Fix and simplify the power estimation in the IntelligibilityEnhancer
R=henrik.lundin@webrtc.org, turaj@webrtc.org Review URL: https://codereview.webrtc.org/1685703004 . Cr-Commit-Position: refs/heads/master@{#11663}
This commit is contained in:
@ -8,10 +8,6 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
//
|
||||
// Specifies helper classes for intelligibility enhancement.
|
||||
//
|
||||
|
||||
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
||||
#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
|
||||
|
||||
@ -23,115 +19,36 @@ namespace webrtc {
|
||||
|
||||
namespace intelligibility {
|
||||
|
||||
// Return |current| changed towards |target|, with the change being at most
|
||||
// |limit|.
|
||||
float UpdateFactor(float target, float current, float limit);
|
||||
|
||||
// Apply a small fudge to degenerate complex values. The numbers in the array
|
||||
// were chosen randomly, so that even a series of all zeroes has some small
|
||||
// variability.
|
||||
std::complex<float> zerofudge(std::complex<float> c);
|
||||
|
||||
// Incremental mean computation. Return the mean of the series with the
|
||||
// mean |mean| with added |data|.
|
||||
std::complex<float> NewMean(std::complex<float> mean,
|
||||
std::complex<float> data,
|
||||
size_t count);
|
||||
|
||||
// Updates |mean| with added |data|;
|
||||
void AddToMean(std::complex<float> data,
|
||||
size_t count,
|
||||
std::complex<float>* mean);
|
||||
|
||||
// Internal helper for computing the variances of a stream of arrays.
|
||||
// The result is an array of variances per position: the i-th variance
|
||||
// is the variance of the stream of data on the i-th positions in the
|
||||
// input arrays.
|
||||
// There are four methods of computation:
|
||||
// * kStepInfinite computes variances from the beginning onwards
|
||||
// * kStepDecaying uses a recursive exponential decay formula with a
|
||||
// settable forgetting factor
|
||||
// * kStepWindowed computes variances within a moving window
|
||||
// * kStepBlocked is similar to kStepWindowed, but history is kept
|
||||
// as a rolling window of blocks: multiple input elements are used for
|
||||
// one block and the history then consists of the variances of these blocks
|
||||
// with the same effect as kStepWindowed, but less storage, so the window
|
||||
// can be longer
|
||||
class VarianceArray {
|
||||
// Internal helper for computing the power of a stream of arrays.
|
||||
// The result is an array of power per position: the i-th power is the power of
|
||||
// the stream of data on the i-th positions in the input arrays.
|
||||
class PowerEstimator {
|
||||
public:
|
||||
enum StepType {
|
||||
kStepInfinite = 0,
|
||||
kStepDecaying,
|
||||
kStepWindowed,
|
||||
kStepBlocked,
|
||||
kStepBlockBasedMovingAverage
|
||||
};
|
||||
// Construct an instance for the given input array length (|freqs|), with the
|
||||
// appropriate parameters. |decay| is the forgetting factor.
|
||||
PowerEstimator(size_t freqs, float decay);
|
||||
|
||||
// Construct an instance for the given input array length (|freqs|) and
|
||||
// computation algorithm (|type|), with the appropriate parameters.
|
||||
// |window_size| is the number of samples for kStepWindowed and
|
||||
// the number of blocks for kStepBlocked. |decay| is the forgetting factor
|
||||
// for kStepDecaying.
|
||||
VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
|
||||
// Add a new data point to the series.
|
||||
void Step(const std::complex<float>* data);
|
||||
|
||||
// Add a new data point to the series and compute the new variances.
|
||||
// TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
|
||||
// whether they should skip adding some small dummy values to the input
|
||||
// to prevent problems with all-zero inputs. Can probably be removed.
|
||||
void Step(const std::complex<float>* data, bool skip_fudge = false) {
|
||||
(this->*step_func_)(data, skip_fudge);
|
||||
}
|
||||
// Reset variances to zero and forget all history.
|
||||
void Clear();
|
||||
// Scale the input data by |scale|. Effectively multiply variances
|
||||
// by |scale^2|.
|
||||
void ApplyScale(float scale);
|
||||
|
||||
// The current set of variances.
|
||||
const float* variance() const { return variance_.get(); }
|
||||
|
||||
// The mean value of the current set of variances.
|
||||
float array_mean() const { return array_mean_; }
|
||||
// The current power array.
|
||||
const float* Power();
|
||||
|
||||
private:
|
||||
void InfiniteStep(const std::complex<float>* data, bool dummy);
|
||||
void DecayStep(const std::complex<float>* data, bool dummy);
|
||||
void WindowedStep(const std::complex<float>* data, bool dummy);
|
||||
void BlockedStep(const std::complex<float>* data, bool dummy);
|
||||
void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
|
||||
|
||||
// TODO(ekmeyerson): Switch the following running means
|
||||
// and histories from rtc::scoped_ptr to std::vector.
|
||||
|
||||
// The current average X and X^2.
|
||||
rtc::scoped_ptr<std::complex<float>[]> running_mean_;
|
||||
rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
|
||||
|
||||
// Average X and X^2 for the current block in kStepBlocked.
|
||||
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
|
||||
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
|
||||
|
||||
// Sample history for the rolling window in kStepWindowed and block-wise
|
||||
// histories for kStepBlocked.
|
||||
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
|
||||
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
|
||||
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
|
||||
|
||||
// The current set of variances and sums for Welford's algorithm.
|
||||
rtc::scoped_ptr<float[]> variance_;
|
||||
rtc::scoped_ptr<float[]> conj_sum_;
|
||||
// The current magnitude array.
|
||||
rtc::scoped_ptr<float[]> magnitude_;
|
||||
// The current power array.
|
||||
rtc::scoped_ptr<float[]> power_;
|
||||
|
||||
const size_t num_freqs_;
|
||||
const size_t window_size_;
|
||||
const float decay_;
|
||||
size_t history_cursor_;
|
||||
size_t count_;
|
||||
float array_mean_;
|
||||
bool buffer_full_;
|
||||
void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
|
||||
};
|
||||
|
||||
// Helper class for smoothing gain changes. On each applicatiion step, the
|
||||
// Helper class for smoothing gain changes. On each application step, the
|
||||
// currently used gains are changed towards a set of settable target gains,
|
||||
// constrained by a limit on the magnitude of the changes.
|
||||
class GainApplier {
|
||||
|
||||
Reference in New Issue
Block a user