Fix and simplify the power estimation in the IntelligibilityEnhancer

R=henrik.lundin@webrtc.org, turaj@webrtc.org

Review URL: https://codereview.webrtc.org/1685703004 .

Cr-Commit-Position: refs/heads/master@{#11663}
This commit is contained in:
Alejandro Luebs
2016-02-17 20:04:19 -08:00
parent ee18220ddd
commit 32348192cc
8 changed files with 189 additions and 658 deletions

View File

@ -8,10 +8,6 @@
* be found in the AUTHORS file in the root of the source tree.
*/
//
// Specifies helper classes for intelligibility enhancement.
//
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
@ -23,115 +19,36 @@ namespace webrtc {
namespace intelligibility {
// Return |current| changed towards |target|, with the change being at most
// |limit|.
float UpdateFactor(float target, float current, float limit);
// Apply a small fudge to degenerate complex values. The numbers in the array
// were chosen randomly, so that even a series of all zeroes has some small
// variability.
std::complex<float> zerofudge(std::complex<float> c);
// Incremental mean computation. Return the mean of the series with the
// mean |mean| with added |data|.
std::complex<float> NewMean(std::complex<float> mean,
std::complex<float> data,
size_t count);
// Updates |mean| with added |data|;
void AddToMean(std::complex<float> data,
size_t count,
std::complex<float>* mean);
// Internal helper for computing the variances of a stream of arrays.
// The result is an array of variances per position: the i-th variance
// is the variance of the stream of data on the i-th positions in the
// input arrays.
// There are four methods of computation:
// * kStepInfinite computes variances from the beginning onwards
// * kStepDecaying uses a recursive exponential decay formula with a
// settable forgetting factor
// * kStepWindowed computes variances within a moving window
// * kStepBlocked is similar to kStepWindowed, but history is kept
// as a rolling window of blocks: multiple input elements are used for
// one block and the history then consists of the variances of these blocks
// with the same effect as kStepWindowed, but less storage, so the window
// can be longer
class VarianceArray {
// Internal helper for computing the power of a stream of arrays.
// The result is an array of power per position: the i-th power is the power of
// the stream of data on the i-th positions in the input arrays.
class PowerEstimator {
public:
enum StepType {
kStepInfinite = 0,
kStepDecaying,
kStepWindowed,
kStepBlocked,
kStepBlockBasedMovingAverage
};
// Construct an instance for the given input array length (|freqs|), with the
// appropriate parameters. |decay| is the forgetting factor.
PowerEstimator(size_t freqs, float decay);
// Construct an instance for the given input array length (|freqs|) and
// computation algorithm (|type|), with the appropriate parameters.
// |window_size| is the number of samples for kStepWindowed and
// the number of blocks for kStepBlocked. |decay| is the forgetting factor
// for kStepDecaying.
VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
// Add a new data point to the series.
void Step(const std::complex<float>* data);
// Add a new data point to the series and compute the new variances.
// TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
// whether they should skip adding some small dummy values to the input
// to prevent problems with all-zero inputs. Can probably be removed.
void Step(const std::complex<float>* data, bool skip_fudge = false) {
(this->*step_func_)(data, skip_fudge);
}
// Reset variances to zero and forget all history.
void Clear();
// Scale the input data by |scale|. Effectively multiply variances
// by |scale^2|.
void ApplyScale(float scale);
// The current set of variances.
const float* variance() const { return variance_.get(); }
// The mean value of the current set of variances.
float array_mean() const { return array_mean_; }
// The current power array.
const float* Power();
private:
void InfiniteStep(const std::complex<float>* data, bool dummy);
void DecayStep(const std::complex<float>* data, bool dummy);
void WindowedStep(const std::complex<float>* data, bool dummy);
void BlockedStep(const std::complex<float>* data, bool dummy);
void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
// TODO(ekmeyerson): Switch the following running means
// and histories from rtc::scoped_ptr to std::vector.
// The current average X and X^2.
rtc::scoped_ptr<std::complex<float>[]> running_mean_;
rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
// Average X and X^2 for the current block in kStepBlocked.
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
// Sample history for the rolling window in kStepWindowed and block-wise
// histories for kStepBlocked.
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
// The current set of variances and sums for Welford's algorithm.
rtc::scoped_ptr<float[]> variance_;
rtc::scoped_ptr<float[]> conj_sum_;
// The current magnitude array.
rtc::scoped_ptr<float[]> magnitude_;
// The current power array.
rtc::scoped_ptr<float[]> power_;
const size_t num_freqs_;
const size_t window_size_;
const float decay_;
size_t history_cursor_;
size_t count_;
float array_mean_;
bool buffer_full_;
void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
};
// Helper class for smoothing gain changes. On each applicatiion step, the
// Helper class for smoothing gain changes. On each application step, the
// currently used gains are changed towards a set of settable target gains,
// constrained by a limit on the magnitude of the changes.
class GainApplier {