Optimizations and refactoring of the APM 3-band split filter
This CL refactors and optimizes the 3-band split-filter in APM, which is a very computationally complex component. Beyond optimizing the code, the filter coefficients are also quantized to avoid denormals. The changes reduces the complexity of the split filter by about 30-50%. The CL has been tested for bitexactness on a number of aecdump recordings. (the CL also removes the now unused code for the sparse_fir_filter) Bug: webrtc:6181 Change-Id: If45f8d1f189c6812ccb03721156c77eb68181211 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168189 Reviewed-by: Sam Zackrisson <saza@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Commit-Queue: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#30592}
This commit is contained in:
@ -32,8 +32,6 @@ rtc_library("common_audio") {
|
||||
"resampler/sinc_resampler.cc",
|
||||
"smoothing_filter.cc",
|
||||
"smoothing_filter.h",
|
||||
"sparse_fir_filter.cc",
|
||||
"sparse_fir_filter.h",
|
||||
"vad/include/vad.h",
|
||||
"vad/vad.cc",
|
||||
"wav_file.cc",
|
||||
@ -47,6 +45,7 @@ rtc_library("common_audio") {
|
||||
deps = [
|
||||
":common_audio_c",
|
||||
":sinc_resampler",
|
||||
"../api:array_view",
|
||||
"../rtc_base:checks",
|
||||
"../rtc_base:gtest_prod",
|
||||
"../rtc_base:rtc_base_approved",
|
||||
@ -331,7 +330,6 @@ if (rtc_include_tests) {
|
||||
"signal_processing/real_fft_unittest.cc",
|
||||
"signal_processing/signal_processing_unittest.cc",
|
||||
"smoothing_filter_unittest.cc",
|
||||
"sparse_fir_filter_unittest.cc",
|
||||
"vad/vad_core_unittest.cc",
|
||||
"vad/vad_filterbank_unittest.cc",
|
||||
"vad/vad_gmm_unittest.cc",
|
||||
|
@ -14,7 +14,9 @@
|
||||
#include <string.h>
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "api/array_view.h"
|
||||
#include "common_audio/include/audio_util.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/gtest_prod_util.h"
|
||||
@ -48,40 +50,60 @@ class ChannelBuffer {
|
||||
num_frames_per_band_(num_frames / num_bands),
|
||||
num_allocated_channels_(num_channels),
|
||||
num_channels_(num_channels),
|
||||
num_bands_(num_bands) {
|
||||
for (size_t i = 0; i < num_allocated_channels_; ++i) {
|
||||
for (size_t j = 0; j < num_bands_; ++j) {
|
||||
channels_[j * num_allocated_channels_ + i] =
|
||||
&data_[i * num_frames_ + j * num_frames_per_band_];
|
||||
bands_[i * num_bands_ + j] = channels_[j * num_allocated_channels_ + i];
|
||||
num_bands_(num_bands),
|
||||
bands_view_(num_allocated_channels_,
|
||||
std::vector<rtc::ArrayView<T>>(num_bands_)),
|
||||
channels_view_(
|
||||
num_bands_,
|
||||
std::vector<rtc::ArrayView<T>>(num_allocated_channels_)) {
|
||||
// Temporarily cast away const_ness to allow populating the array views.
|
||||
auto* bands_view =
|
||||
const_cast<std::vector<std::vector<rtc::ArrayView<T>>>*>(&bands_view_);
|
||||
auto* channels_view =
|
||||
const_cast<std::vector<std::vector<rtc::ArrayView<T>>>*>(
|
||||
&channels_view_);
|
||||
|
||||
for (size_t ch = 0; ch < num_allocated_channels_; ++ch) {
|
||||
for (size_t band = 0; band < num_bands_; ++band) {
|
||||
(*channels_view)[band][ch] = rtc::ArrayView<T>(
|
||||
&data_[ch * num_frames_ + band * num_frames_per_band_],
|
||||
num_frames_per_band_);
|
||||
(*bands_view)[ch][band] = channels_view_[band][ch];
|
||||
channels_[band * num_allocated_channels_ + ch] =
|
||||
channels_view_[band][ch].data();
|
||||
bands_[ch * num_bands_ + band] =
|
||||
channels_[band * num_allocated_channels_ + ch];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Returns a pointer array to the full-band channels (or lower band channels).
|
||||
// Usage:
|
||||
// channels()[channel][sample].
|
||||
// Where:
|
||||
// 0 <= channel < |num_allocated_channels_|
|
||||
// 0 <= sample < |num_frames_|
|
||||
T* const* channels() { return channels(0); }
|
||||
const T* const* channels() const { return channels(0); }
|
||||
|
||||
// Returns a pointer array to the channels for a specific band.
|
||||
// Usage:
|
||||
// channels(band)[channel][sample].
|
||||
// Returns a pointer array to the channels.
|
||||
// If band is explicitly specificed, the channels for a specific band are
|
||||
// returned and the usage becomes: channels(band)[channel][sample].
|
||||
// Where:
|
||||
// 0 <= band < |num_bands_|
|
||||
// 0 <= channel < |num_allocated_channels_|
|
||||
// 0 <= sample < |num_frames_per_band_|
|
||||
const T* const* channels(size_t band) const {
|
||||
|
||||
// If band is not explicitly specified, the full-band channels (or lower band
|
||||
// channels) are returned and the usage becomes: channels()[channel][sample].
|
||||
// Where:
|
||||
// 0 <= channel < |num_allocated_channels_|
|
||||
// 0 <= sample < |num_frames_|
|
||||
const T* const* channels(size_t band = 0) const {
|
||||
RTC_DCHECK_LT(band, num_bands_);
|
||||
return &channels_[band * num_allocated_channels_];
|
||||
}
|
||||
T* const* channels(size_t band) {
|
||||
T* const* channels(size_t band = 0) {
|
||||
const ChannelBuffer<T>* t = this;
|
||||
return const_cast<T* const*>(t->channels(band));
|
||||
}
|
||||
rtc::ArrayView<const rtc::ArrayView<T>> channels_view(size_t band = 0) {
|
||||
return channels_view_[band];
|
||||
}
|
||||
rtc::ArrayView<const rtc::ArrayView<T>> channels_view(size_t band = 0) const {
|
||||
return channels_view_[band];
|
||||
}
|
||||
|
||||
// Returns a pointer array to the bands for a specific channel.
|
||||
// Usage:
|
||||
@ -100,6 +122,13 @@ class ChannelBuffer {
|
||||
return const_cast<T* const*>(t->bands(channel));
|
||||
}
|
||||
|
||||
rtc::ArrayView<const rtc::ArrayView<T>> bands_view(size_t channel) {
|
||||
return bands_view_[channel];
|
||||
}
|
||||
rtc::ArrayView<const rtc::ArrayView<T>> bands_view(size_t channel) const {
|
||||
return bands_view_[channel];
|
||||
}
|
||||
|
||||
// Sets the |slice| pointers to the |start_frame| position for each channel.
|
||||
// Returns |slice| for convenience.
|
||||
const T* const* Slice(T** slice, size_t start_frame) const {
|
||||
@ -140,6 +169,8 @@ class ChannelBuffer {
|
||||
// Number of channels the user sees.
|
||||
size_t num_channels_;
|
||||
const size_t num_bands_;
|
||||
const std::vector<std::vector<rtc::ArrayView<T>>> bands_view_;
|
||||
const std::vector<std::vector<rtc::ArrayView<T>>> channels_view_;
|
||||
};
|
||||
|
||||
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
||||
|
@ -1,60 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "common_audio/sparse_fir_filter.h"
|
||||
|
||||
#include "rtc_base/checks.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
SparseFIRFilter::SparseFIRFilter(const float* nonzero_coeffs,
|
||||
size_t num_nonzero_coeffs,
|
||||
size_t sparsity,
|
||||
size_t offset)
|
||||
: sparsity_(sparsity),
|
||||
offset_(offset),
|
||||
nonzero_coeffs_(nonzero_coeffs, nonzero_coeffs + num_nonzero_coeffs),
|
||||
state_(sparsity_ * (num_nonzero_coeffs - 1) + offset_, 0.f) {
|
||||
RTC_CHECK_GE(num_nonzero_coeffs, 1);
|
||||
RTC_CHECK_GE(sparsity, 1);
|
||||
}
|
||||
|
||||
SparseFIRFilter::~SparseFIRFilter() = default;
|
||||
|
||||
void SparseFIRFilter::Filter(const float* in, size_t length, float* out) {
|
||||
// Convolves the input signal |in| with the filter kernel |nonzero_coeffs_|
|
||||
// taking into account the previous state.
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
out[i] = 0.f;
|
||||
size_t j;
|
||||
for (j = 0; i >= j * sparsity_ + offset_ && j < nonzero_coeffs_.size();
|
||||
++j) {
|
||||
out[i] += in[i - j * sparsity_ - offset_] * nonzero_coeffs_[j];
|
||||
}
|
||||
for (; j < nonzero_coeffs_.size(); ++j) {
|
||||
out[i] += state_[i + (nonzero_coeffs_.size() - j - 1) * sparsity_] *
|
||||
nonzero_coeffs_[j];
|
||||
}
|
||||
}
|
||||
|
||||
// Update current state.
|
||||
if (!state_.empty()) {
|
||||
if (length >= state_.size()) {
|
||||
std::memcpy(&state_[0], &in[length - state_.size()],
|
||||
state_.size() * sizeof(*in));
|
||||
} else {
|
||||
std::memmove(&state_[0], &state_[length],
|
||||
(state_.size() - length) * sizeof(state_[0]));
|
||||
std::memcpy(&state_[state_.size() - length], in, length * sizeof(*in));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
@ -1,53 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef COMMON_AUDIO_SPARSE_FIR_FILTER_H_
|
||||
#define COMMON_AUDIO_SPARSE_FIR_FILTER_H_
|
||||
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
|
||||
#include "rtc_base/constructor_magic.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
// A Finite Impulse Response filter implementation which takes advantage of a
|
||||
// sparse structure with uniformly distributed non-zero coefficients.
|
||||
class SparseFIRFilter final {
|
||||
public:
|
||||
// |num_nonzero_coeffs| is the number of non-zero coefficients,
|
||||
// |nonzero_coeffs|. They are assumed to be uniformly distributed every
|
||||
// |sparsity| samples and with an initial |offset|. The rest of the filter
|
||||
// coefficients will be assumed zeros. For example, with sparsity = 3, and
|
||||
// offset = 1 the filter coefficients will be:
|
||||
// B = [0 coeffs[0] 0 0 coeffs[1] 0 0 coeffs[2] ... ]
|
||||
// All initial state values will be zeros.
|
||||
SparseFIRFilter(const float* nonzero_coeffs,
|
||||
size_t num_nonzero_coeffs,
|
||||
size_t sparsity,
|
||||
size_t offset);
|
||||
~SparseFIRFilter();
|
||||
|
||||
// Filters the |in| data supplied.
|
||||
// |out| must be previously allocated and it must be at least of |length|.
|
||||
void Filter(const float* in, size_t length, float* out);
|
||||
|
||||
private:
|
||||
const size_t sparsity_;
|
||||
const size_t offset_;
|
||||
const std::vector<float> nonzero_coeffs_;
|
||||
std::vector<float> state_;
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(SparseFIRFilter);
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // COMMON_AUDIO_SPARSE_FIR_FILTER_H_
|
@ -1,219 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "common_audio/sparse_fir_filter.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "common_audio/fir_filter.h"
|
||||
#include "common_audio/fir_filter_factory.h"
|
||||
#include "rtc_base/arraysize.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
static const float kCoeffs[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f};
|
||||
static const float kInput[] = {1.f, 2.f, 3.f, 4.f, 5.f,
|
||||
6.f, 7.f, 8.f, 9.f, 10.f};
|
||||
|
||||
template <size_t N>
|
||||
void VerifyOutput(const float (&expected_output)[N], const float (&output)[N]) {
|
||||
EXPECT_EQ(0, memcmp(expected_output, output, sizeof(output)));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TEST(SparseFIRFilterTest, FilterAsIdentity) {
|
||||
const float kCoeff = 1.f;
|
||||
const size_t kNumCoeff = 1;
|
||||
const size_t kSparsity = 3;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
|
||||
filter.Filter(kInput, arraysize(kInput), output);
|
||||
VerifyOutput(kInput, output);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, SameOutputForScalarCoefficientAndDifferentSparsity) {
|
||||
const float kCoeff = 2.f;
|
||||
const size_t kNumCoeff = 1;
|
||||
const size_t kLowSparsity = 1;
|
||||
const size_t kHighSparsity = 7;
|
||||
const size_t kOffset = 0;
|
||||
float low_sparsity_output[arraysize(kInput)];
|
||||
float high_sparsity_output[arraysize(kInput)];
|
||||
SparseFIRFilter low_sparsity_filter(&kCoeff, kNumCoeff, kLowSparsity,
|
||||
kOffset);
|
||||
SparseFIRFilter high_sparsity_filter(&kCoeff, kNumCoeff, kHighSparsity,
|
||||
kOffset);
|
||||
low_sparsity_filter.Filter(kInput, arraysize(kInput), low_sparsity_output);
|
||||
high_sparsity_filter.Filter(kInput, arraysize(kInput), high_sparsity_output);
|
||||
VerifyOutput(low_sparsity_output, high_sparsity_output);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, FilterUsedAsScalarMultiplication) {
|
||||
const float kCoeff = 5.f;
|
||||
const size_t kNumCoeff = 1;
|
||||
const size_t kSparsity = 5;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
|
||||
filter.Filter(kInput, arraysize(kInput), output);
|
||||
EXPECT_FLOAT_EQ(5.f, output[0]);
|
||||
EXPECT_FLOAT_EQ(20.f, output[3]);
|
||||
EXPECT_FLOAT_EQ(25.f, output[4]);
|
||||
EXPECT_FLOAT_EQ(50.f, output[arraysize(kInput) - 1]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, FilterUsedAsInputShifting) {
|
||||
const float kCoeff = 1.f;
|
||||
const size_t kNumCoeff = 1;
|
||||
const size_t kSparsity = 1;
|
||||
const size_t kOffset = 4;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(&kCoeff, kNumCoeff, kSparsity, kOffset);
|
||||
filter.Filter(kInput, arraysize(kInput), output);
|
||||
EXPECT_FLOAT_EQ(0.f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.f, output[3]);
|
||||
EXPECT_FLOAT_EQ(1.f, output[4]);
|
||||
EXPECT_FLOAT_EQ(2.f, output[5]);
|
||||
EXPECT_FLOAT_EQ(6.f, output[arraysize(kInput) - 1]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, FilterUsedAsArbitraryWeighting) {
|
||||
const size_t kSparsity = 2;
|
||||
const size_t kOffset = 1;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
|
||||
filter.Filter(kInput, arraysize(kInput), output);
|
||||
EXPECT_FLOAT_EQ(0.f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.9f, output[3]);
|
||||
EXPECT_FLOAT_EQ(1.4f, output[4]);
|
||||
EXPECT_FLOAT_EQ(2.4f, output[5]);
|
||||
EXPECT_FLOAT_EQ(8.61f, output[arraysize(kInput) - 1]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, FilterInLengthLesserOrEqualToCoefficientsLength) {
|
||||
const size_t kSparsity = 1;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
|
||||
filter.Filter(kInput, 2, output);
|
||||
EXPECT_FLOAT_EQ(0.2f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.7f, output[1]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, MultipleFilterCalls) {
|
||||
const size_t kSparsity = 1;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kInput)];
|
||||
SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
|
||||
filter.Filter(kInput, 2, output);
|
||||
EXPECT_FLOAT_EQ(0.2f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.7f, output[1]);
|
||||
filter.Filter(kInput, 2, output);
|
||||
EXPECT_FLOAT_EQ(1.3f, output[0]);
|
||||
EXPECT_FLOAT_EQ(2.4f, output[1]);
|
||||
filter.Filter(kInput, 2, output);
|
||||
EXPECT_FLOAT_EQ(2.81f, output[0]);
|
||||
EXPECT_FLOAT_EQ(2.62f, output[1]);
|
||||
filter.Filter(kInput, 2, output);
|
||||
EXPECT_FLOAT_EQ(2.81f, output[0]);
|
||||
EXPECT_FLOAT_EQ(2.62f, output[1]);
|
||||
filter.Filter(&kInput[3], 3, output);
|
||||
EXPECT_FLOAT_EQ(3.41f, output[0]);
|
||||
EXPECT_FLOAT_EQ(4.12f, output[1]);
|
||||
EXPECT_FLOAT_EQ(6.21f, output[2]);
|
||||
filter.Filter(&kInput[3], 3, output);
|
||||
EXPECT_FLOAT_EQ(8.12f, output[0]);
|
||||
EXPECT_FLOAT_EQ(9.14f, output[1]);
|
||||
EXPECT_FLOAT_EQ(9.45f, output[2]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, VerifySampleBasedVsBlockBasedFiltering) {
|
||||
const size_t kSparsity = 3;
|
||||
const size_t kOffset = 1;
|
||||
float output_block_based[arraysize(kInput)];
|
||||
SparseFIRFilter filter_block(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
|
||||
filter_block.Filter(kInput, arraysize(kInput), output_block_based);
|
||||
float output_sample_based[arraysize(kInput)];
|
||||
SparseFIRFilter filter_sample(kCoeffs, arraysize(kCoeffs), kSparsity,
|
||||
kOffset);
|
||||
for (size_t i = 0; i < arraysize(kInput); ++i)
|
||||
filter_sample.Filter(&kInput[i], 1, &output_sample_based[i]);
|
||||
VerifyOutput(output_block_based, output_sample_based);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, SimpleHighPassFilter) {
|
||||
const size_t kSparsity = 2;
|
||||
const size_t kOffset = 2;
|
||||
const float kHPCoeffs[] = {1.f, -1.f};
|
||||
const float kConstantInput[] = {1.f, 1.f, 1.f, 1.f, 1.f,
|
||||
1.f, 1.f, 1.f, 1.f, 1.f};
|
||||
float output[arraysize(kConstantInput)];
|
||||
SparseFIRFilter filter(kHPCoeffs, arraysize(kHPCoeffs), kSparsity, kOffset);
|
||||
filter.Filter(kConstantInput, arraysize(kConstantInput), output);
|
||||
EXPECT_FLOAT_EQ(0.f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.f, output[1]);
|
||||
EXPECT_FLOAT_EQ(1.f, output[2]);
|
||||
EXPECT_FLOAT_EQ(1.f, output[3]);
|
||||
for (size_t i = kSparsity + kOffset; i < arraysize(kConstantInput); ++i)
|
||||
EXPECT_FLOAT_EQ(0.f, output[i]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, SimpleLowPassFilter) {
|
||||
const size_t kSparsity = 2;
|
||||
const size_t kOffset = 2;
|
||||
const float kLPCoeffs[] = {1.f, 1.f};
|
||||
const float kHighFrequencyInput[] = {1.f, 1.f, -1.f, -1.f, 1.f,
|
||||
1.f, -1.f, -1.f, 1.f, 1.f};
|
||||
float output[arraysize(kHighFrequencyInput)];
|
||||
SparseFIRFilter filter(kLPCoeffs, arraysize(kLPCoeffs), kSparsity, kOffset);
|
||||
filter.Filter(kHighFrequencyInput, arraysize(kHighFrequencyInput), output);
|
||||
EXPECT_FLOAT_EQ(0.f, output[0]);
|
||||
EXPECT_FLOAT_EQ(0.f, output[1]);
|
||||
EXPECT_FLOAT_EQ(1.f, output[2]);
|
||||
EXPECT_FLOAT_EQ(1.f, output[3]);
|
||||
for (size_t i = kSparsity + kOffset; i < arraysize(kHighFrequencyInput); ++i)
|
||||
EXPECT_FLOAT_EQ(0.f, output[i]);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, SameOutputWhenSwappedCoefficientsAndInput) {
|
||||
const size_t kSparsity = 1;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kCoeffs)];
|
||||
float output_swapped[arraysize(kCoeffs)];
|
||||
SparseFIRFilter filter(kCoeffs, arraysize(kCoeffs), kSparsity, kOffset);
|
||||
// Use arraysize(kCoeffs) for in_length to get same-length outputs.
|
||||
filter.Filter(kInput, arraysize(kCoeffs), output);
|
||||
SparseFIRFilter filter_swapped(kInput, arraysize(kCoeffs), kSparsity,
|
||||
kOffset);
|
||||
filter_swapped.Filter(kCoeffs, arraysize(kCoeffs), output_swapped);
|
||||
VerifyOutput(output, output_swapped);
|
||||
}
|
||||
|
||||
TEST(SparseFIRFilterTest, SameOutputAsFIRFilterWhenSparsityOneAndOffsetZero) {
|
||||
const size_t kSparsity = 1;
|
||||
const size_t kOffset = 0;
|
||||
float output[arraysize(kInput)];
|
||||
float sparse_output[arraysize(kInput)];
|
||||
std::unique_ptr<FIRFilter> filter(
|
||||
CreateFirFilter(kCoeffs, arraysize(kCoeffs), arraysize(kInput)));
|
||||
SparseFIRFilter sparse_filter(kCoeffs, arraysize(kCoeffs), kSparsity,
|
||||
kOffset);
|
||||
filter->Filter(kInput, arraysize(kInput), output);
|
||||
sparse_filter.Filter(kInput, arraysize(kInput), sparse_output);
|
||||
for (size_t i = 0; i < arraysize(kInput); ++i) {
|
||||
EXPECT_FLOAT_EQ(output[i], sparse_output[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
Reference in New Issue
Block a user