payload.size());
stats_.SecondaryDecodedSamples(packet_duration);
}
}
} else if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
LOG(LS_WARNING) << "Unknown payload type "
<< static_cast<int>(packet->header.payloadType);

View File

@ -108,18 +108,6 @@ class NetEqImpl : public webrtc::NetEq {
rtc::ArrayView<const uint8_t> payload,
uint32_t receive_timestamp) override;
// Inserts a sync-packet into packet queue. Sync-packets are decoded to
// silence and are intended to keep AV-sync intact in an event of long packet
// losses when Video NACK is enabled but Audio NACK is not. Clients of NetEq
// might insert sync-packet when they observe that buffer level of NetEq is
// decreasing below a certain threshold, defined by the application.
// Sync-packets should have the same payload type as the last audio payload
// type, i.e. they cannot have DTMF or CNG payload type, nor a codec change
// can be implied by inserting a sync-packet.
// Returns kOk on success, kFail on failure.
int InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
uint32_t receive_timestamp) override;
int GetAudio(AudioFrame* audio_frame, bool* muted) override;
int RegisterPayloadType(NetEqDecoder codec,
@ -223,8 +211,7 @@ class NetEqImpl : public webrtc::NetEq {
// TODO(hlundin): Merge this with InsertPacket above?
int InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
rtc::ArrayView<const uint8_t> payload,
uint32_t receive_timestamp,
bool is_sync_packet)
uint32_t receive_timestamp)
EXCLUSIVE_LOCKS_REQUIRED(crit_sect_);
// Delivers 10 ms of audio data. The data is written to |audio_frame|.

View File

@ -61,20 +61,6 @@ const std::string& PlatformChecksum(const std::string& checksum_general,
#endif // WEBRTC_WIN
}
bool IsAllZero(const int16_t* buf, size_t buf_length) {
bool all_zero = true;
for (size_t n = 0; n < buf_length && all_zero; ++n)
all_zero = buf[n] == 0;
return all_zero;
}
bool IsAllNonZero(const int16_t* buf, size_t buf_length) {
bool all_non_zero = true;
for (size_t n = 0; n < buf_length && all_non_zero; ++n)
all_non_zero = buf[n] != 0;
return all_non_zero;
}
#ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT
void Convert(const webrtc::NetEqNetworkStatistics& stats_raw,
webrtc::neteq_unittest::NetEqNetworkStatistics* stats) {
@ -1079,232 +1065,6 @@ TEST_F(NetEqBgnTestFade, RunTest) {
CheckBgn(32000);
}
#if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX)
#define MAYBE_SyncPacketInsert SyncPacketInsert
#else
#define MAYBE_SyncPacketInsert DISABLED_SyncPacketInsert
#endif
TEST_F(NetEqDecodingTest, MAYBE_SyncPacketInsert) {
WebRtcRTPHeader rtp_info;
uint32_t receive_timestamp = 0;
// For the readability use the following payloads instead of the defaults of
// this test.
uint8_t kPcm16WbPayloadType = 1;
uint8_t kCngNbPayloadType = 2;
uint8_t kCngWbPayloadType = 3;
uint8_t kCngSwb32PayloadType = 4;
uint8_t kCngSwb48PayloadType = 5;
uint8_t kAvtPayloadType = 6;
uint8_t kRedPayloadType = 7;
uint8_t kIsacPayloadType = 9; // Payload type 8 is already registered.
// Register decoders.
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderPCM16Bwb,
"pcm16-wb", kPcm16WbPayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderCNGnb,
"cng-nb", kCngNbPayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderCNGwb,
"cng-wb", kCngWbPayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderCNGswb32kHz,
"cng-swb32", kCngSwb32PayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderCNGswb48kHz,
"cng-swb48", kCngSwb48PayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderAVT, "avt",
kAvtPayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderRED, "red",
kRedPayloadType));
ASSERT_EQ(0, neteq_->RegisterPayloadType(NetEqDecoder::kDecoderISAC, "isac",
kIsacPayloadType));
PopulateRtpInfo(0, 0, &rtp_info);
rtp_info.header.payloadType = kPcm16WbPayloadType;
// The first packet injected cannot be sync-packet.
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
// Payload length of 10 ms PCM16 16 kHz.
const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
uint8_t payload[kPayloadBytes] = {0};
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp));
// Next packet. Last packet contained 10 ms audio.
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
// Unacceptable payload types CNG, AVT (DTMF), RED.
rtp_info.header.payloadType = kCngNbPayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.payloadType = kCngWbPayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.payloadType = kCngSwb32PayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.payloadType = kCngSwb48PayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.payloadType = kAvtPayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.payloadType = kRedPayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
// Change of codec cannot be initiated with a sync packet.
rtp_info.header.payloadType = kIsacPayloadType;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
// Change of SSRC is not allowed with a sync packet.
rtp_info.header.payloadType = kPcm16WbPayloadType;
++rtp_info.header.ssrc;
EXPECT_EQ(-1, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
--rtp_info.header.ssrc;
EXPECT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
}
// First insert several noise like packets, then sync-packets. Decoding all
// packets should not produce error, statistics should not show any packet loss
// and sync-packets should decode to zero.
// TODO(turajs) we will have a better test if we have a referece NetEq, and
// when Sync packets are inserted in "test" NetEq we insert all-zero payload
// in reference NetEq and compare the output of those two.
TEST_F(NetEqDecodingTest, SyncPacketDecode) {
WebRtcRTPHeader rtp_info;
PopulateRtpInfo(0, 0, &rtp_info);
const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
uint8_t payload[kPayloadBytes];
AudioFrame output;
int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1;
for (size_t n = 0; n < kPayloadBytes; ++n) {
payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence.
}
// Insert some packets which decode to noise. We are not interested in
// actual decoded values.
uint32_t receive_timestamp = 0;
bool muted;
for (int n = 0; n < 100; ++n) {
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp));
ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_);
ASSERT_EQ(1u, output.num_channels_);
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
const int kNumSyncPackets = 10;
// Make sure sufficient number of sync packets are inserted that we can
// conduct a test.
ASSERT_GT(kNumSyncPackets, algorithmic_frame_delay);
// Insert sync-packets, the decoded sequence should be all-zero.
for (int n = 0; n < kNumSyncPackets; ++n) {
ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
ASSERT_FALSE(muted);
ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_);
ASSERT_EQ(1u, output.num_channels_);
if (n > algorithmic_frame_delay) {
EXPECT_TRUE(IsAllZero(
output.data_, output.samples_per_channel_ * output.num_channels_));
}
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
// We insert regular packets, if sync packet are not correctly buffered then
// network statistics would show some packet loss.
for (int n = 0; n <= algorithmic_frame_delay + 10; ++n) {
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp));
ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
ASSERT_FALSE(muted);
if (n >= algorithmic_frame_delay + 1) {
// Expect that this frame contain samples from regular RTP.
EXPECT_TRUE(IsAllNonZero(
output.data_, output.samples_per_channel_ * output.num_channels_));
}
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
NetEqNetworkStatistics network_stats;
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
// Expecting a "clean" network.
EXPECT_EQ(0, network_stats.packet_loss_rate);
EXPECT_EQ(0, network_stats.expand_rate);
EXPECT_EQ(0, network_stats.accelerate_rate);
EXPECT_LE(network_stats.preemptive_rate, 150);
}
// Test if the size of the packet buffer reported correctly when containing
// sync packets. Also, test if network packets override sync packets. That is to
// prefer decoding a network packet to a sync packet, if both have same sequence
// number and timestamp.
TEST_F(NetEqDecodingTest, SyncPacketBufferSizeAndOverridenByNetworkPackets) {
WebRtcRTPHeader rtp_info;
PopulateRtpInfo(0, 0, &rtp_info);
const size_t kPayloadBytes = kBlockSize16kHz * sizeof(int16_t);
uint8_t payload[kPayloadBytes];
AudioFrame output;
for (size_t n = 0; n < kPayloadBytes; ++n) {
payload[n] = (rand() & 0xF0) + 1; // Non-zero random sequence.
}
// Insert some packets which decode to noise. We are not interested in
// actual decoded values.
uint32_t receive_timestamp = 0;
int algorithmic_frame_delay = algorithmic_delay_ms_ / 10 + 1;
bool muted;
for (int n = 0; n < algorithmic_frame_delay; ++n) {
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp));
ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_);
ASSERT_EQ(1u, output.num_channels_);
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
const int kNumSyncPackets = 10;
WebRtcRTPHeader first_sync_packet_rtp_info;
memcpy(&first_sync_packet_rtp_info, &rtp_info, sizeof(rtp_info));
// Insert sync-packets, but no decoding.
for (int n = 0; n < kNumSyncPackets; ++n) {
ASSERT_EQ(0, neteq_->InsertSyncPacket(rtp_info, receive_timestamp));
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
NetEqNetworkStatistics network_stats;
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
EXPECT_EQ(kNumSyncPackets * 10 + algorithmic_delay_ms_,
network_stats.current_buffer_size_ms);
// Rewind |rtp_info| to that of the first sync packet.
memcpy(&rtp_info, &first_sync_packet_rtp_info, sizeof(rtp_info));
// Insert.
for (int n = 0; n < kNumSyncPackets; ++n) {
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, receive_timestamp));
rtp_info.header.sequenceNumber++;
rtp_info.header.timestamp += kBlockSize16kHz;
receive_timestamp += kBlockSize16kHz;
}
// Decode.
for (int n = 0; n < kNumSyncPackets; ++n) {
ASSERT_EQ(0, neteq_->GetAudio(&output, &muted));
ASSERT_FALSE(muted);
ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_);
ASSERT_EQ(1u, output.num_channels_);
EXPECT_TRUE(IsAllNonZero(
output.data_, output.samples_per_channel_ * output.num_channels_));
}
}
void NetEqDecodingTest::WrapTest(uint16_t start_seq_no,
uint32_t start_timestamp,
const std::set<uint16_t>& drop_seq_numbers,

View File

@ -27,44 +27,28 @@ struct Packet {
// Datagram excluding RTP header and header extension.
rtc::Buffer payload;
bool primary = true; // Primary, i.e., not redundant payload.
bool sync_packet = false;
std::unique_ptr<TickTimer::Stopwatch> waiting_time;
Packet();
~Packet();
// Comparison operators. Establish a packet ordering based on (1) timestamp,
// (2) sequence number, (3) regular packet vs sync-packet and (4) redundancy.
// (2) sequence number and (3) redundancy.
// Timestamp and sequence numbers are compared taking wrap-around into
// account. If both timestamp and sequence numbers are identical and one of
// the packets is sync-packet, the regular packet is considered earlier. For
// two regular packets with the same sequence number and timestamp a primary
// payload is considered "smaller" than a secondary.
// account. For two packets with the same sequence number and timestamp a
// primary payload is considered "smaller" than a secondary.
bool operator==(const Packet& rhs) const {
return (this->header.timestamp == rhs.header.timestamp &&
this->header.sequenceNumber == rhs.header.sequenceNumber &&
this->primary == rhs.primary &&
this->sync_packet == rhs.sync_packet);
this->primary == rhs.primary);
}
bool operator!=(const Packet& rhs) const { return !operator==(rhs); }
bool operator<(const Packet& rhs) const {
if (this->header.timestamp == rhs.header.timestamp) {
if (this->header.sequenceNumber == rhs.header.sequenceNumber) {
// Timestamp and sequence numbers are identical. A sync packet should
// be recognized "larger" (i.e. "later") compared to a "network packet"
// (regular packet from network not sync-packet). If none of the packets
// are sync-packets, then deem the left hand side to be "smaller"
// (i.e., "earlier") if it is primary, and right hand side is not.
//
// The condition on sync packets to be larger than "network packets,"
// given same RTP sequence number and timestamp, guarantees that a
// "network packet" to be inserted in an earlier position into
// |packet_buffer_| compared to a sync packet of same timestamp and
// sequence number.
if (rhs.sync_packet)
return true;
if (this->sync_packet)
return false;
// Timestamp and sequence numbers are identical - deem the left
// hand side to be "smaller" (i.e., "earlier") if it is primary, and
// right hand side is not.
return (this->primary && !rhs.primary);
}
return (static_cast<uint16_t>(rhs.header.sequenceNumber

View File

@ -273,7 +273,7 @@ size_t PacketBuffer::NumSamplesInBuffer(DecoderDatabase* decoder_database,
Packet* packet = (*it);
AudioDecoder* decoder =
decoder_database->GetDecoder(packet->header.payloadType);
if (decoder && !packet->sync_packet) {
if (decoder) {
if (!packet->primary) {
continue;
}

View File

@ -137,11 +137,6 @@ int PayloadSplitter::SplitFec(PacketList* packet_list,
LOG(LS_WARNING) << "SplitFec unknown payload type";
return kUnknownPayloadType;
}
// No splitting for a sync-packet.
if (packet->sync_packet) {
++it;
continue;
}
// Not an FEC packet.
AudioDecoder* decoder = decoder_database->GetDecoder(payload_type);
@ -169,7 +164,6 @@ int PayloadSplitter::SplitFec(PacketList* packet_list,
new_packet->header.timestamp -= duration;
new_packet->payload.SetData(packet->payload);
new_packet->primary = false;
new_packet->sync_packet = packet->sync_packet;
// Waiting time should not be set here.
RTC_DCHECK(!packet->waiting_time);
@ -231,11 +225,6 @@ int PayloadSplitter::SplitAudio(PacketList* packet_list,
LOG(LS_WARNING) << "SplitAudio unknown payload type";
return kUnknownPayloadType;
}
// No splitting for a sync-packet.
if (packet->sync_packet) {
++it;
continue;
}
PacketList new_packets;
switch (info->codec_type) {
case NetEqDecoder::kDecoderPCMu: