Removing shared_ptr in a unittest in audio coding.

Bug: webrtc:9222
Change-Id: I26aee886896416af98c39511046d5cfd836cb01e
Reviewed-on: https://webrtc-review.googlesource.com/73720
Reviewed-by: Tommi <tommi@webrtc.org>
Commit-Queue: Minyue Li <minyue@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23078}
This commit is contained in:
Minyue Li
2018-05-02 12:36:31 +02:00
committed by Commit Bot
parent cad94449dd
commit 2a35c43779

View File

@ -21,6 +21,7 @@
#include "modules/audio_coding/neteq/tools/audio_loop.h"
#include "rtc_base/checks.h"
#include "rtc_base/fakeclock.h"
#include "rtc_base/ptr_util.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
@ -54,43 +55,39 @@ AudioEncoderOpusConfig CreateConfigWithParameters(
}
struct AudioEncoderOpusStates {
std::shared_ptr<MockAudioNetworkAdaptor*> mock_audio_network_adaptor;
MockAudioNetworkAdaptor* mock_audio_network_adaptor;
MockSmoothingFilter* mock_bitrate_smoother;
std::unique_ptr<AudioEncoderOpusImpl> encoder;
std::unique_ptr<rtc::ScopedFakeClock> fake_clock;
AudioEncoderOpusConfig config;
};
AudioEncoderOpusStates CreateCodec(size_t num_channels) {
AudioEncoderOpusStates states;
states.mock_audio_network_adaptor =
std::make_shared<MockAudioNetworkAdaptor*>(nullptr);
states.fake_clock.reset(new rtc::ScopedFakeClock());
states.fake_clock->SetTimeMicros(kInitialTimeUs);
std::weak_ptr<MockAudioNetworkAdaptor*> mock_ptr(
states.mock_audio_network_adaptor);
std::unique_ptr<AudioEncoderOpusStates> CreateCodec(size_t num_channels) {
std::unique_ptr<AudioEncoderOpusStates> states =
rtc::MakeUnique<AudioEncoderOpusStates>();
states->mock_audio_network_adaptor = nullptr;
states->fake_clock.reset(new rtc::ScopedFakeClock());
states->fake_clock->SetTimeMicros(kInitialTimeUs);
MockAudioNetworkAdaptor** mock_ptr = &states->mock_audio_network_adaptor;
AudioEncoderOpusImpl::AudioNetworkAdaptorCreator creator =
[mock_ptr](const std::string&, RtcEventLog* event_log) {
std::unique_ptr<MockAudioNetworkAdaptor> adaptor(
new NiceMock<MockAudioNetworkAdaptor>());
EXPECT_CALL(*adaptor, Die());
if (auto sp = mock_ptr.lock()) {
*sp = adaptor.get();
} else {
RTC_NOTREACHED();
}
*mock_ptr = adaptor.get();
return adaptor;
};
CodecInst codec_inst = kDefaultOpusSettings;
codec_inst.channels = num_channels;
states.config = CreateConfig(codec_inst);
states->config = CreateConfig(codec_inst);
std::unique_ptr<MockSmoothingFilter> bitrate_smoother(
new MockSmoothingFilter());
states.mock_bitrate_smoother = bitrate_smoother.get();
states->mock_bitrate_smoother = bitrate_smoother.get();
states.encoder.reset(new AudioEncoderOpusImpl(
states.config, codec_inst.pltype, std::move(creator),
states->encoder.reset(new AudioEncoderOpusImpl(
states->config, codec_inst.pltype, std::move(creator),
std::move(bitrate_smoother)));
return states;
}
@ -145,77 +142,77 @@ std::unique_ptr<test::AudioLoop> Create10msAudioBlocks(
TEST(AudioEncoderOpusTest, DefaultApplicationModeMono) {
auto states = CreateCodec(1);
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
states->encoder->application());
}
TEST(AudioEncoderOpusTest, DefaultApplicationModeStereo) {
auto states = CreateCodec(2);
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kAudio,
states.encoder->application());
states->encoder->application());
}
TEST(AudioEncoderOpusTest, ChangeApplicationMode) {
auto states = CreateCodec(2);
EXPECT_TRUE(
states.encoder->SetApplication(AudioEncoder::Application::kSpeech));
states->encoder->SetApplication(AudioEncoder::Application::kSpeech));
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
states->encoder->application());
}
TEST(AudioEncoderOpusTest, ResetWontChangeApplicationMode) {
auto states = CreateCodec(2);
// Trigger a reset.
states.encoder->Reset();
states->encoder->Reset();
// Verify that the mode is still kAudio.
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kAudio,
states.encoder->application());
states->encoder->application());
// Now change to kVoip.
EXPECT_TRUE(
states.encoder->SetApplication(AudioEncoder::Application::kSpeech));
states->encoder->SetApplication(AudioEncoder::Application::kSpeech));
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
states->encoder->application());
// Trigger a reset again.
states.encoder->Reset();
states->encoder->Reset();
// Verify that the mode is still kVoip.
EXPECT_EQ(AudioEncoderOpusConfig::ApplicationMode::kVoip,
states.encoder->application());
states->encoder->application());
}
TEST(AudioEncoderOpusTest, ToggleDtx) {
auto states = CreateCodec(2);
// Enable DTX
EXPECT_TRUE(states.encoder->SetDtx(true));
EXPECT_TRUE(states.encoder->GetDtx());
EXPECT_TRUE(states->encoder->SetDtx(true));
EXPECT_TRUE(states->encoder->GetDtx());
// Turn off DTX.
EXPECT_TRUE(states.encoder->SetDtx(false));
EXPECT_FALSE(states.encoder->GetDtx());
EXPECT_TRUE(states->encoder->SetDtx(false));
EXPECT_FALSE(states->encoder->GetDtx());
}
TEST(AudioEncoderOpusTest,
OnReceivedUplinkBandwidthWithoutAudioNetworkAdaptor) {
auto states = CreateCodec(1);
// Constants are replicated from audio_states.encoderopus.cc.
// Constants are replicated from audio_states->encoderopus.cc.
const int kMinBitrateBps = 6000;
const int kMaxBitrateBps = 510000;
// Set a too low bitrate.
states.encoder->OnReceivedUplinkBandwidth(kMinBitrateBps - 1, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(kMinBitrateBps - 1, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states->encoder->GetTargetBitrate());
// Set a too high bitrate.
states.encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps + 1, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps + 1, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states->encoder->GetTargetBitrate());
// Set the minimum rate.
states.encoder->OnReceivedUplinkBandwidth(kMinBitrateBps, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(kMinBitrateBps, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states->encoder->GetTargetBitrate());
// Set the maximum rate.
states.encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(kMaxBitrateBps, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states->encoder->GetTargetBitrate());
// Set rates from kMaxBitrateBps up to 32000 bps.
for (int rate = kMinBitrateBps; rate <= 32000; rate += 1000) {
states.encoder->OnReceivedUplinkBandwidth(rate, rtc::nullopt);
EXPECT_EQ(rate, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(rate, rtc::nullopt);
EXPECT_EQ(rate, states->encoder->GetTargetBitrate());
}
}
@ -237,7 +234,7 @@ std::vector<float> IntervalSteps(float a, float b, size_t n) {
// Sets the packet loss rate to each number in the vector in turn, and verifies
// that the loss rate as reported by the encoder is |expected_return| for all
// of them.
void TestSetPacketLossRate(AudioEncoderOpusStates* states,
void TestSetPacketLossRate(const AudioEncoderOpusStates* states,
const std::vector<float>& losses,
float expected_return) {
// |kSampleIntervalMs| is chosen to ease the calculation since
@ -262,17 +259,17 @@ TEST(AudioEncoderOpusTest, PacketLossRateOptimized) {
// Note that the order of the following calls is critical.
// clang-format off
TestSetPacketLossRate(&states, I(0.00f , 0.01f - eps), 0.00f);
TestSetPacketLossRate(&states, I(0.01f + eps, 0.06f - eps), 0.01f);
TestSetPacketLossRate(&states, I(0.06f + eps, 0.11f - eps), 0.05f);
TestSetPacketLossRate(&states, I(0.11f + eps, 0.22f - eps), 0.10f);
TestSetPacketLossRate(&states, I(0.22f + eps, 1.00f ), 0.20f);
TestSetPacketLossRate(states.get(), I(0.00f , 0.01f - eps), 0.00f);
TestSetPacketLossRate(states.get(), I(0.01f + eps, 0.06f - eps), 0.01f);
TestSetPacketLossRate(states.get(), I(0.06f + eps, 0.11f - eps), 0.05f);
TestSetPacketLossRate(states.get(), I(0.11f + eps, 0.22f - eps), 0.10f);
TestSetPacketLossRate(states.get(), I(0.22f + eps, 1.00f ), 0.20f);
TestSetPacketLossRate(&states, I(1.00f , 0.18f + eps), 0.20f);
TestSetPacketLossRate(&states, I(0.18f - eps, 0.09f + eps), 0.10f);
TestSetPacketLossRate(&states, I(0.09f - eps, 0.04f + eps), 0.05f);
TestSetPacketLossRate(&states, I(0.04f - eps, 0.01f + eps), 0.01f);
TestSetPacketLossRate(&states, I(0.01f - eps, 0.00f ), 0.00f);
TestSetPacketLossRate(states.get(), I(1.00f , 0.18f + eps), 0.20f);
TestSetPacketLossRate(states.get(), I(0.18f - eps, 0.09f + eps), 0.10f);
TestSetPacketLossRate(states.get(), I(0.09f - eps, 0.04f + eps), 0.05f);
TestSetPacketLossRate(states.get(), I(0.04f - eps, 0.01f + eps), 0.01f);
TestSetPacketLossRate(states.get(), I(0.01f - eps, 0.00f ), 0.00f);
// clang-format on
}
@ -282,85 +279,85 @@ TEST(AudioEncoderOpusTest, SetReceiverFrameLengthRange) {
// |supported_frame_lengths_ms| should contain only the frame length being
// used.
using ::testing::ElementsAre;
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(),
ElementsAre(states.encoder->next_frame_length_ms()));
states.encoder->SetReceiverFrameLengthRange(0, 12345);
states.encoder->SetReceiverFrameLengthRange(21, 60);
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(), ElementsAre(60));
states.encoder->SetReceiverFrameLengthRange(20, 59);
EXPECT_THAT(states.encoder->supported_frame_lengths_ms(), ElementsAre(20));
EXPECT_THAT(states->encoder->supported_frame_lengths_ms(),
ElementsAre(states->encoder->next_frame_length_ms()));
states->encoder->SetReceiverFrameLengthRange(0, 12345);
states->encoder->SetReceiverFrameLengthRange(21, 60);
EXPECT_THAT(states->encoder->supported_frame_lengths_ms(), ElementsAre(60));
states->encoder->SetReceiverFrameLengthRange(20, 59);
EXPECT_THAT(states->encoder->supported_frame_lengths_ms(), ElementsAre(20));
}
TEST(AudioEncoderOpusTest,
InvokeAudioNetworkAdaptorOnReceivedUplinkPacketLossFraction) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
EXPECT_CALL(*states->mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any packet loss fraction is fine.
constexpr float kUplinkPacketLoss = 0.1f;
EXPECT_CALL(**states.mock_audio_network_adaptor,
EXPECT_CALL(*states->mock_audio_network_adaptor,
SetUplinkPacketLossFraction(kUplinkPacketLoss));
states.encoder->OnReceivedUplinkPacketLossFraction(kUplinkPacketLoss);
states->encoder->OnReceivedUplinkPacketLossFraction(kUplinkPacketLoss);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
CheckEncoderRuntimeConfig(states->encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedUplinkBandwidth) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
EXPECT_CALL(*states->mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any target audio bitrate is fine.
constexpr int kTargetAudioBitrate = 30000;
constexpr int64_t kProbingIntervalMs = 3000;
EXPECT_CALL(**states.mock_audio_network_adaptor,
EXPECT_CALL(*states->mock_audio_network_adaptor,
SetTargetAudioBitrate(kTargetAudioBitrate));
EXPECT_CALL(*states.mock_bitrate_smoother,
EXPECT_CALL(*states->mock_bitrate_smoother,
SetTimeConstantMs(kProbingIntervalMs * 4));
EXPECT_CALL(*states.mock_bitrate_smoother, AddSample(kTargetAudioBitrate));
states.encoder->OnReceivedUplinkBandwidth(kTargetAudioBitrate,
kProbingIntervalMs);
EXPECT_CALL(*states->mock_bitrate_smoother, AddSample(kTargetAudioBitrate));
states->encoder->OnReceivedUplinkBandwidth(kTargetAudioBitrate,
kProbingIntervalMs);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
CheckEncoderRuntimeConfig(states->encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedRtt) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
EXPECT_CALL(*states->mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any rtt is fine.
constexpr int kRtt = 30;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetRtt(kRtt));
states.encoder->OnReceivedRtt(kRtt);
EXPECT_CALL(*states->mock_audio_network_adaptor, SetRtt(kRtt));
states->encoder->OnReceivedRtt(kRtt);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
CheckEncoderRuntimeConfig(states->encoder.get(), config);
}
TEST(AudioEncoderOpusTest, InvokeAudioNetworkAdaptorOnReceivedOverhead) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
EXPECT_CALL(*states->mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config));
// Since using mock audio network adaptor, any overhead is fine.
constexpr size_t kOverhead = 64;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetOverhead(kOverhead));
states.encoder->OnReceivedOverhead(kOverhead);
EXPECT_CALL(*states->mock_audio_network_adaptor, SetOverhead(kOverhead));
states->encoder->OnReceivedOverhead(kOverhead);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
CheckEncoderRuntimeConfig(states->encoder.get(), config);
}
TEST(AudioEncoderOpusTest,
@ -376,18 +373,18 @@ TEST(AudioEncoderOpusTest,
constexpr int64_t kSecondSampleTimeMs = 6931;
// First time, no filtering.
states.encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_1);
EXPECT_FLOAT_EQ(0.01f, states.encoder->packet_loss_rate());
states->encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_1);
EXPECT_FLOAT_EQ(0.01f, states->encoder->packet_loss_rate());
states.fake_clock->AdvanceTime(
states->fake_clock->AdvanceTime(
rtc::TimeDelta::FromMilliseconds(kSecondSampleTimeMs));
states.encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_2);
states->encoder->OnReceivedUplinkPacketLossFraction(kPacketLossFraction_2);
// Now the output of packet loss fraction smoother should be
// (0.02 + 0.198) / 2 = 0.109, which reach the threshold for the optimized
// packet loss rate to increase to 0.05. If no smoothing has been made, the
// optimized packet loss rate should have been increase to 0.1.
EXPECT_FLOAT_EQ(0.05f, states.encoder->packet_loss_rate());
EXPECT_FLOAT_EQ(0.05f, states->encoder->packet_loss_rate());
}
TEST(AudioEncoderOpusTest, DoNotInvokeSetTargetBitrateIfOverheadUnknown) {
@ -396,12 +393,12 @@ TEST(AudioEncoderOpusTest, DoNotInvokeSetTargetBitrateIfOverheadUnknown) {
auto states = CreateCodec(2);
states.encoder->OnReceivedUplinkBandwidth(kDefaultOpusSettings.rate * 2,
rtc::nullopt);
states->encoder->OnReceivedUplinkBandwidth(kDefaultOpusSettings.rate * 2,
rtc::nullopt);
// Since |OnReceivedOverhead| has not been called, the codec bitrate should
// not change.
EXPECT_EQ(kDefaultOpusSettings.rate, states.encoder->GetTargetBitrate());
EXPECT_EQ(kDefaultOpusSettings.rate, states->encoder->GetTargetBitrate());
}
TEST(AudioEncoderOpusTest, OverheadRemovedFromTargetAudioBitrate) {
@ -411,15 +408,15 @@ TEST(AudioEncoderOpusTest, OverheadRemovedFromTargetAudioBitrate) {
auto states = CreateCodec(2);
constexpr size_t kOverheadBytesPerPacket = 64;
states.encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
states->encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
constexpr int kTargetBitrateBps = 40000;
states.encoder->OnReceivedUplinkBandwidth(kTargetBitrateBps, rtc::nullopt);
states->encoder->OnReceivedUplinkBandwidth(kTargetBitrateBps, rtc::nullopt);
int packet_rate = rtc::CheckedDivExact(48000, kDefaultOpusSettings.pacsize);
EXPECT_EQ(kTargetBitrateBps -
8 * static_cast<int>(kOverheadBytesPerPacket) * packet_rate,
states.encoder->GetTargetBitrate());
states->encoder->GetTargetBitrate());
}
TEST(AudioEncoderOpusTest, BitrateBounded) {
@ -432,7 +429,7 @@ TEST(AudioEncoderOpusTest, BitrateBounded) {
auto states = CreateCodec(2);
constexpr size_t kOverheadBytesPerPacket = 64;
states.encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
states->encoder->OnReceivedOverhead(kOverheadBytesPerPacket);
int packet_rate = rtc::CheckedDivExact(48000, kDefaultOpusSettings.pacsize);
@ -440,15 +437,15 @@ TEST(AudioEncoderOpusTest, BitrateBounded) {
// subtracted. The eventual codec rate should be bounded by |kMinBitrateBps|.
int target_bitrate =
kOverheadBytesPerPacket * 8 * packet_rate + kMinBitrateBps - 1;
states.encoder->OnReceivedUplinkBandwidth(target_bitrate, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(target_bitrate, rtc::nullopt);
EXPECT_EQ(kMinBitrateBps, states->encoder->GetTargetBitrate());
// Set a target rate that is greater than |kMaxBitrateBps| when overhead is
// subtracted. The eventual codec rate should be bounded by |kMaxBitrateBps|.
target_bitrate =
kOverheadBytesPerPacket * 8 * packet_rate + kMaxBitrateBps + 1;
states.encoder->OnReceivedUplinkBandwidth(target_bitrate, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states.encoder->GetTargetBitrate());
states->encoder->OnReceivedUplinkBandwidth(target_bitrate, rtc::nullopt);
EXPECT_EQ(kMaxBitrateBps, states->encoder->GetTargetBitrate());
}
// Verifies that the complexity adaptation in the config works as intended.
@ -534,50 +531,50 @@ TEST(AudioEncoderOpusTest, ConfigBandwidthAdaptation) {
TEST(AudioEncoderOpusTest, EmptyConfigDoesNotAffectEncoderSettings) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
auto config = CreateEncoderRuntimeConfig();
AudioEncoderRuntimeConfig empty_config;
EXPECT_CALL(**states.mock_audio_network_adaptor, GetEncoderRuntimeConfig())
EXPECT_CALL(*states->mock_audio_network_adaptor, GetEncoderRuntimeConfig())
.WillOnce(Return(config))
.WillOnce(Return(empty_config));
constexpr size_t kOverhead = 64;
EXPECT_CALL(**states.mock_audio_network_adaptor, SetOverhead(kOverhead))
EXPECT_CALL(*states->mock_audio_network_adaptor, SetOverhead(kOverhead))
.Times(2);
states.encoder->OnReceivedOverhead(kOverhead);
states.encoder->OnReceivedOverhead(kOverhead);
states->encoder->OnReceivedOverhead(kOverhead);
states->encoder->OnReceivedOverhead(kOverhead);
CheckEncoderRuntimeConfig(states.encoder.get(), config);
CheckEncoderRuntimeConfig(states->encoder.get(), config);
}
TEST(AudioEncoderOpusTest, UpdateUplinkBandwidthInAudioNetworkAdaptor) {
auto states = CreateCodec(2);
states.encoder->EnableAudioNetworkAdaptor("", nullptr);
states->encoder->EnableAudioNetworkAdaptor("", nullptr);
std::array<int16_t, 480 * 2> audio;
audio.fill(0);
rtc::Buffer encoded;
EXPECT_CALL(*states.mock_bitrate_smoother, GetAverage())
EXPECT_CALL(*states->mock_bitrate_smoother, GetAverage())
.WillOnce(Return(50000));
EXPECT_CALL(**states.mock_audio_network_adaptor, SetUplinkBandwidth(50000));
states.encoder->Encode(
EXPECT_CALL(*states->mock_audio_network_adaptor, SetUplinkBandwidth(50000));
states->encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
// Repeat update uplink bandwidth tests.
for (int i = 0; i < 5; i++) {
// Don't update till it is time to update again.
states.fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(
states.config.uplink_bandwidth_update_interval_ms - 1));
states.encoder->Encode(
states->fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(
states->config.uplink_bandwidth_update_interval_ms - 1));
states->encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
// Update when it is time to update.
EXPECT_CALL(*states.mock_bitrate_smoother, GetAverage())
EXPECT_CALL(*states->mock_bitrate_smoother, GetAverage())
.WillOnce(Return(40000));
EXPECT_CALL(**states.mock_audio_network_adaptor, SetUplinkBandwidth(40000));
states.fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
states.encoder->Encode(
EXPECT_CALL(*states->mock_audio_network_adaptor, SetUplinkBandwidth(40000));
states->fake_clock->AdvanceTime(rtc::TimeDelta::FromMilliseconds(1));
states->encoder->Encode(
0, rtc::ArrayView<const int16_t>(audio.data(), audio.size()), &encoded);
}
}
@ -586,25 +583,25 @@ TEST(AudioEncoderOpusTest, EncodeAtMinBitrate) {
auto states = CreateCodec(1);
constexpr int kNumPacketsToEncode = 2;
auto audio_frames =
Create10msAudioBlocks(states.encoder, kNumPacketsToEncode * 20);
Create10msAudioBlocks(states->encoder, kNumPacketsToEncode * 20);
ASSERT_TRUE(audio_frames) << "Create10msAudioBlocks failed";
rtc::Buffer encoded;
uint32_t rtp_timestamp = 12345; // Just a number not important to this test.
states.encoder->OnReceivedUplinkBandwidth(0, rtc::nullopt);
states->encoder->OnReceivedUplinkBandwidth(0, rtc::nullopt);
for (int packet_index = 0; packet_index < kNumPacketsToEncode;
packet_index++) {
// Make sure we are not encoding before we have enough data for
// a 20ms packet.
for (int index = 0; index < 1; index++) {
states.encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
states->encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
EXPECT_EQ(0u, encoded.size());
}
// Should encode now.
states.encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
states->encoder->Encode(rtp_timestamp, audio_frames->GetNextBlock(),
&encoded);
EXPECT_GT(encoded.size(), 0u);
encoded.Clear();
}