Refactor DelayManager into separate Histogram class and make it injectable for testing purposes.

Change-Id: I98aa3f992169e598fc1a3dd850400183395fe1fe
Bug: webrtc:10333
Reviewed-on: https://webrtc-review.googlesource.com/c/123445
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Reviewed-by: Minyue Li <minyue@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26797}
This commit is contained in:
Jakob Ivarsson
2019-02-21 15:42:31 +01:00
committed by Commit Bot
parent fa52efadf1
commit 1eb3d7ea0f
12 changed files with 550 additions and 353 deletions

View File

@ -943,6 +943,8 @@ rtc_static_library("neteq") {
"neteq/expand.h",
"neteq/expand_uma_logger.cc",
"neteq/expand_uma_logger.h",
"neteq/histogram.cc",
"neteq/histogram.h",
"neteq/include/neteq.h",
"neteq/merge.cc",
"neteq/merge.h",
@ -999,6 +1001,7 @@ rtc_static_library("neteq") {
"../../rtc_base/system:fallthrough",
"../../system_wrappers:field_trial",
"../../system_wrappers:metrics",
"//third_party/abseil-cpp/absl/memory",
"//third_party/abseil-cpp/absl/strings",
"//third_party/abseil-cpp/absl/types:optional",
]
@ -1969,6 +1972,7 @@ if (rtc_include_tests) {
"neteq/dtmf_buffer_unittest.cc",
"neteq/dtmf_tone_generator_unittest.cc",
"neteq/expand_unittest.cc",
"neteq/histogram_unittest.cc",
"neteq/merge_unittest.cc",
"neteq/mock/mock_buffer_level_filter.h",
"neteq/mock/mock_decoder_database.h",
@ -1977,6 +1981,7 @@ if (rtc_include_tests) {
"neteq/mock/mock_dtmf_buffer.h",
"neteq/mock/mock_dtmf_tone_generator.h",
"neteq/mock/mock_expand.h",
"neteq/mock/mock_histogram.h",
"neteq/mock/mock_packet_buffer.h",
"neteq/mock/mock_red_payload_splitter.h",
"neteq/mock/mock_statistics_calculator.h",

View File

@ -31,11 +31,12 @@ TEST(DecisionLogic, CreateAndDestroy) {
TickTimer tick_timer;
PacketBuffer packet_buffer(10, &tick_timer);
DelayPeakDetector delay_peak_detector(&tick_timer, false);
DelayManager delay_manager(240, 0, false, &delay_peak_detector, &tick_timer);
auto delay_manager =
DelayManager::Create(240, 0, false, &delay_peak_detector, &tick_timer);
BufferLevelFilter buffer_level_filter;
DecisionLogic* logic = DecisionLogic::Create(
fs_hz, output_size_samples, false, &decoder_database, packet_buffer,
&delay_manager, &buffer_level_filter, &tick_timer);
delay_manager.get(), &buffer_level_filter, &tick_timer);
delete logic;
}
@ -48,14 +49,15 @@ TEST(DecisionLogic, PostponeDecodingAfterExpansionSettings) {
TickTimer tick_timer;
PacketBuffer packet_buffer(10, &tick_timer);
DelayPeakDetector delay_peak_detector(&tick_timer, false);
DelayManager delay_manager(240, 0, false, &delay_peak_detector, &tick_timer);
auto delay_manager =
DelayManager::Create(240, 0, false, &delay_peak_detector, &tick_timer);
BufferLevelFilter buffer_level_filter;
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqPostponeDecodingAfterExpand/Enabled/");
DecisionLogic logic(kFsHz, kOutputSizeSamples, false, &decoder_database,
packet_buffer, &delay_manager, &buffer_level_filter,
&tick_timer);
packet_buffer, delay_manager.get(),
&buffer_level_filter, &tick_timer);
EXPECT_EQ(kDefaultPostponeDecodingLevel,
logic.postpone_decoding_level_for_test());
}
@ -63,24 +65,24 @@ TEST(DecisionLogic, PostponeDecodingAfterExpansionSettings) {
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqPostponeDecodingAfterExpand/Enabled-65/");
DecisionLogic logic(kFsHz, kOutputSizeSamples, false, &decoder_database,
packet_buffer, &delay_manager, &buffer_level_filter,
&tick_timer);
packet_buffer, delay_manager.get(),
&buffer_level_filter, &tick_timer);
EXPECT_EQ(65, logic.postpone_decoding_level_for_test());
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqPostponeDecodingAfterExpand/Disabled/");
DecisionLogic logic(kFsHz, kOutputSizeSamples, false, &decoder_database,
packet_buffer, &delay_manager, &buffer_level_filter,
&tick_timer);
packet_buffer, delay_manager.get(),
&buffer_level_filter, &tick_timer);
EXPECT_EQ(0, logic.postpone_decoding_level_for_test());
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqPostponeDecodingAfterExpand/Enabled--1/");
DecisionLogic logic(kFsHz, kOutputSizeSamples, false, &decoder_database,
packet_buffer, &delay_manager, &buffer_level_filter,
&tick_timer);
packet_buffer, delay_manager.get(),
&buffer_level_filter, &tick_timer);
EXPECT_EQ(kDefaultPostponeDecodingLevel,
logic.postpone_decoding_level_for_test());
}
@ -88,8 +90,8 @@ TEST(DecisionLogic, PostponeDecodingAfterExpansionSettings) {
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqPostponeDecodingAfterExpand/Enabled-101/");
DecisionLogic logic(kFsHz, kOutputSizeSamples, false, &decoder_database,
packet_buffer, &delay_manager, &buffer_level_filter,
&tick_timer);
packet_buffer, delay_manager.get(),
&buffer_level_filter, &tick_timer);
EXPECT_EQ(kDefaultPostponeDecodingLevel,
logic.postpone_decoding_level_for_test());
}

View File

@ -17,6 +17,7 @@
#include <numeric>
#include <string>
#include "absl/memory/memory.h"
#include "modules/audio_coding/neteq/delay_peak_detector.h"
#include "modules/include/module_common_types_public.h"
#include "rtc_base/checks.h"
@ -27,15 +28,14 @@
namespace {
constexpr int kLimitProbability = 53687091; // 1/20 in Q30.
constexpr int kLimitProbabilityStreaming = 536871; // 1/2000 in Q30.
constexpr int kLimitProbability = 1020054733; // 19/20 in Q30.
constexpr int kLimitProbabilityStreaming = 1073204953; // 1999/2000 in Q30.
constexpr int kMaxStreamingPeakPeriodMs = 600000; // 10 minutes in ms.
constexpr int kCumulativeSumDrift = 2; // Drift term for cumulative sum
// |iat_cumulative_sum_|.
constexpr int kMinBaseMinimumDelayMs = 0;
constexpr int kMaxBaseMinimumDelayMs = 10000;
// Steady-state forgetting factor for |iat_vector_|, 0.9993 in Q15.
constexpr int kIatFactor_ = 32745;
constexpr int kIatFactor = 32745; // 0.9993 in Q15.
constexpr int kMaxIat = 64; // Max inter-arrival time to register.
constexpr int kMaxReorderedPackets =
10; // Max number of consecutive reordered packets.
@ -51,8 +51,8 @@ absl::optional<int> GetForcedLimitProbability() {
double percentile = -1.0;
if (sscanf(field_trial_string.c_str(), "Enabled-%lf", &percentile) == 1 &&
percentile >= 0.0 && percentile <= 100.0) {
return absl::make_optional<int>(static_cast<int>(
(1 << 30) * (100.0 - percentile) / 100.0 + 0.5)); // in Q30.
return absl::make_optional<int>(
static_cast<int>((1 << 30) * percentile / 100.0 + 0.5)); // in Q30.
} else {
RTC_LOG(LS_WARNING) << "Invalid parameter for "
<< kForceTargetDelayPercentileFieldTrial
@ -70,11 +70,11 @@ DelayManager::DelayManager(size_t max_packets_in_buffer,
int base_minimum_delay_ms,
bool enable_rtx_handling,
DelayPeakDetector* peak_detector,
const TickTimer* tick_timer)
const TickTimer* tick_timer,
std::unique_ptr<Histogram> iat_histogram)
: first_packet_received_(false),
max_packets_in_buffer_(max_packets_in_buffer),
iat_vector_(kMaxIat + 1, 0),
iat_factor_(0),
iat_histogram_(std::move(iat_histogram)),
tick_timer_(tick_timer),
base_minimum_delay_ms_(base_minimum_delay_ms),
effective_minimum_delay_ms_(base_minimum_delay_ms),
@ -95,33 +95,26 @@ DelayManager::DelayManager(size_t max_packets_in_buffer,
forced_limit_probability_(GetForcedLimitProbability()),
enable_rtx_handling_(enable_rtx_handling) {
assert(peak_detector); // Should never be NULL.
RTC_CHECK(iat_histogram_);
RTC_DCHECK_GE(base_minimum_delay_ms_, 0);
Reset();
}
std::unique_ptr<DelayManager> DelayManager::Create(
size_t max_packets_in_buffer,
int base_minimum_delay_ms,
bool enable_rtx_handling,
DelayPeakDetector* peak_detector,
const TickTimer* tick_timer) {
return absl::make_unique<DelayManager>(
max_packets_in_buffer, base_minimum_delay_ms, enable_rtx_handling,
peak_detector, tick_timer,
absl::make_unique<Histogram>(kMaxIat + 1, kIatFactor));
}
DelayManager::~DelayManager() {}
const DelayManager::IATVector& DelayManager::iat_vector() const {
return iat_vector_;
}
// Set the histogram vector to an exponentially decaying distribution
// iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
// iat_vector_ is in Q30.
void DelayManager::ResetHistogram() {
// Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
// of iat_vector_ is 1.
uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary.
IATVector::iterator it = iat_vector_.begin();
for (; it < iat_vector_.end(); it++) {
temp_prob >>= 1;
(*it) = temp_prob << 16;
}
base_target_level_ = 4;
target_level_ = base_target_level_ << 8;
}
int DelayManager::Update(uint16_t sequence_number,
uint32_t timestamp,
int sample_rate_hz) {
@ -157,8 +150,8 @@ int DelayManager::Update(uint16_t sequence_number,
if (packet_len_ms > 0) {
// Cannot update statistics unless |packet_len_ms| is valid.
// Calculate inter-arrival time (IAT) in integer "packet times"
// (rounding down). This is the value used as index to the histogram
// vector |iat_vector_|.
// (rounding down). This is the value added to the inter-arrival time
// histogram.
int iat_packets = packet_iat_stopwatch_->ElapsedMs() / packet_len_ms;
if (streaming_mode_) {
@ -178,9 +171,8 @@ int DelayManager::Update(uint16_t sequence_number,
}
// Saturate IAT at maximum value.
const int max_iat = kMaxIat;
iat_packets = std::min(iat_packets, max_iat);
UpdateHistogram(iat_packets);
iat_packets = std::min(iat_packets, iat_histogram_->NumBuckets() - 1);
iat_histogram_->Add(iat_packets);
// Calculate new |target_level_| based on updated statistics.
target_level_ = CalculateTargetLevel(iat_packets, reordered);
if (streaming_mode_) {
@ -229,57 +221,6 @@ void DelayManager::UpdateCumulativeSums(int packet_len_ms,
}
}
// Each element in the vector is first multiplied by the forgetting factor
// |iat_factor_|. Then the vector element indicated by |iat_packets| is then
// increased (additive) by 1 - |iat_factor_|. This way, the probability of
// |iat_packets| is slightly increased, while the sum of the histogram remains
// constant (=1).
// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
// longer sum up to 1 (in Q30) after the update. To correct this, a correction
// term is added or subtracted from the first element (or elements) of the
// vector.
// The forgetting factor |iat_factor_| is also updated. When the DelayManager
// is reset, the factor is set to 0 to facilitate rapid convergence in the
// beginning. With each update of the histogram, the factor is increased towards
// the steady-state value |kIatFactor_|.
void DelayManager::UpdateHistogram(size_t iat_packets) {
assert(iat_packets < iat_vector_.size());
int vector_sum = 0; // Sum up the vector elements as they are processed.
// Multiply each element in |iat_vector_| with |iat_factor_|.
for (IATVector::iterator it = iat_vector_.begin(); it != iat_vector_.end();
++it) {
*it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
vector_sum += *it;
}
// Increase the probability for the currently observed inter-arrival time
// by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
// Thus, left-shift 15 steps to obtain result in Q30.
iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum.
// |iat_vector_| should sum up to 1 (in Q30), but it may not due to
// fixed-point rounding errors.
vector_sum -= 1 << 30; // Should be zero. Compensate if not.
if (vector_sum != 0) {
// Modify a few values early in |iat_vector_|.
int flip_sign = vector_sum > 0 ? -1 : 1;
IATVector::iterator it = iat_vector_.begin();
while (it != iat_vector_.end() && abs(vector_sum) > 0) {
// Add/subtract 1/16 of the element, but not more than |vector_sum|.
int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
*it += correction;
vector_sum += correction;
++it;
}
}
assert(vector_sum == 0); // Verify that the above is correct.
// Update |iat_factor_| (changes only during the first seconds after a reset).
// The factor converges to |kIatFactor_|.
iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
}
// Enforces upper and lower limits for |target_level_|. The upper limit is
// chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
// headroom for natural fluctuations around the target, and ii) equivalent of
@ -317,28 +258,9 @@ int DelayManager::CalculateTargetLevel(int iat_packets, bool reordered) {
}
// Calculate target buffer level from inter-arrival time histogram.
// Find the |iat_index| for which the probability of observing an
// inter-arrival time larger than or equal to |iat_index| is less than or
// equal to |limit_probability|. The sought probability is estimated using
// the histogram as the reverse cumulant PDF, i.e., the sum of elements from
// the end up until |iat_index|. Now, since the sum of all elements is 1
// (in Q30) by definition, and since the solution is often a low value for
// |iat_index|, it is more efficient to start with |sum| = 1 and subtract
// elements from the start of the histogram.
size_t index = 0; // Start from the beginning of |iat_vector_|.
int sum = 1 << 30; // Assign to 1 in Q30.
sum -= iat_vector_[index]; // Ensure that target level is >= 1.
do {
// Subtract the probabilities one by one until the sum is no longer greater
// than limit_probability.
++index;
sum -= iat_vector_[index];
} while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
// This is the base value for the target buffer level.
int target_level = static_cast<int>(index);
base_target_level_ = static_cast<int>(index);
int target_level = iat_histogram_->Quantile(limit_probability);
base_target_level_ = target_level;
// Update detector for delay peaks.
bool delay_peak_found =
@ -359,8 +281,9 @@ int DelayManager::SetPacketAudioLength(int length_ms) {
RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
return -1;
}
if (frame_length_change_experiment_ && packet_len_ms_ != length_ms) {
iat_vector_ = ScaleHistogram(iat_vector_, packet_len_ms_, length_ms);
if (frame_length_change_experiment_ && packet_len_ms_ != length_ms &&
packet_len_ms_ > 0) {
iat_histogram_->Scale(packet_len_ms_, length_ms);
}
packet_len_ms_ = length_ms;
@ -374,8 +297,9 @@ void DelayManager::Reset() {
packet_len_ms_ = 0; // Packet size unknown.
streaming_mode_ = false;
peak_detector_.Reset();
ResetHistogram(); // Resets target levels too.
iat_factor_ = 0; // Adapt the histogram faster for the first few packets.
iat_histogram_->Reset();
base_target_level_ = 4;
target_level_ = base_target_level_ << 8;
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
max_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
iat_cumulative_sum_ = 0;
@ -385,12 +309,14 @@ void DelayManager::Reset() {
double DelayManager::EstimatedClockDriftPpm() const {
double sum = 0.0;
// Calculate the expected value based on the probabilities in |iat_vector_|.
for (size_t i = 0; i < iat_vector_.size(); ++i) {
sum += static_cast<double>(iat_vector_[i]) * i;
// Calculate the expected value based on the probabilities in
// |iat_histogram_|.
auto buckets = iat_histogram_->buckets();
for (size_t i = 0; i < buckets.size(); ++i) {
sum += static_cast<double>(buckets[i]) * i;
}
// The probabilities in |iat_vector_| are in Q30. Divide by 1 << 30 to convert
// to Q0; subtract the nominal inter-arrival time (1) to make a zero
// The probabilities in |iat_histogram_| are in Q30. Divide by 1 << 30 to
// convert to Q0; subtract the nominal inter-arrival time (1) to make a zero
// clockdrift represent as 0; mulitply by 1000000 to produce parts-per-million
// (ppm).
return (sum / (1 << 30) - 1) * 1e6;
@ -442,60 +368,6 @@ void DelayManager::RegisterEmptyPacket() {
++last_seq_no_;
}
DelayManager::IATVector DelayManager::ScaleHistogram(const IATVector& histogram,
int old_packet_length,
int new_packet_length) {
if (old_packet_length == 0) {
// If we don't know the previous frame length, don't make any changes to the
// histogram.
return histogram;
}
RTC_DCHECK_GT(new_packet_length, 0);
RTC_DCHECK_EQ(old_packet_length % 10, 0);
RTC_DCHECK_EQ(new_packet_length % 10, 0);
IATVector new_histogram(histogram.size(), 0);
int64_t acc = 0;
int time_counter = 0;
size_t new_histogram_idx = 0;
for (size_t i = 0; i < histogram.size(); i++) {
acc += histogram[i];
time_counter += old_packet_length;
// The bins should be scaled, to ensure the histogram still sums to one.
const int64_t scaled_acc = acc * new_packet_length / time_counter;
int64_t actually_used_acc = 0;
while (time_counter >= new_packet_length) {
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
new_histogram[new_histogram_idx] =
rtc::saturated_cast<int>(old_histogram_val + scaled_acc);
actually_used_acc += new_histogram[new_histogram_idx] - old_histogram_val;
new_histogram_idx =
std::min(new_histogram_idx + 1, new_histogram.size() - 1);
time_counter -= new_packet_length;
}
// Only subtract the part that was succesfully written to the new histogram.
acc -= actually_used_acc;
}
// If there is anything left in acc (due to rounding errors), add it to the
// last bin. If we cannot add everything to the last bin we need to add as
// much as possible to the bins after the last bin (this is only possible
// when compressing a histogram).
while (acc > 0 && new_histogram_idx < new_histogram.size()) {
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
new_histogram[new_histogram_idx] =
rtc::saturated_cast<int>(old_histogram_val + acc);
acc -= new_histogram[new_histogram_idx] - old_histogram_val;
new_histogram_idx++;
}
RTC_DCHECK_EQ(histogram.size(), new_histogram.size());
if (acc == 0) {
// If acc is non-zero, we were not able to add everything to the new
// histogram, so this check will not hold.
RTC_DCHECK_EQ(accumulate(histogram.begin(), histogram.end(), 0ll),
accumulate(new_histogram.begin(), new_histogram.end(), 0ll));
}
return new_histogram;
}
bool DelayManager::IsValidMinimumDelay(int delay_ms) const {
return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound();
}

View File

@ -17,6 +17,7 @@
#include <vector>
#include "absl/types/optional.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/tick_timer.h"
#include "rtc_base/constructor_magic.h"
@ -27,14 +28,19 @@ class DelayPeakDetector;
class DelayManager {
public:
typedef std::vector<int> IATVector;
DelayManager(size_t max_packets_in_buffer,
int base_minimum_delay_ms,
bool enable_rtx_handling,
DelayPeakDetector* peak_detector,
const TickTimer* tick_timer,
std::unique_ptr<Histogram> iat_histogram);
// Create a DelayManager object. Notify the delay manager that the packet
// buffer can hold no more than |max_packets_in_buffer| packets (i.e., this
// is the number of packet slots in the buffer) and that the target delay
// should be greater than or equal to |base_minimum_delay_ms|. Supply a
// PeakDetector object to the DelayManager.
DelayManager(size_t max_packets_in_buffer,
static std::unique_ptr<DelayManager> Create(size_t max_packets_in_buffer,
int base_minimum_delay_ms,
bool enable_rtx_handling,
DelayPeakDetector* peak_detector,
@ -42,9 +48,6 @@ class DelayManager {
virtual ~DelayManager();
// Read the inter-arrival time histogram. Mainly for testing purposes.
virtual const IATVector& iat_vector() const;
// Updates the delay manager with a new incoming packet, with
// |sequence_number| and |timestamp| from the RTP header. This updates the
// inter-arrival time histogram and other statistics, as well as the
@ -102,13 +105,6 @@ class DelayManager {
// packet will shift the sequence numbers for the following packets.
virtual void RegisterEmptyPacket();
// Apply compression or stretching to the IAT histogram, for a change in frame
// size. This returns an updated histogram. This function is public for
// testability.
static IATVector ScaleHistogram(const IATVector& histogram,
int old_packet_length,
int new_packet_length);
// Accessors and mutators.
// Assuming |delay| is in valid range.
virtual bool SetMinimumDelay(int delay_ms);
@ -138,10 +134,6 @@ class DelayManager {
// Provides 75% of currently possible maximum buffer size in milliseconds.
int MaxBufferTimeQ75() const;
// Sets |iat_vector_| to the default start distribution and sets the
// |base_target_level_| and |target_level_| to the corresponding values.
void ResetHistogram();
// Updates |iat_cumulative_sum_| and |max_iat_cumulative_sum_|. (These are
// used by the streaming mode.) This method is called by Update().
void UpdateCumulativeSums(int packet_len_ms, uint16_t sequence_number);
@ -151,11 +143,6 @@ class DelayManager {
// and buffer size.
void UpdateEffectiveMinimumDelay();
// Updates the histogram |iat_vector_|. The probability for inter-arrival time
// equal to |iat_packets| (in integer packets) is increased slightly, while
// all other entries are decreased. This method is called by Update().
void UpdateHistogram(size_t iat_packets);
// Makes sure that |target_level_| is not too large, taking
// |max_packets_in_buffer_| and |extra_delay_ms_| into account. This method is
// called by Update().
@ -170,8 +157,7 @@ class DelayManager {
bool first_packet_received_;
const size_t max_packets_in_buffer_; // Capacity of the packet buffer.
IATVector iat_vector_; // Histogram of inter-arrival times.
int iat_factor_; // Forgetting factor for updating the IAT histogram (Q15).
std::unique_ptr<Histogram> iat_histogram_;
const TickTimer* tick_timer_;
int base_minimum_delay_ms_;
// Provides delay which is used by LimitTargetLevel as lower bound on target

View File

@ -14,7 +14,10 @@
#include <math.h>
#include "absl/memory/memory.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h"
#include "modules/audio_coding/neteq/mock/mock_histogram.h"
#include "rtc_base/checks.h"
#include "test/field_trial.h"
#include "test/gmock.h"
@ -46,6 +49,8 @@ class DelayManagerTest : public ::testing::Test {
std::unique_ptr<DelayManager> dm_;
TickTimer tick_timer_;
MockDelayPeakDetector detector_;
bool use_mock_histogram_ = false;
MockHistogram* mock_histogram_;
uint16_t seq_no_;
uint32_t ts_;
bool enable_rtx_handling_ = false;
@ -63,8 +68,18 @@ void DelayManagerTest::SetUp() {
void DelayManagerTest::RecreateDelayManager() {
EXPECT_CALL(detector_, Reset()).Times(1);
std::unique_ptr<Histogram> histogram;
static const int kMaxIat = 64;
static const int kForgetFactor = 32745;
if (use_mock_histogram_) {
mock_histogram_ = new MockHistogram(kMaxIat, kForgetFactor);
histogram.reset(mock_histogram_);
} else {
histogram = absl::make_unique<Histogram>(kMaxIat, kForgetFactor);
}
dm_.reset(new DelayManager(kMaxNumberOfPackets, kMinDelayMs,
enable_rtx_handling_, &detector_, &tick_timer_));
enable_rtx_handling_, &detector_, &tick_timer_,
std::move(histogram)));
}
void DelayManagerTest::SetPacketAudioLength(int lengt_ms) {
@ -92,17 +107,6 @@ TEST_F(DelayManagerTest, CreateAndDestroy) {
// object.
}
TEST_F(DelayManagerTest, VectorInitialization) {
const DelayManager::IATVector& vec = dm_->iat_vector();
double sum = 0.0;
for (size_t i = 0; i < vec.size(); i++) {
EXPECT_NEAR(ldexp(pow(0.5, static_cast<int>(i + 1)), 30), vec[i], 65537);
// Tolerance 65537 in Q30 corresponds to a delta of approximately 0.00006.
sum += vec[i];
}
EXPECT_EQ(1 << 30, static_cast<int>(sum)); // Should be 1 in Q30.
}
TEST_F(DelayManagerTest, SetPacketAudioLength) {
const int kLengthMs = 30;
// Expect DelayManager to pass on the new length to the detector object.
@ -477,26 +481,26 @@ TEST_F(DelayManagerTest, UpdateReorderedPacket) {
TEST_F(DelayManagerTest, EnableRtxHandling) {
enable_rtx_handling_ = true;
use_mock_histogram_ = true;
RecreateDelayManager();
EXPECT_TRUE(mock_histogram_);
// Insert first packet.
SetPacketAudioLength(kFrameSizeMs);
InsertNextPacket();
// Insert reordered packet.
// TODO(jakobi): Test estimated inter-arrival time by mocking the histogram
// instead of checking the call to the peak detector.
EXPECT_CALL(detector_, Update(3, true, _));
EXPECT_CALL(*mock_histogram_, Add(3));
EXPECT_EQ(0, dm_->Update(seq_no_ - 3, ts_ - 3 * kFrameSizeMs, kFs));
// Insert another reordered packet.
EXPECT_CALL(detector_, Update(2, true, _));
EXPECT_CALL(*mock_histogram_, Add(2));
EXPECT_EQ(0, dm_->Update(seq_no_ - 2, ts_ - 2 * kFrameSizeMs, kFs));
// Insert the next packet in order and verify that the inter-arrival time is
// estimated correctly.
IncreaseTime(kFrameSizeMs);
EXPECT_CALL(detector_, Update(1, false, _));
EXPECT_CALL(*mock_histogram_, Add(1));
InsertNextPacket();
}
@ -573,7 +577,7 @@ TEST_F(DelayManagerTest, TargetDelayGreaterThanOne) {
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-0/");
RecreateDelayManager();
EXPECT_EQ(absl::make_optional<int>(1 << 30),
EXPECT_EQ(absl::make_optional<int>(0),
dm_->forced_limit_probability_for_test());
SetPacketAudioLength(kFrameSizeMs);
@ -595,14 +599,14 @@ TEST_F(DelayManagerTest, ForcedTargetDelayPercentile) {
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-95/");
RecreateDelayManager();
EXPECT_EQ(absl::make_optional<int>(53687091),
EXPECT_EQ(absl::make_optional<int>(1020054733),
dm_->forced_limit_probability_for_test()); // 1/20 in Q30
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-99.95/");
RecreateDelayManager();
EXPECT_EQ(absl::make_optional<int>(536871),
EXPECT_EQ(absl::make_optional<int>(1073204953),
dm_->forced_limit_probability_for_test()); // 1/2000 in Q30
}
{
@ -624,116 +628,4 @@ TEST_F(DelayManagerTest, ForcedTargetDelayPercentile) {
}
}
// Test if the histogram is stretched correctly if the packet size is decreased.
TEST(DelayManagerIATScalingTest, StretchTest) {
using IATVector = DelayManager::IATVector;
// Test a straightforward 60ms to 20ms change.
IATVector iat = {12, 0, 0, 0, 0, 0};
IATVector expected_result = {4, 4, 4, 0, 0, 0};
IATVector stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20);
EXPECT_EQ(stretched_iat, expected_result);
// Test an example where the last bin in the stretched histogram should
// contain the sum of the elements that don't fit into the new histogram.
iat = {18, 15, 12, 9, 6, 3, 0};
expected_result = {6, 6, 6, 5, 5, 5, 30};
stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20);
EXPECT_EQ(stretched_iat, expected_result);
// Test a 120ms to 60ms change.
iat = {18, 16, 14, 4, 0};
expected_result = {9, 9, 8, 8, 18};
stretched_iat = DelayManager::ScaleHistogram(iat, 120, 60);
EXPECT_EQ(stretched_iat, expected_result);
// Test a 120ms to 20ms change.
iat = {19, 12, 0, 0, 0, 0, 0, 0};
expected_result = {3, 3, 3, 3, 3, 3, 2, 11};
stretched_iat = DelayManager::ScaleHistogram(iat, 120, 20);
EXPECT_EQ(stretched_iat, expected_result);
// Test a 70ms to 40ms change.
iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0};
expected_result = {7, 5, 5, 3, 3, 2, 2, 1, 2, 2, 6, 22};
stretched_iat = DelayManager::ScaleHistogram(iat, 70, 40);
EXPECT_EQ(stretched_iat, expected_result);
// Test a 30ms to 20ms change.
iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0};
expected_result = {8, 6, 6, 3, 2, 2, 1, 3, 3, 8, 7, 11};
stretched_iat = DelayManager::ScaleHistogram(iat, 30, 20);
EXPECT_EQ(stretched_iat, expected_result);
}
// Test if the histogram is compressed correctly if the packet size is
// increased.
TEST(DelayManagerIATScalingTest, CompressionTest) {
using IATVector = DelayManager::IATVector;
// Test a 20 to 60 ms change.
IATVector iat = {12, 11, 10, 3, 2, 1};
IATVector expected_result = {33, 6, 0, 0, 0, 0};
IATVector compressed_iat = DelayManager::ScaleHistogram(iat, 20, 60);
EXPECT_EQ(compressed_iat, expected_result);
// Test a 60ms to 120ms change.
iat = {18, 16, 14, 4, 1};
expected_result = {34, 18, 1, 0, 0};
compressed_iat = DelayManager::ScaleHistogram(iat, 60, 120);
EXPECT_EQ(compressed_iat, expected_result);
// Test a 20ms to 120ms change.
iat = {18, 12, 5, 4, 4, 3, 5, 1};
expected_result = {46, 6, 0, 0, 0, 0, 0, 0};
compressed_iat = DelayManager::ScaleHistogram(iat, 20, 120);
EXPECT_EQ(compressed_iat, expected_result);
// Test a 70ms to 80ms change.
iat = {13, 7, 5, 3, 1, 5, 12, 11, 3};
expected_result = {11, 8, 6, 2, 5, 12, 13, 3, 0};
compressed_iat = DelayManager::ScaleHistogram(iat, 70, 80);
EXPECT_EQ(compressed_iat, expected_result);
// Test a 50ms to 110ms change.
iat = {13, 7, 5, 3, 1, 5, 12, 11, 3};
expected_result = {18, 8, 16, 16, 2, 0, 0, 0, 0};
compressed_iat = DelayManager::ScaleHistogram(iat, 50, 110);
EXPECT_EQ(compressed_iat, expected_result);
}
// Test if the histogram scaling function handles overflows correctly.
TEST(DelayManagerIATScalingTest, OverflowTest) {
using IATVector = DelayManager::IATVector;
// Test a compression operation that can cause overflow.
IATVector iat = {733544448, 0, 0, 0, 0, 0, 0, 340197376, 0, 0, 0, 0, 0, 0};
IATVector expected_result = {733544448, 340197376, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0};
IATVector scaled_iat = DelayManager::ScaleHistogram(iat, 10, 60);
EXPECT_EQ(scaled_iat, expected_result);
iat = {655591163, 39962288, 360736736, 1930514, 4003853, 1782764,
114119, 2072996, 0, 2149354, 0};
expected_result = {1056290187, 7717131, 2187115, 2149354, 0, 0,
0, 0, 0, 0, 0};
scaled_iat = DelayManager::ScaleHistogram(iat, 20, 60);
EXPECT_EQ(scaled_iat, expected_result);
// In this test case we will not be able to add everything to the final bin in
// the scaled histogram. Check that the last bin doesn't overflow.
iat = {2000000000, 2000000000, 2000000000,
2000000000, 2000000000, 2000000000};
expected_result = {666666666, 666666666, 666666666,
666666667, 666666667, 2147483647};
scaled_iat = DelayManager::ScaleHistogram(iat, 60, 20);
EXPECT_EQ(scaled_iat, expected_result);
// In this test case we will not be able to add enough to each of the bins,
// so the values should be smeared out past the end of the normal range.
iat = {2000000000, 2000000000, 2000000000,
2000000000, 2000000000, 2000000000};
expected_result = {2147483647, 2147483647, 2147483647,
2147483647, 2147483647, 1262581765};
scaled_iat = DelayManager::ScaleHistogram(iat, 20, 60);
EXPECT_EQ(scaled_iat, expected_result);
}
} // namespace webrtc

View File

@ -0,0 +1,174 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <numeric>
#include "modules/audio_coding/neteq/histogram.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
Histogram::Histogram(size_t num_buckets, int forget_factor)
: buckets_(num_buckets, 0),
forget_factor_(0),
base_forget_factor_(forget_factor) {}
Histogram::~Histogram() {}
// Each element in the vector is first multiplied by the forgetting factor
// |forget_factor_|. Then the vector element indicated by |iat_packets| is then
// increased (additive) by 1 - |forget_factor_|. This way, the probability of
// |iat_packets| is slightly increased, while the sum of the histogram remains
// constant (=1).
// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
// longer sum up to 1 (in Q30) after the update. To correct this, a correction
// term is added or subtracted from the first element (or elements) of the
// vector.
// The forgetting factor |forget_factor_| is also updated. When the DelayManager
// is reset, the factor is set to 0 to facilitate rapid convergence in the
// beginning. With each update of the histogram, the factor is increased towards
// the steady-state value |kIatFactor_|.
void Histogram::Add(int value) {
RTC_DCHECK(value >= 0);
RTC_DCHECK(value < static_cast<int>(buckets_.size()));
int vector_sum = 0; // Sum up the vector elements as they are processed.
// Multiply each element in |buckets_| with |forget_factor_|.
for (int& bucket : buckets_) {
bucket = (static_cast<int64_t>(bucket) * forget_factor_) >> 15;
vector_sum += bucket;
}
// Increase the probability for the currently observed inter-arrival time
// by 1 - |forget_factor_|. The factor is in Q15, |buckets_| in Q30.
// Thus, left-shift 15 steps to obtain result in Q30.
buckets_[value] += (32768 - forget_factor_) << 15;
vector_sum += (32768 - forget_factor_) << 15; // Add to vector sum.
// |buckets_| should sum up to 1 (in Q30), but it may not due to
// fixed-point rounding errors.
vector_sum -= 1 << 30; // Should be zero. Compensate if not.
if (vector_sum != 0) {
// Modify a few values early in |buckets_|.
int flip_sign = vector_sum > 0 ? -1 : 1;
for (int& bucket : buckets_) {
// Add/subtract 1/16 of the element, but not more than |vector_sum|.
int correction = flip_sign * std::min(abs(vector_sum), bucket >> 4);
bucket += correction;
vector_sum += correction;
if (abs(vector_sum) == 0) {
break;
}
}
}
RTC_DCHECK(vector_sum == 0); // Verify that the above is correct.
// Update |forget_factor_| (changes only during the first seconds after a
// reset). The factor converges to |base_forget_factor_|.
forget_factor_ += (base_forget_factor_ - forget_factor_ + 3) >> 2;
}
int Histogram::Quantile(int probability) {
// Find the bucket for which the probability of observing an
// inter-arrival time larger than or equal to |index| is larger than or
// equal to |probability|. The sought probability is estimated using
// the histogram as the reverse cumulant PDF, i.e., the sum of elements from
// the end up until |index|. Now, since the sum of all elements is 1
// (in Q30) by definition, and since the solution is often a low value for
// |iat_index|, it is more efficient to start with |sum| = 1 and subtract
// elements from the start of the histogram.
int inverse_probability = (1 << 30) - probability;
size_t index = 0; // Start from the beginning of |buckets_|.
int sum = 1 << 30; // Assign to 1 in Q30.
sum -= buckets_[index]; // Ensure that target level is >= 1.
do {
// Subtract the probabilities one by one until the sum is no longer greater
// than |inverse_probability|.
++index;
sum -= buckets_[index];
} while ((sum > inverse_probability) && (index < buckets_.size() - 1));
return static_cast<int>(index);
}
// Set the histogram vector to an exponentially decaying distribution
// buckets_[i] = 0.5^(i+1), i = 0, 1, 2, ...
// buckets_ is in Q30.
void Histogram::Reset() {
// Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
// of buckets_ is 1.
uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary.
for (int& bucket : buckets_) {
temp_prob >>= 1;
bucket = temp_prob << 16;
}
forget_factor_ = 0; // Adapt the histogram faster for the first few packets.
}
int Histogram::NumBuckets() const {
return buckets_.size();
}
void Histogram::Scale(int old_bucket_width, int new_bucket_width) {
buckets_ = ScaleBuckets(buckets_, old_bucket_width, new_bucket_width);
}
std::vector<int> Histogram::ScaleBuckets(const std::vector<int>& buckets,
int old_bucket_width,
int new_bucket_width) {
RTC_DCHECK_GT(old_bucket_width, 0);
RTC_DCHECK_GT(new_bucket_width, 0);
RTC_DCHECK_EQ(old_bucket_width % 10, 0);
RTC_DCHECK_EQ(new_bucket_width % 10, 0);
std::vector<int> new_histogram(buckets.size(), 0);
int64_t acc = 0;
int time_counter = 0;
size_t new_histogram_idx = 0;
for (size_t i = 0; i < buckets.size(); i++) {
acc += buckets[i];
time_counter += old_bucket_width;
// The bins should be scaled, to ensure the histogram still sums to one.
const int64_t scaled_acc = acc * new_bucket_width / time_counter;
int64_t actually_used_acc = 0;
while (time_counter >= new_bucket_width) {
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
new_histogram[new_histogram_idx] =
rtc::saturated_cast<int>(old_histogram_val + scaled_acc);
actually_used_acc += new_histogram[new_histogram_idx] - old_histogram_val;
new_histogram_idx =
std::min(new_histogram_idx + 1, new_histogram.size() - 1);
time_counter -= new_bucket_width;
}
// Only subtract the part that was succesfully written to the new histogram.
acc -= actually_used_acc;
}
// If there is anything left in acc (due to rounding errors), add it to the
// last bin. If we cannot add everything to the last bin we need to add as
// much as possible to the bins after the last bin (this is only possible
// when compressing a histogram).
while (acc > 0 && new_histogram_idx < new_histogram.size()) {
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
new_histogram[new_histogram_idx] =
rtc::saturated_cast<int>(old_histogram_val + acc);
acc -= new_histogram[new_histogram_idx] - old_histogram_val;
new_histogram_idx++;
}
RTC_DCHECK_EQ(buckets.size(), new_histogram.size());
if (acc == 0) {
// If acc is non-zero, we were not able to add everything to the new
// histogram, so this check will not hold.
RTC_DCHECK_EQ(accumulate(buckets.begin(), buckets.end(), 0ll),
accumulate(new_histogram.begin(), new_histogram.end(), 0ll));
}
return new_histogram;
}
} // namespace webrtc

View File

@ -0,0 +1,59 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_CODING_NETEQ_HISTOGRAM_H_
#define MODULES_AUDIO_CODING_NETEQ_HISTOGRAM_H_
#include <string.h> // Provide access to size_t.
#include <vector>
namespace webrtc {
class Histogram {
public:
// Creates histogram with capacity |num_buckets| and |forget_factor| in Q15.
Histogram(size_t num_buckets, int forget_factor);
virtual ~Histogram();
// Resets the histogram to the default start distribution.
virtual void Reset();
// Add entry in bucket |index|.
virtual void Add(int index);
// Calculates the quantile at |probability| (in Q30) of the histogram
// distribution.
virtual int Quantile(int probability);
// Apply compression or stretching to the histogram.
virtual void Scale(int old_bucket_width, int new_bucket_width);
// Returns the number of buckets in the histogram.
virtual int NumBuckets() const;
// Returns the probability for each bucket in Q30.
std::vector<int> buckets() const { return buckets_; }
// Made public for testing.
static std::vector<int> ScaleBuckets(const std::vector<int>& buckets,
int old_bucket_width,
int new_bucket_width);
private:
std::vector<int> buckets_;
int forget_factor_; // Q15
const int base_forget_factor_;
};
} // namespace webrtc
#endif // MODULES_AUDIO_CODING_NETEQ_HISTOGRAM_H_

View File

@ -0,0 +1,171 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cmath>
#include "modules/audio_coding/neteq/histogram.h"
#include "test/gtest.h"
namespace webrtc {
TEST(HistogramTest, Initialization) {
Histogram histogram(65, 32440);
histogram.Reset();
const auto& buckets = histogram.buckets();
double sum = 0.0;
for (size_t i = 0; i < buckets.size(); i++) {
EXPECT_NEAR(ldexp(std::pow(0.5, static_cast<int>(i + 1)), 30), buckets[i],
65537);
// Tolerance 65537 in Q30 corresponds to a delta of approximately 0.00006.
sum += buckets[i];
}
EXPECT_EQ(1 << 30, static_cast<int>(sum)); // Should be 1 in Q30.
}
TEST(HistogramTest, Add) {
Histogram histogram(10, 32440);
histogram.Reset();
const std::vector<int> before = histogram.buckets();
const int index = 5;
histogram.Add(index);
const std::vector<int> after = histogram.buckets();
EXPECT_GT(after[index], before[index]);
int sum = 0;
for (int bucket : after) {
sum += bucket;
}
EXPECT_EQ(1 << 30, sum);
}
TEST(HistogramTest, ForgetFactor) {
Histogram histogram(10, 32440);
histogram.Reset();
const std::vector<int> before = histogram.buckets();
const int index = 4;
histogram.Add(index);
const std::vector<int> after = histogram.buckets();
for (int i = 0; i < histogram.NumBuckets(); ++i) {
if (i != index) {
EXPECT_LT(after[i], before[i]);
}
}
}
// Test if the histogram is scaled correctly if the bucket width is decreased.
TEST(HistogramTest, DownScale) {
// Test a straightforward 60 to 20 change.
std::vector<int> buckets = {12, 0, 0, 0, 0, 0};
std::vector<int> expected_result = {4, 4, 4, 0, 0, 0};
std::vector<int> stretched_buckets = Histogram::ScaleBuckets(buckets, 60, 20);
EXPECT_EQ(stretched_buckets, expected_result);
// Test an example where the last bin in the stretched histogram should
// contain the sum of the elements that don't fit into the new histogram.
buckets = {18, 15, 12, 9, 6, 3, 0};
expected_result = {6, 6, 6, 5, 5, 5, 30};
stretched_buckets = Histogram::ScaleBuckets(buckets, 60, 20);
EXPECT_EQ(stretched_buckets, expected_result);
// Test a 120 to 60 change.
buckets = {18, 16, 14, 4, 0};
expected_result = {9, 9, 8, 8, 18};
stretched_buckets = Histogram::ScaleBuckets(buckets, 120, 60);
EXPECT_EQ(stretched_buckets, expected_result);
// Test a 120 to 20 change.
buckets = {19, 12, 0, 0, 0, 0, 0, 0};
expected_result = {3, 3, 3, 3, 3, 3, 2, 11};
stretched_buckets = Histogram::ScaleBuckets(buckets, 120, 20);
EXPECT_EQ(stretched_buckets, expected_result);
// Test a 70 to 40 change.
buckets = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0};
expected_result = {7, 5, 5, 3, 3, 2, 2, 1, 2, 2, 6, 22};
stretched_buckets = Histogram::ScaleBuckets(buckets, 70, 40);
EXPECT_EQ(stretched_buckets, expected_result);
// Test a 30 to 20 change.
buckets = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0};
expected_result = {8, 6, 6, 3, 2, 2, 1, 3, 3, 8, 7, 11};
stretched_buckets = Histogram::ScaleBuckets(buckets, 30, 20);
EXPECT_EQ(stretched_buckets, expected_result);
}
// Test if the histogram is scaled correctly if the bucket width is increased.
TEST(HistogramTest, UpScale) {
// Test a 20 to 60 change.
std::vector<int> buckets = {12, 11, 10, 3, 2, 1};
std::vector<int> expected_result = {33, 6, 0, 0, 0, 0};
std::vector<int> compressed_buckets =
Histogram::ScaleBuckets(buckets, 20, 60);
EXPECT_EQ(compressed_buckets, expected_result);
// Test a 60 to 120 change.
buckets = {18, 16, 14, 4, 1};
expected_result = {34, 18, 1, 0, 0};
compressed_buckets = Histogram::ScaleBuckets(buckets, 60, 120);
EXPECT_EQ(compressed_buckets, expected_result);
// Test a 20 to 120 change.
buckets = {18, 12, 5, 4, 4, 3, 5, 1};
expected_result = {46, 6, 0, 0, 0, 0, 0, 0};
compressed_buckets = Histogram::ScaleBuckets(buckets, 20, 120);
EXPECT_EQ(compressed_buckets, expected_result);
// Test a 70 to 80 change.
buckets = {13, 7, 5, 3, 1, 5, 12, 11, 3};
expected_result = {11, 8, 6, 2, 5, 12, 13, 3, 0};
compressed_buckets = Histogram::ScaleBuckets(buckets, 70, 80);
EXPECT_EQ(compressed_buckets, expected_result);
// Test a 50 to 110 change.
buckets = {13, 7, 5, 3, 1, 5, 12, 11, 3};
expected_result = {18, 8, 16, 16, 2, 0, 0, 0, 0};
compressed_buckets = Histogram::ScaleBuckets(buckets, 50, 110);
EXPECT_EQ(compressed_buckets, expected_result);
}
// Test if the histogram scaling function handles overflows correctly.
TEST(HistogramTest, OverflowTest) {
// Test a upscale operation that can cause overflow.
std::vector<int> buckets = {733544448, 0, 0, 0, 0, 0, 0,
340197376, 0, 0, 0, 0, 0, 0};
std::vector<int> expected_result = {733544448, 340197376, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0};
std::vector<int> scaled_buckets = Histogram::ScaleBuckets(buckets, 10, 60);
EXPECT_EQ(scaled_buckets, expected_result);
buckets = {655591163, 39962288, 360736736, 1930514, 4003853, 1782764,
114119, 2072996, 0, 2149354, 0};
expected_result = {1056290187, 7717131, 2187115, 2149354, 0, 0,
0, 0, 0, 0, 0};
scaled_buckets = Histogram::ScaleBuckets(buckets, 20, 60);
EXPECT_EQ(scaled_buckets, expected_result);
// In this test case we will not be able to add everything to the final bin in
// the scaled histogram. Check that the last bin doesn't overflow.
buckets = {2000000000, 2000000000, 2000000000,
2000000000, 2000000000, 2000000000};
expected_result = {666666666, 666666666, 666666666,
666666667, 666666667, 2147483647};
scaled_buckets = Histogram::ScaleBuckets(buckets, 60, 20);
EXPECT_EQ(scaled_buckets, expected_result);
// In this test case we will not be able to add enough to each of the bins,
// so the values should be smeared out past the end of the normal range.
buckets = {2000000000, 2000000000, 2000000000,
2000000000, 2000000000, 2000000000};
expected_result = {2147483647, 2147483647, 2147483647,
2147483647, 2147483647, 1262581765};
scaled_buckets = Histogram::ScaleBuckets(buckets, 20, 60);
EXPECT_EQ(scaled_buckets, expected_result);
}
} // namespace webrtc

View File

@ -11,8 +11,10 @@
#ifndef MODULES_AUDIO_CODING_NETEQ_MOCK_MOCK_DELAY_MANAGER_H_
#define MODULES_AUDIO_CODING_NETEQ_MOCK_MOCK_DELAY_MANAGER_H_
#include "modules/audio_coding/neteq/delay_manager.h"
#include <algorithm>
#include "modules/audio_coding/neteq/delay_manager.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "test/gmock.h"
namespace webrtc {
@ -23,15 +25,16 @@ class MockDelayManager : public DelayManager {
int base_min_target_delay_ms,
bool enable_rtx_handling,
DelayPeakDetector* peak_detector,
const TickTimer* tick_timer)
const TickTimer* tick_timer,
std::unique_ptr<Histogram> histogram)
: DelayManager(max_packets_in_buffer,
base_min_target_delay_ms,
enable_rtx_handling,
peak_detector,
tick_timer) {}
tick_timer,
std::move(histogram)) {}
virtual ~MockDelayManager() { Die(); }
MOCK_METHOD0(Die, void());
MOCK_CONST_METHOD0(iat_vector, const IATVector&());
MOCK_METHOD3(Update,
int(uint16_t sequence_number,
uint32_t timestamp,

View File

@ -0,0 +1,31 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_CODING_NETEQ_MOCK_MOCK_HISTOGRAM_H_
#define MODULES_AUDIO_CODING_NETEQ_MOCK_MOCK_HISTOGRAM_H_
#include "modules/audio_coding/neteq/histogram.h"
#include "test/gmock.h"
namespace webrtc {
class MockHistogram : public Histogram {
public:
MockHistogram(size_t num_buckets, int forget_factor)
: Histogram(num_buckets, forget_factor) {}
virtual ~MockHistogram() {}
MOCK_METHOD1(Add, void(int));
MOCK_METHOD1(Quantile, int(int));
};
} // namespace webrtc
#endif // MODULES_AUDIO_CODING_NETEQ_MOCK_MOCK_HISTOGRAM_H_

View File

@ -63,7 +63,7 @@ NetEqImpl::Dependencies::Dependencies(
new DecoderDatabase(decoder_factory, config.codec_pair_id)),
delay_peak_detector(
new DelayPeakDetector(tick_timer.get(), config.enable_rtx_handling)),
delay_manager(new DelayManager(config.max_packets_in_buffer,
delay_manager(DelayManager::Create(config.max_packets_in_buffer,
config.min_delay_ms,
config.enable_rtx_handling,
delay_peak_detector.get(),

View File

@ -14,6 +14,7 @@
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/neteq/accelerate.h"
#include "modules/audio_coding/neteq/expand.h"
#include "modules/audio_coding/neteq/histogram.h"
#include "modules/audio_coding/neteq/include/neteq.h"
#include "modules/audio_coding/neteq/mock/mock_buffer_level_filter.h"
#include "modules/audio_coding/neteq/mock/mock_decoder_database.h"
@ -97,7 +98,8 @@ class NetEqImplTest : public ::testing::Test {
if (use_mock_delay_manager_) {
std::unique_ptr<MockDelayManager> mock(new MockDelayManager(
config_.max_packets_in_buffer, config_.min_delay_ms,
config_.enable_rtx_handling, delay_peak_detector_, tick_timer_));
config_.enable_rtx_handling, delay_peak_detector_, tick_timer_,
absl::make_unique<Histogram>(50, 32745)));
mock_delay_manager_ = mock.get();
EXPECT_CALL(*mock_delay_manager_, set_streaming_mode(false)).Times(1);
deps.delay_manager = std::move(mock);