|
|
|
|
@ -24,10 +24,11 @@ namespace webrtc {
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz
|
|
|
|
|
|
|
|
|
|
std::vector<int16_t> LoadSpeechData() {
|
|
|
|
|
webrtc::test::InputAudioFile input_file(
|
|
|
|
|
webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"));
|
|
|
|
|
static const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz
|
|
|
|
|
std::vector<int16_t> speech_data(kIsacNumberOfSamples);
|
|
|
|
|
input_file.Read(kIsacNumberOfSamples, speech_data.data());
|
|
|
|
|
return speech_data;
|
|
|
|
|
@ -41,32 +42,45 @@ IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) {
|
|
|
|
|
return bi;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Encodes one packet. Returns the packet duration in milliseconds.
|
|
|
|
|
template <typename T>
|
|
|
|
|
rtc::Buffer EncodePacket(typename T::instance_type* inst,
|
|
|
|
|
const IsacBandwidthInfo* bi,
|
|
|
|
|
const int16_t* speech_data,
|
|
|
|
|
int framesize_ms) {
|
|
|
|
|
rtc::Buffer output(1000);
|
|
|
|
|
for (int i = 0;; ++i) {
|
|
|
|
|
int EncodePacket(typename T::instance_type* inst,
|
|
|
|
|
const IsacBandwidthInfo* bi,
|
|
|
|
|
const int16_t* speech_data,
|
|
|
|
|
rtc::Buffer* output) {
|
|
|
|
|
output->SetSize(1000);
|
|
|
|
|
for (int duration_ms = 10;; duration_ms += 10) {
|
|
|
|
|
if (bi)
|
|
|
|
|
T::SetBandwidthInfo(inst, bi);
|
|
|
|
|
int encoded_bytes = T::Encode(inst, speech_data, output.data());
|
|
|
|
|
if (i + 1 == framesize_ms / 10) {
|
|
|
|
|
int encoded_bytes = T::Encode(inst, speech_data, output->data());
|
|
|
|
|
if (encoded_bytes > 0 || duration_ms >= 60) {
|
|
|
|
|
EXPECT_GT(encoded_bytes, 0);
|
|
|
|
|
EXPECT_LE(static_cast<size_t>(encoded_bytes), output.size());
|
|
|
|
|
output.SetSize(encoded_bytes);
|
|
|
|
|
return output;
|
|
|
|
|
EXPECT_LE(static_cast<size_t>(encoded_bytes), output->size());
|
|
|
|
|
output->SetSize(encoded_bytes);
|
|
|
|
|
return duration_ms;
|
|
|
|
|
}
|
|
|
|
|
EXPECT_EQ(0, encoded_bytes);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
std::vector<int16_t> DecodePacket(typename T::instance_type* inst,
|
|
|
|
|
const rtc::Buffer& encoded) {
|
|
|
|
|
std::vector<int16_t> decoded(kIsacNumberOfSamples);
|
|
|
|
|
int16_t speech_type;
|
|
|
|
|
int nsamples = T::DecodeInternal(inst, encoded.data(), encoded.size(),
|
|
|
|
|
&decoded.front(), &speech_type);
|
|
|
|
|
EXPECT_GT(nsamples, 0);
|
|
|
|
|
EXPECT_LE(static_cast<size_t>(nsamples), decoded.size());
|
|
|
|
|
decoded.resize(nsamples);
|
|
|
|
|
return decoded;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
class BoundedCapacityChannel final {
|
|
|
|
|
public:
|
|
|
|
|
BoundedCapacityChannel(int rate_bits_per_second)
|
|
|
|
|
BoundedCapacityChannel(int sample_rate_hz, int rate_bits_per_second)
|
|
|
|
|
: current_time_rtp_(0),
|
|
|
|
|
channel_rate_bytes_per_sample_(rate_bits_per_second /
|
|
|
|
|
(8.0 * kSamplesPerSecond)) {}
|
|
|
|
|
(8.0 * sample_rate_hz)) {}
|
|
|
|
|
|
|
|
|
|
// Simulate sending the given number of bytes at the given RTP time. Returns
|
|
|
|
|
// the new current RTP time after the sending is done.
|
|
|
|
|
@ -81,47 +95,6 @@ class BoundedCapacityChannel final {
|
|
|
|
|
// The somewhat strange unit for channel rate, bytes per sample, is because
|
|
|
|
|
// RTP time is measured in samples:
|
|
|
|
|
const double channel_rate_bytes_per_sample_;
|
|
|
|
|
static const int kSamplesPerSecond = 16000;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T, bool adaptive>
|
|
|
|
|
struct TestParam {};
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
struct TestParam<IsacFloat, true> {
|
|
|
|
|
static const int time_to_settle = 200;
|
|
|
|
|
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
|
|
|
|
|
return rate_bits_per_second;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
struct TestParam<IsacFix, true> {
|
|
|
|
|
static const int time_to_settle = 350;
|
|
|
|
|
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
|
|
|
|
|
// For some reason, IsacFix fails to adapt to the channel's actual
|
|
|
|
|
// bandwidth. Instead, it settles on a few hundred packets at 10kbit/s,
|
|
|
|
|
// then a few hundred at 5kbit/s, then a few hundred at 10kbit/s, and so
|
|
|
|
|
// on. The 200 packets starting at 350 are in the middle of the first
|
|
|
|
|
// 10kbit/s run.
|
|
|
|
|
return 10000;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
struct TestParam<IsacFloat, false> {
|
|
|
|
|
static const int time_to_settle = 0;
|
|
|
|
|
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
|
|
|
|
|
return 32000;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <>
|
|
|
|
|
struct TestParam<IsacFix, false> {
|
|
|
|
|
static const int time_to_settle = 0;
|
|
|
|
|
static int ExpectedRateBitsPerSecond(int rate_bits_per_second) {
|
|
|
|
|
return 16000;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Test that the iSAC encoder produces identical output whether or not we use a
|
|
|
|
|
@ -129,143 +102,153 @@ struct TestParam<IsacFix, false> {
|
|
|
|
|
// communicate BW estimation info explicitly.
|
|
|
|
|
template <typename T, bool adaptive>
|
|
|
|
|
void TestGetSetBandwidthInfo(const int16_t* speech_data,
|
|
|
|
|
int rate_bits_per_second) {
|
|
|
|
|
using Param = TestParam<T, adaptive>;
|
|
|
|
|
const int framesize_ms = adaptive ? 60 : 30;
|
|
|
|
|
int rate_bits_per_second,
|
|
|
|
|
int sample_rate_hz,
|
|
|
|
|
int frame_size_ms) {
|
|
|
|
|
const int bit_rate = 32000;
|
|
|
|
|
|
|
|
|
|
// Conjoined encoder/decoder pair:
|
|
|
|
|
typename T::instance_type* encdec;
|
|
|
|
|
ASSERT_EQ(0, T::Create(&encdec));
|
|
|
|
|
ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1));
|
|
|
|
|
ASSERT_EQ(0, T::DecoderInit(encdec));
|
|
|
|
|
ASSERT_EQ(0, T::SetEncSampRate(encdec, sample_rate_hz));
|
|
|
|
|
if (adaptive)
|
|
|
|
|
ASSERT_EQ(0, T::ControlBwe(encdec, bit_rate, frame_size_ms, false));
|
|
|
|
|
else
|
|
|
|
|
ASSERT_EQ(0, T::Control(encdec, bit_rate, frame_size_ms));
|
|
|
|
|
|
|
|
|
|
// Disjoint encoder/decoder pair:
|
|
|
|
|
typename T::instance_type* enc;
|
|
|
|
|
ASSERT_EQ(0, T::Create(&enc));
|
|
|
|
|
ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1));
|
|
|
|
|
ASSERT_EQ(0, T::SetEncSampRate(enc, sample_rate_hz));
|
|
|
|
|
if (adaptive)
|
|
|
|
|
ASSERT_EQ(0, T::ControlBwe(enc, bit_rate, frame_size_ms, false));
|
|
|
|
|
else
|
|
|
|
|
ASSERT_EQ(0, T::Control(enc, bit_rate, frame_size_ms));
|
|
|
|
|
typename T::instance_type* dec;
|
|
|
|
|
ASSERT_EQ(0, T::Create(&dec));
|
|
|
|
|
ASSERT_EQ(0, T::DecoderInit(dec));
|
|
|
|
|
T::SetInitialBweBottleneck(dec, bit_rate);
|
|
|
|
|
T::SetEncSampRateInDecoder(dec, sample_rate_hz);
|
|
|
|
|
|
|
|
|
|
// 0. Get initial BW info from decoder.
|
|
|
|
|
auto bi = GetBwInfo<T>(dec);
|
|
|
|
|
|
|
|
|
|
BoundedCapacityChannel channel1(rate_bits_per_second),
|
|
|
|
|
channel2(rate_bits_per_second);
|
|
|
|
|
std::vector<size_t> packet_sizes;
|
|
|
|
|
for (int i = 0; i < Param::time_to_settle + 200; ++i) {
|
|
|
|
|
BoundedCapacityChannel channel1(sample_rate_hz, rate_bits_per_second),
|
|
|
|
|
channel2(sample_rate_hz, rate_bits_per_second);
|
|
|
|
|
|
|
|
|
|
int elapsed_time_ms = 0;
|
|
|
|
|
for (int i = 0; elapsed_time_ms < 10000; ++i) {
|
|
|
|
|
std::ostringstream ss;
|
|
|
|
|
ss << " i = " << i;
|
|
|
|
|
SCOPED_TRACE(ss.str());
|
|
|
|
|
|
|
|
|
|
// 1. Encode 6 * 10 ms (adaptive) or 3 * 10 ms (nonadaptive). The separate
|
|
|
|
|
// encoder is given the BW info before each encode call.
|
|
|
|
|
auto bitstream1 =
|
|
|
|
|
EncodePacket<T>(encdec, nullptr, speech_data, framesize_ms);
|
|
|
|
|
auto bitstream2 = EncodePacket<T>(enc, &bi, speech_data, framesize_ms);
|
|
|
|
|
// 1. Encode 3 * 10 ms or 6 * 10 ms. The separate encoder is given the BW
|
|
|
|
|
// info before each encode call.
|
|
|
|
|
rtc::Buffer bitstream1, bitstream2;
|
|
|
|
|
int duration1_ms =
|
|
|
|
|
EncodePacket<T>(encdec, nullptr, speech_data, &bitstream1);
|
|
|
|
|
int duration2_ms = EncodePacket<T>(enc, &bi, speech_data, &bitstream2);
|
|
|
|
|
EXPECT_EQ(duration1_ms, duration2_ms);
|
|
|
|
|
if (adaptive)
|
|
|
|
|
EXPECT_TRUE(duration1_ms == 30 || duration1_ms == 60);
|
|
|
|
|
else
|
|
|
|
|
EXPECT_EQ(frame_size_ms, duration1_ms);
|
|
|
|
|
ASSERT_EQ(bitstream1.size(), bitstream2.size());
|
|
|
|
|
EXPECT_EQ(bitstream1, bitstream2);
|
|
|
|
|
if (i > Param::time_to_settle)
|
|
|
|
|
packet_sizes.push_back(bitstream1.size());
|
|
|
|
|
|
|
|
|
|
// 2. Deliver the encoded data to the decoders (but don't actually ask them
|
|
|
|
|
// to decode it; that's not necessary). Then get new BW info from the
|
|
|
|
|
// separate decoder.
|
|
|
|
|
const int samples_per_packet = 16 * framesize_ms;
|
|
|
|
|
const int send_time = i * samples_per_packet;
|
|
|
|
|
// 2. Deliver the encoded data to the decoders.
|
|
|
|
|
const int send_time = elapsed_time_ms * (sample_rate_hz / 1000);
|
|
|
|
|
EXPECT_EQ(0, T::UpdateBwEstimate(
|
|
|
|
|
encdec, bitstream1.data(), bitstream1.size(), i, send_time,
|
|
|
|
|
channel1.Send(send_time, bitstream1.size())));
|
|
|
|
|
EXPECT_EQ(0, T::UpdateBwEstimate(
|
|
|
|
|
dec, bitstream2.data(), bitstream2.size(), i, send_time,
|
|
|
|
|
channel2.Send(send_time, bitstream2.size())));
|
|
|
|
|
|
|
|
|
|
// 3. Decode, and get new BW info from the separate decoder.
|
|
|
|
|
ASSERT_EQ(0, T::SetDecSampRate(encdec, sample_rate_hz));
|
|
|
|
|
ASSERT_EQ(0, T::SetDecSampRate(dec, sample_rate_hz));
|
|
|
|
|
auto decoded1 = DecodePacket<T>(encdec, bitstream1);
|
|
|
|
|
auto decoded2 = DecodePacket<T>(dec, bitstream2);
|
|
|
|
|
EXPECT_EQ(decoded1, decoded2);
|
|
|
|
|
bi = GetBwInfo<T>(dec);
|
|
|
|
|
|
|
|
|
|
elapsed_time_ms += duration1_ms;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(0, T::Free(encdec));
|
|
|
|
|
EXPECT_EQ(0, T::Free(enc));
|
|
|
|
|
EXPECT_EQ(0, T::Free(dec));
|
|
|
|
|
|
|
|
|
|
// The average send bitrate is close to the channel's capacity.
|
|
|
|
|
double avg_size =
|
|
|
|
|
std::accumulate(packet_sizes.begin(), packet_sizes.end(), 0) /
|
|
|
|
|
static_cast<double>(packet_sizes.size());
|
|
|
|
|
double avg_rate_bits_per_second = 8.0 * avg_size / (framesize_ms * 1e-3);
|
|
|
|
|
double expected_rate_bits_per_second =
|
|
|
|
|
Param::ExpectedRateBitsPerSecond(rate_bits_per_second);
|
|
|
|
|
EXPECT_GT(avg_rate_bits_per_second / expected_rate_bits_per_second, 0.95);
|
|
|
|
|
EXPECT_LT(avg_rate_bits_per_second / expected_rate_bits_per_second, 1.06);
|
|
|
|
|
|
|
|
|
|
// The largest packet isn't that large, and the smallest not that small.
|
|
|
|
|
size_t min_size = *std::min_element(packet_sizes.begin(), packet_sizes.end());
|
|
|
|
|
size_t max_size = *std::max_element(packet_sizes.begin(), packet_sizes.end());
|
|
|
|
|
double size_range = max_size - min_size;
|
|
|
|
|
EXPECT_LE(size_range / avg_size, 0.16);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum class IsacType { Fix, Float };
|
|
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, IsacType t) {
|
|
|
|
|
os << (t == IsacType::Fix ? "fix" : "float");
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct IsacTestParam {
|
|
|
|
|
IsacType isac_type;
|
|
|
|
|
bool adaptive;
|
|
|
|
|
int channel_rate_bits_per_second;
|
|
|
|
|
int sample_rate_hz;
|
|
|
|
|
int frame_size_ms;
|
|
|
|
|
|
|
|
|
|
friend std::ostream& operator<<(std::ostream& os, const IsacTestParam& itp) {
|
|
|
|
|
os << '{' << itp.isac_type << ','
|
|
|
|
|
<< (itp.adaptive ? "adaptive" : "nonadaptive") << ','
|
|
|
|
|
<< itp.channel_rate_bits_per_second << ',' << itp.sample_rate_hz << ','
|
|
|
|
|
<< itp.frame_size_ms << '}';
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
class IsacCommonTest : public testing::TestWithParam<IsacTestParam> {};
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat12kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 12000);
|
|
|
|
|
TEST_P(IsacCommonTest, GetSetBandwidthInfo) {
|
|
|
|
|
auto p = GetParam();
|
|
|
|
|
auto test_fun = [p] {
|
|
|
|
|
if (p.isac_type == IsacType::Fix) {
|
|
|
|
|
if (p.adaptive)
|
|
|
|
|
return TestGetSetBandwidthInfo<IsacFix, true>;
|
|
|
|
|
else
|
|
|
|
|
return TestGetSetBandwidthInfo<IsacFix, false>;
|
|
|
|
|
} else {
|
|
|
|
|
if (p.adaptive)
|
|
|
|
|
return TestGetSetBandwidthInfo<IsacFloat, true>;
|
|
|
|
|
else
|
|
|
|
|
return TestGetSetBandwidthInfo<IsacFloat, false>;
|
|
|
|
|
}
|
|
|
|
|
}();
|
|
|
|
|
test_fun(LoadSpeechData().data(), p.channel_rate_bits_per_second,
|
|
|
|
|
p.sample_rate_hz, p.frame_size_ms);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat15kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 15000);
|
|
|
|
|
std::vector<IsacTestParam> TestCases() {
|
|
|
|
|
static const IsacType types[] = {IsacType::Fix, IsacType::Float};
|
|
|
|
|
static const bool adaptives[] = {true, false};
|
|
|
|
|
static const int channel_rates[] = {12000, 15000, 19000, 22000};
|
|
|
|
|
static const int sample_rates[] = {16000, 32000};
|
|
|
|
|
static const int frame_sizes[] = {30, 60};
|
|
|
|
|
std::vector<IsacTestParam> cases;
|
|
|
|
|
for (IsacType type : types)
|
|
|
|
|
for (bool adaptive : adaptives)
|
|
|
|
|
for (int channel_rate : channel_rates)
|
|
|
|
|
for (int sample_rate : sample_rates)
|
|
|
|
|
if (!(type == IsacType::Fix && sample_rate == 32000))
|
|
|
|
|
for (int frame_size : frame_sizes)
|
|
|
|
|
if (!(sample_rate == 32000 && frame_size == 60))
|
|
|
|
|
cases.push_back(
|
|
|
|
|
{type, adaptive, channel_rate, sample_rate, frame_size});
|
|
|
|
|
return cases;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat19kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 19000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat22kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, true>(LoadSpeechData().data(), 22000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix12kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 12000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix15kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 15000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix19kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 19000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix22kAdaptive) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, true>(LoadSpeechData().data(), 22000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat12k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 12000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat15k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 15000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat19k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 19000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFloat22k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFloat, false>(LoadSpeechData().data(), 22000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix12k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 12000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix15k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 15000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix19k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 19000);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(IsacCommonTest, GetSetBandwidthInfoFix22k) {
|
|
|
|
|
TestGetSetBandwidthInfo<IsacFix, false>(LoadSpeechData().data(), 22000);
|
|
|
|
|
}
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(, IsacCommonTest, testing::ValuesIn(TestCases()));
|
|
|
|
|
|
|
|
|
|
} // namespace webrtc
|
|
|
|
|
|