Add max pre-decode queue size threshold for pacing
When pacing is enabled for the low latency rendering path, frames are sent to the decoder in regular intervals. In case of a jitter, these frames intervals could add up to create a large latency. Hence, disable frame pacing if the pre-decode queue grows beyond the threshold. The threshold for when to disable frame pacing is set through a field trial. The default value is high enough so that the behavior is not changed unless the field trial is specified. Bug: chromium:1237402 Change-Id: I901fd579f68da286eca3d654118f60d3c55e21ce Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/228241 Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Commit-Queue: Johannes Kron <kron@webrtc.org> Cr-Commit-Position: refs/heads/master@{#34705}
This commit is contained in:
committed by
WebRTC LUCI CQ
parent
5653c95ca2
commit
2ddc39e2b9
@ -63,7 +63,11 @@ FrameBuffer::FrameBuffer(Clock* clock,
|
||||
last_log_non_decoded_ms_(-kLogNonDecodedIntervalMs),
|
||||
add_rtt_to_playout_delay_(
|
||||
webrtc::field_trial::IsEnabled("WebRTC-AddRttToPlayoutDelay")),
|
||||
rtt_mult_settings_(RttMultExperiment::GetRttMultValue()) {
|
||||
rtt_mult_settings_(RttMultExperiment::GetRttMultValue()),
|
||||
zero_playout_delay_max_decode_queue_size_("max_decode_queue_size",
|
||||
kMaxFramesBuffered) {
|
||||
ParseFieldTrial({&zero_playout_delay_max_decode_queue_size_},
|
||||
field_trial::FindFullName("WebRTC-ZeroPlayoutDelay"));
|
||||
callback_checker_.Detach();
|
||||
}
|
||||
|
||||
@ -212,7 +216,11 @@ int64_t FrameBuffer::FindNextFrame(int64_t now_ms) {
|
||||
if (frame->RenderTime() == -1) {
|
||||
frame->SetRenderTime(timing_->RenderTimeMs(frame->Timestamp(), now_ms));
|
||||
}
|
||||
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms);
|
||||
bool too_many_frames_queued =
|
||||
frames_.size() > zero_playout_delay_max_decode_queue_size_ ? true
|
||||
: false;
|
||||
wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms,
|
||||
too_many_frames_queued);
|
||||
|
||||
// This will cause the frame buffer to prefer high framerate rather
|
||||
// than high resolution in the case of the decoder not decoding fast
|
||||
|
||||
@ -25,6 +25,7 @@
|
||||
#include "modules/video_coding/jitter_estimator.h"
|
||||
#include "modules/video_coding/utility/decoded_frames_history.h"
|
||||
#include "rtc_base/event.h"
|
||||
#include "rtc_base/experiments/field_trial_parser.h"
|
||||
#include "rtc_base/experiments/rtt_mult_experiment.h"
|
||||
#include "rtc_base/numerics/sequence_number_util.h"
|
||||
#include "rtc_base/synchronization/mutex.h"
|
||||
@ -188,6 +189,13 @@ class FrameBuffer {
|
||||
|
||||
// rtt_mult experiment settings.
|
||||
const absl::optional<RttMultExperiment::Settings> rtt_mult_settings_;
|
||||
|
||||
// Maximum number of frames in the decode queue to allow pacing. If the
|
||||
// queue grows beyond the max limit, pacing will be disabled and frames will
|
||||
// be pushed to the decoder as soon as possible. This only has an effect
|
||||
// when the low-latency rendering path is active, which is indicated by
|
||||
// the frame's render time == 0.
|
||||
FieldTrialParameter<unsigned> zero_playout_delay_max_decode_queue_size_;
|
||||
};
|
||||
|
||||
} // namespace video_coding
|
||||
|
||||
@ -56,7 +56,8 @@ class VCMTimingFake : public VCMTiming {
|
||||
}
|
||||
|
||||
int64_t MaxWaitingTime(int64_t render_time_ms,
|
||||
int64_t now_ms) const override {
|
||||
int64_t now_ms,
|
||||
bool too_many_frames_queued) const override {
|
||||
return render_time_ms - now_ms - kDecodeTime;
|
||||
}
|
||||
|
||||
|
||||
@ -140,7 +140,8 @@ VCMEncodedFrame* VCMReceiver::FrameForDecoding(uint16_t max_wait_time_ms,
|
||||
uint16_t new_max_wait_time =
|
||||
static_cast<uint16_t>(VCM_MAX(available_wait_time, 0));
|
||||
uint32_t wait_time_ms = rtc::saturated_cast<uint32_t>(
|
||||
timing_->MaxWaitingTime(render_time_ms, clock_->TimeInMilliseconds()));
|
||||
timing_->MaxWaitingTime(render_time_ms, clock_->TimeInMilliseconds(),
|
||||
/*too_many_frames_queued=*/false));
|
||||
if (new_max_wait_time < wait_time_ms) {
|
||||
// We're not allowed to wait until the frame is supposed to be rendered,
|
||||
// waiting as long as we're allowed to avoid busy looping, and then return
|
||||
|
||||
@ -209,14 +209,19 @@ int VCMTiming::RequiredDecodeTimeMs() const {
|
||||
}
|
||||
|
||||
int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
|
||||
int64_t now_ms) const {
|
||||
int64_t now_ms,
|
||||
bool too_many_frames_queued) const {
|
||||
MutexLock lock(&mutex_);
|
||||
|
||||
if (render_time_ms == 0 && zero_playout_delay_min_pacing_->us() > 0) {
|
||||
// `render_time_ms` == 0 indicates that the frame should be decoded and
|
||||
// rendered as soon as possible. However, the decoder can be choked if too
|
||||
// many frames are sent at ones. Therefore, limit the interframe delay to
|
||||
// `zero_playout_delay_min_pacing_`.
|
||||
// many frames are sent at once. Therefore, limit the interframe delay to
|
||||
// |zero_playout_delay_min_pacing_| unless too many frames are queued in
|
||||
// which case the frames are sent to the decoder at once.
|
||||
if (too_many_frames_queued) {
|
||||
return 0;
|
||||
}
|
||||
int64_t earliest_next_decode_start_time =
|
||||
last_decode_scheduled_ts_ + zero_playout_delay_min_pacing_->ms();
|
||||
int64_t max_wait_time_ms = now_ms >= earliest_next_decode_start_time
|
||||
|
||||
@ -82,8 +82,15 @@ class VCMTiming {
|
||||
virtual int64_t RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms) const;
|
||||
|
||||
// Returns the maximum time in ms that we can wait for a frame to become
|
||||
// complete before we must pass it to the decoder.
|
||||
virtual int64_t MaxWaitingTime(int64_t render_time_ms, int64_t now_ms) const;
|
||||
// complete before we must pass it to the decoder. render_time_ms==0 indicates
|
||||
// that the frames should be processed as quickly as possible, with possibly
|
||||
// only a small delay added to make sure that the decoder is not overloaded.
|
||||
// In this case, the parameter too_many_frames_queued is used to signal that
|
||||
// the decode queue is full and that the frame should be decoded as soon as
|
||||
// possible.
|
||||
virtual int64_t MaxWaitingTime(int64_t render_time_ms,
|
||||
int64_t now_ms,
|
||||
bool too_many_frames_queued) const;
|
||||
|
||||
// Returns the current target delay which is required delay + decode time +
|
||||
// render delay.
|
||||
|
||||
@ -36,7 +36,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.set_render_delay(0);
|
||||
uint32_t wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
// First update initializes the render time. Since we have no decode delay
|
||||
// we get wait_time_ms = renderTime - now - renderDelay = jitter.
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
@ -48,7 +48,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
// Since we gradually increase the delay we only get 100 ms every second.
|
||||
EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms);
|
||||
|
||||
@ -57,7 +57,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
// Insert frames without jitter, verify that this gives the exact wait time.
|
||||
@ -70,7 +70,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
// Add decode time estimates for 1 second.
|
||||
@ -85,7 +85,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
const int kMinTotalDelayMs = 200;
|
||||
@ -97,7 +97,7 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
timing.set_render_delay(kRenderDelayMs);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
|
||||
// (10) to wait.
|
||||
EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms);
|
||||
@ -140,16 +140,26 @@ TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
}
|
||||
// Another frame submitted at the same time also returns a negative max
|
||||
// waiting time.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
// MaxWaitingTime should be less than zero even if there's a burst of frames.
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
}
|
||||
|
||||
TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
|
||||
@ -168,27 +178,38 @@ TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
}
|
||||
// Another frame submitted at the same time is paced according to the field
|
||||
// trial setting.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
// If there's a burst of frames, the wait time is calculated based on next
|
||||
// decode time.
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
// Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
|
||||
constexpr int64_t kTwoMs = 2;
|
||||
clock.AdvanceTimeMilliseconds(kTwoMs);
|
||||
now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms),
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs - kTwoMs);
|
||||
// A frame is decoded at the current time, the wait time should be restored to
|
||||
// pacing delay.
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
}
|
||||
|
||||
TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
|
||||
@ -206,16 +227,56 @@ TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
|
||||
int64_t render_time_ms = now_ms + 30;
|
||||
// Estimate the internal processing delay from the first frame.
|
||||
int64_t estimated_processing_delay =
|
||||
(render_time_ms - now_ms) - timing.MaxWaitingTime(render_time_ms, now_ms);
|
||||
(render_time_ms - now_ms) -
|
||||
timing.MaxWaitingTime(render_time_ms, now_ms,
|
||||
/*too_many_frames_queued=*/false);
|
||||
EXPECT_GT(estimated_processing_delay, 0);
|
||||
|
||||
// Any other frame submitted at the same time should be scheduled according to
|
||||
// its render time.
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
render_time_ms += kTimeDeltaMs;
|
||||
EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms),
|
||||
EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
render_time_ms - now_ms - estimated_processing_delay);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ReceiverTiminTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
|
||||
// The minimum pacing is enabled by a field trial and active if the RTP
|
||||
// playout delay header extension is set to min==0.
|
||||
constexpr int64_t kMinPacingMs = 3;
|
||||
test::ScopedFieldTrials override_field_trials(
|
||||
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
|
||||
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
|
||||
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
|
||||
constexpr int64_t kZeroRenderTimeMs = 0;
|
||||
SimulatedClock clock(kStartTimeUs);
|
||||
VCMTiming timing(&clock);
|
||||
timing.Reset();
|
||||
// MaxWaitingTime() returns zero for evenly spaced video frames.
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
}
|
||||
// Another frame submitted at the same time is paced according to the field
|
||||
// trial setting.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
// MaxWaitingTime returns 0 even if there's a burst of frames if
|
||||
// too_many_frames_queued is set to true.
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/true),
|
||||
0);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
/*too_many_frames_queued=*/true),
|
||||
0);
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
Reference in New Issue
Block a user