Using units in SendSideBandwidthEstimation.

This CL moves SendSideBandwidthEstimation to use the unit types
DataRate, TimeDelta and Timestamp. This prepares for upcoming changes.

Bug: webrtc:9718
Change-Id: If10e329920dda037b53055ff3352ae7f8d7e32b8
Reviewed-on: https://webrtc-review.googlesource.com/c/104021
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Björn Terelius <terelius@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25029}
This commit is contained in:
Sebastian Jansson
2018-10-05 19:56:03 +02:00
committed by Commit Bot
parent 9f80b97309
commit 35b5e5f3b0
10 changed files with 289 additions and 245 deletions

View File

@ -44,6 +44,7 @@ rtc_static_library("bitrate_controller") {
"../rtp_rtcp", "../rtp_rtcp",
"../rtp_rtcp:rtp_rtcp_format", "../rtp_rtcp:rtp_rtcp_format",
"//third_party/abseil-cpp/absl/memory", "//third_party/abseil-cpp/absl/memory",
"//third_party/abseil-cpp/absl/types:optional",
] ]
} }

View File

@ -20,7 +20,18 @@
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
namespace webrtc { namespace webrtc {
namespace {
absl::optional<DataRate> ToOptionalDataRate(int start_bitrate_bps) {
if (start_bitrate_bps == -1)
return absl::nullopt;
return DataRate::bps(start_bitrate_bps);
}
DataRate MaxRate(int max_bitrate_bps) {
if (max_bitrate_bps == -1)
return DataRate::Infinity();
return DataRate::bps(max_bitrate_bps);
}
} // namespace
class BitrateControllerImpl::RtcpBandwidthObserverImpl class BitrateControllerImpl::RtcpBandwidthObserverImpl
: public RtcpBandwidthObserver { : public RtcpBandwidthObserver {
public: public:
@ -80,7 +91,9 @@ RtcpBandwidthObserver* BitrateControllerImpl::CreateRtcpBandwidthObserver() {
void BitrateControllerImpl::SetStartBitrate(int start_bitrate_bps) { void BitrateControllerImpl::SetStartBitrate(int start_bitrate_bps) {
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_.SetSendBitrate(start_bitrate_bps); bandwidth_estimation_.SetSendBitrate(
DataRate::bps(start_bitrate_bps),
Timestamp::ms(clock_->TimeInMilliseconds()));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }
@ -89,7 +102,8 @@ void BitrateControllerImpl::SetMinMaxBitrate(int min_bitrate_bps,
int max_bitrate_bps) { int max_bitrate_bps) {
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_.SetMinMaxBitrate(min_bitrate_bps, max_bitrate_bps); bandwidth_estimation_.SetMinMaxBitrate(DataRate::bps(min_bitrate_bps),
DataRate::bps(max_bitrate_bps));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }
@ -99,8 +113,9 @@ void BitrateControllerImpl::SetBitrates(int start_bitrate_bps,
int max_bitrate_bps) { int max_bitrate_bps) {
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_.SetBitrates(start_bitrate_bps, min_bitrate_bps, bandwidth_estimation_.SetBitrates(
max_bitrate_bps); ToOptionalDataRate(start_bitrate_bps), DataRate::bps(min_bitrate_bps),
MaxRate(max_bitrate_bps), Timestamp::ms(clock_->TimeInMilliseconds()));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }
@ -111,8 +126,9 @@ void BitrateControllerImpl::ResetBitrates(int bitrate_bps,
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_ = SendSideBandwidthEstimation(event_log_); bandwidth_estimation_ = SendSideBandwidthEstimation(event_log_);
bandwidth_estimation_.SetBitrates(bitrate_bps, min_bitrate_bps, bandwidth_estimation_.SetBitrates(
max_bitrate_bps); ToOptionalDataRate(bitrate_bps), DataRate::bps(min_bitrate_bps),
MaxRate(max_bitrate_bps), Timestamp::ms(clock_->TimeInMilliseconds()));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }
@ -121,8 +137,8 @@ void BitrateControllerImpl::ResetBitrates(int bitrate_bps,
void BitrateControllerImpl::OnReceivedEstimatedBitrate(uint32_t bitrate) { void BitrateControllerImpl::OnReceivedEstimatedBitrate(uint32_t bitrate) {
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_.UpdateReceiverEstimate(clock_->TimeInMilliseconds(), bandwidth_estimation_.UpdateReceiverEstimate(
bitrate); Timestamp::ms(clock_->TimeInMilliseconds()), DataRate::bps(bitrate));
BWE_TEST_LOGGING_PLOT(1, "REMB_kbps", clock_->TimeInMilliseconds(), BWE_TEST_LOGGING_PLOT(1, "REMB_kbps", clock_->TimeInMilliseconds(),
bitrate / 1000); bitrate / 1000);
} }
@ -136,12 +152,15 @@ void BitrateControllerImpl::OnDelayBasedBweResult(
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
if (result.probe) { if (result.probe) {
bandwidth_estimation_.SetSendBitrate(result.target_bitrate_bps); bandwidth_estimation_.SetSendBitrate(
DataRate::bps(result.target_bitrate_bps),
Timestamp::ms(clock_->TimeInMilliseconds()));
} }
// Since SetSendBitrate now resets the delay-based estimate, we have to call // Since SetSendBitrate now resets the delay-based estimate, we have to call
// UpdateDelayBasedEstimate after SetSendBitrate. // UpdateDelayBasedEstimate after SetSendBitrate.
bandwidth_estimation_.UpdateDelayBasedEstimate(clock_->TimeInMilliseconds(), bandwidth_estimation_.UpdateDelayBasedEstimate(
result.target_bitrate_bps); Timestamp::ms(clock_->TimeInMilliseconds()),
DataRate::bps(result.target_bitrate_bps));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }
@ -158,7 +177,8 @@ int64_t BitrateControllerImpl::TimeUntilNextProcess() {
void BitrateControllerImpl::Process() { void BitrateControllerImpl::Process() {
{ {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
bandwidth_estimation_.UpdateEstimate(clock_->TimeInMilliseconds()); bandwidth_estimation_.UpdateEstimate(
Timestamp::ms(clock_->TimeInMilliseconds()));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
last_bitrate_update_ms_ = clock_->TimeInMilliseconds(); last_bitrate_update_ms_ = clock_->TimeInMilliseconds();
@ -213,8 +233,9 @@ void BitrateControllerImpl::OnReceivedRtcpReceiverReport(
RTC_DCHECK_GE(total_number_of_packets, 0); RTC_DCHECK_GE(total_number_of_packets, 0);
bandwidth_estimation_.UpdateReceiverBlock(fraction_lost_aggregate, rtt, bandwidth_estimation_.UpdateReceiverBlock(
total_number_of_packets, now_ms); fraction_lost_aggregate, TimeDelta::ms(rtt), total_number_of_packets,
Timestamp::ms(now_ms));
} }
MaybeTriggerOnNetworkChanged(); MaybeTriggerOnNetworkChanged();
} }

View File

@ -27,22 +27,22 @@
namespace webrtc { namespace webrtc {
namespace { namespace {
const int64_t kBweIncreaseIntervalMs = 1000; constexpr TimeDelta kBweIncreaseInterval = TimeDelta::Millis<1000>();
const int64_t kBweDecreaseIntervalMs = 300; constexpr TimeDelta kBweDecreaseInterval = TimeDelta::Millis<300>();
const int64_t kStartPhaseMs = 2000; constexpr TimeDelta kStartPhase = TimeDelta::Millis<2000>();
const int64_t kBweConverganceTimeMs = 20000; constexpr TimeDelta kBweConverganceTime = TimeDelta::Millis<20000>();
const int kLimitNumPackets = 20; constexpr int kLimitNumPackets = 20;
const int kDefaultMaxBitrateBps = 1000000000; constexpr DataRate kDefaultMaxBitrate = DataRate::BitsPerSec<1000000000>();
const int64_t kLowBitrateLogPeriodMs = 10000; constexpr TimeDelta kLowBitrateLogPeriod = TimeDelta::Millis<10000>();
const int64_t kRtcEventLogPeriodMs = 5000; constexpr TimeDelta kRtcEventLogPeriod = TimeDelta::Millis<5000>();
// Expecting that RTCP feedback is sent uniformly within [0.5, 1.5]s intervals. // Expecting that RTCP feedback is sent uniformly within [0.5, 1.5]s intervals.
const int64_t kFeedbackIntervalMs = 5000; constexpr TimeDelta kMaxRtcpFeedbackInterval = TimeDelta::Millis<5000>();
const int64_t kFeedbackTimeoutIntervals = 3; constexpr int kFeedbackTimeoutIntervals = 3;
const int64_t kTimeoutIntervalMs = 1000; constexpr TimeDelta kTimeoutInterval = TimeDelta::Millis<1000>();
const float kDefaultLowLossThreshold = 0.02f; constexpr float kDefaultLowLossThreshold = 0.02f;
const float kDefaultHighLossThreshold = 0.1f; constexpr float kDefaultHighLossThreshold = 0.1f;
const int kDefaultBitrateThresholdKbps = 0; constexpr DataRate kDefaultBitrateThreshold = DataRate::Zero();
struct UmaRampUpMetric { struct UmaRampUpMetric {
const char* metric_name; const char* metric_name;
@ -99,7 +99,7 @@ bool ReadBweLossExperimentParameters(float* low_loss_threshold,
"experiment from field trial string. Using default."; "experiment from field trial string. Using default.";
*low_loss_threshold = kDefaultLowLossThreshold; *low_loss_threshold = kDefaultLowLossThreshold;
*high_loss_threshold = kDefaultHighLossThreshold; *high_loss_threshold = kDefaultHighLossThreshold;
*bitrate_threshold_kbps = kDefaultBitrateThresholdKbps; *bitrate_threshold_kbps = kDefaultBitrateThreshold.kbps();
return false; return false;
} }
} // namespace } // namespace
@ -107,33 +107,34 @@ bool ReadBweLossExperimentParameters(float* low_loss_threshold,
SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log) SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log)
: lost_packets_since_last_loss_update_(0), : lost_packets_since_last_loss_update_(0),
expected_packets_since_last_loss_update_(0), expected_packets_since_last_loss_update_(0),
current_bitrate_bps_(0), current_bitrate_(DataRate::Zero()),
min_bitrate_configured_(congestion_controller::GetMinBitrateBps()), min_bitrate_configured_(
max_bitrate_configured_(kDefaultMaxBitrateBps), DataRate::bps(congestion_controller::GetMinBitrateBps())),
last_low_bitrate_log_ms_(-1), max_bitrate_configured_(kDefaultMaxBitrate),
last_low_bitrate_log_(Timestamp::MinusInfinity()),
has_decreased_since_last_fraction_loss_(false), has_decreased_since_last_fraction_loss_(false),
last_feedback_ms_(-1), last_loss_feedback_(Timestamp::MinusInfinity()),
last_packet_report_ms_(-1), last_loss_packet_report_(Timestamp::MinusInfinity()),
last_timeout_ms_(-1), last_timeout_(Timestamp::MinusInfinity()),
last_fraction_loss_(0), last_fraction_loss_(0),
last_logged_fraction_loss_(0), last_logged_fraction_loss_(0),
last_round_trip_time_ms_(0), last_round_trip_time_(TimeDelta::Zero()),
bwe_incoming_(0), bwe_incoming_(DataRate::Zero()),
delay_based_bitrate_bps_(0), delay_based_bitrate_(DataRate::Zero()),
time_last_decrease_ms_(0), time_last_decrease_(Timestamp::MinusInfinity()),
first_report_time_ms_(-1), first_report_time_(Timestamp::MinusInfinity()),
initially_lost_packets_(0), initially_lost_packets_(0),
bitrate_at_2_seconds_kbps_(0), bitrate_at_2_seconds_(DataRate::Zero()),
uma_update_state_(kNoUpdate), uma_update_state_(kNoUpdate),
uma_rtt_state_(kNoUpdate), uma_rtt_state_(kNoUpdate),
rampup_uma_stats_updated_(kNumUmaRampupMetrics, false), rampup_uma_stats_updated_(kNumUmaRampupMetrics, false),
event_log_(event_log), event_log_(event_log),
last_rtc_event_log_ms_(-1), last_rtc_event_log_(Timestamp::MinusInfinity()),
in_timeout_experiment_( in_timeout_experiment_(
webrtc::field_trial::IsEnabled("WebRTC-FeedbackTimeout")), webrtc::field_trial::IsEnabled("WebRTC-FeedbackTimeout")),
low_loss_threshold_(kDefaultLowLossThreshold), low_loss_threshold_(kDefaultLowLossThreshold),
high_loss_threshold_(kDefaultHighLossThreshold), high_loss_threshold_(kDefaultHighLossThreshold),
bitrate_threshold_bps_(1000 * kDefaultBitrateThresholdKbps) { bitrate_threshold_(kDefaultBitrateThreshold) {
RTC_DCHECK(event_log); RTC_DCHECK(event_log);
if (BweLossExperimentIsEnabled()) { if (BweLossExperimentIsEnabled()) {
uint32_t bitrate_threshold_kbps; uint32_t bitrate_threshold_kbps;
@ -143,87 +144,87 @@ SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log)
RTC_LOG(LS_INFO) << "Enabled BweLossExperiment with parameters " RTC_LOG(LS_INFO) << "Enabled BweLossExperiment with parameters "
<< low_loss_threshold_ << ", " << high_loss_threshold_ << low_loss_threshold_ << ", " << high_loss_threshold_
<< ", " << bitrate_threshold_kbps; << ", " << bitrate_threshold_kbps;
bitrate_threshold_bps_ = bitrate_threshold_kbps * 1000; bitrate_threshold_ = DataRate::kbps(bitrate_threshold_kbps);
} }
} }
} }
SendSideBandwidthEstimation::~SendSideBandwidthEstimation() {} SendSideBandwidthEstimation::~SendSideBandwidthEstimation() {}
void SendSideBandwidthEstimation::SetBitrates(int send_bitrate, void SendSideBandwidthEstimation::SetBitrates(
int min_bitrate, absl::optional<DataRate> send_bitrate,
int max_bitrate) { DataRate min_bitrate,
DataRate max_bitrate,
Timestamp at_time) {
SetMinMaxBitrate(min_bitrate, max_bitrate); SetMinMaxBitrate(min_bitrate, max_bitrate);
if (send_bitrate > 0) if (send_bitrate)
SetSendBitrate(send_bitrate); SetSendBitrate(*send_bitrate, at_time);
} }
void SendSideBandwidthEstimation::SetSendBitrate(int bitrate) { void SendSideBandwidthEstimation::SetSendBitrate(DataRate bitrate,
RTC_DCHECK_GT(bitrate, 0); Timestamp at_time) {
delay_based_bitrate_bps_ = 0; // Reset to avoid being capped by the estimate. RTC_DCHECK(bitrate > DataRate::Zero());
CapBitrateToThresholds(Clock::GetRealTimeClock()->TimeInMilliseconds(), // Reset to avoid being capped by the estimate.
bitrate); delay_based_bitrate_ = DataRate::Zero();
CapBitrateToThresholds(at_time, bitrate);
// Clear last sent bitrate history so the new value can be used directly // Clear last sent bitrate history so the new value can be used directly
// and not capped. // and not capped.
min_bitrate_history_.clear(); min_bitrate_history_.clear();
} }
void SendSideBandwidthEstimation::SetMinMaxBitrate(int min_bitrate, void SendSideBandwidthEstimation::SetMinMaxBitrate(DataRate min_bitrate,
int max_bitrate) { DataRate max_bitrate) {
RTC_DCHECK_GE(min_bitrate, 0);
min_bitrate_configured_ = min_bitrate_configured_ =
std::max(min_bitrate, congestion_controller::GetMinBitrateBps()); std::max(min_bitrate, congestion_controller::GetMinBitrate());
if (max_bitrate > 0) { if (max_bitrate > DataRate::Zero() && max_bitrate.IsFinite()) {
max_bitrate_configured_ = max_bitrate_configured_ = std::max(min_bitrate_configured_, max_bitrate);
std::max<uint32_t>(min_bitrate_configured_, max_bitrate);
} else { } else {
max_bitrate_configured_ = kDefaultMaxBitrateBps; max_bitrate_configured_ = kDefaultMaxBitrate;
} }
} }
int SendSideBandwidthEstimation::GetMinBitrate() const { int SendSideBandwidthEstimation::GetMinBitrate() const {
return min_bitrate_configured_; return min_bitrate_configured_.bps<int>();
} }
void SendSideBandwidthEstimation::CurrentEstimate(int* bitrate, void SendSideBandwidthEstimation::CurrentEstimate(int* bitrate,
uint8_t* loss, uint8_t* loss,
int64_t* rtt) const { int64_t* rtt) const {
*bitrate = current_bitrate_bps_; *bitrate = current_bitrate_.bps<int>();
*loss = last_fraction_loss_; *loss = last_fraction_loss_;
*rtt = last_round_trip_time_ms_; *rtt = last_round_trip_time_.ms<int64_t>();
} }
void SendSideBandwidthEstimation::UpdateReceiverEstimate(int64_t now_ms, void SendSideBandwidthEstimation::UpdateReceiverEstimate(Timestamp at_time,
uint32_t bandwidth) { DataRate bandwidth) {
bwe_incoming_ = bandwidth; bwe_incoming_ = bandwidth;
CapBitrateToThresholds(now_ms, current_bitrate_bps_); CapBitrateToThresholds(at_time, current_bitrate_);
} }
void SendSideBandwidthEstimation::UpdateDelayBasedEstimate( void SendSideBandwidthEstimation::UpdateDelayBasedEstimate(Timestamp at_time,
int64_t now_ms, DataRate bitrate) {
uint32_t bitrate_bps) { delay_based_bitrate_ = bitrate;
delay_based_bitrate_bps_ = bitrate_bps; CapBitrateToThresholds(at_time, current_bitrate_);
CapBitrateToThresholds(now_ms, current_bitrate_bps_);
} }
void SendSideBandwidthEstimation::UpdateReceiverBlock(uint8_t fraction_loss, void SendSideBandwidthEstimation::UpdateReceiverBlock(uint8_t fraction_loss,
int64_t rtt_ms, TimeDelta rtt,
int number_of_packets, int number_of_packets,
int64_t now_ms) { Timestamp at_time) {
const int kRoundingConstant = 128; const int kRoundingConstant = 128;
int packets_lost = (static_cast<int>(fraction_loss) * number_of_packets + int packets_lost = (static_cast<int>(fraction_loss) * number_of_packets +
kRoundingConstant) >> kRoundingConstant) >>
8; 8;
UpdatePacketsLost(packets_lost, number_of_packets, now_ms); UpdatePacketsLost(packets_lost, number_of_packets, at_time);
UpdateRtt(rtt_ms, now_ms); UpdateRtt(rtt, at_time);
} }
void SendSideBandwidthEstimation::UpdatePacketsLost(int packets_lost, void SendSideBandwidthEstimation::UpdatePacketsLost(int packets_lost,
int number_of_packets, int number_of_packets,
int64_t now_ms) { Timestamp at_time) {
last_feedback_ms_ = now_ms; last_loss_feedback_ = at_time;
if (first_report_time_ms_ == -1) if (first_report_time_.IsInfinite())
first_report_time_ms_ = now_ms; first_report_time_ = at_time;
// Check sequence number diff and weight loss report // Check sequence number diff and weight loss report
if (number_of_packets > 0) { if (number_of_packets > 0) {
@ -244,202 +245,201 @@ void SendSideBandwidthEstimation::UpdatePacketsLost(int packets_lost,
lost_packets_since_last_loss_update_ = 0; lost_packets_since_last_loss_update_ = 0;
expected_packets_since_last_loss_update_ = 0; expected_packets_since_last_loss_update_ = 0;
last_packet_report_ms_ = now_ms; last_loss_packet_report_ = at_time;
UpdateEstimate(now_ms); UpdateEstimate(at_time);
} }
UpdateUmaStatsPacketsLost(now_ms, packets_lost); UpdateUmaStatsPacketsLost(at_time, packets_lost);
} }
void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(int64_t now_ms, void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(Timestamp at_time,
int packets_lost) { int packets_lost) {
int bitrate_kbps = static_cast<int>((current_bitrate_bps_ + 500) / 1000); DataRate bitrate_kbps = DataRate::kbps((current_bitrate_.bps() + 500) / 1000);
for (size_t i = 0; i < kNumUmaRampupMetrics; ++i) { for (size_t i = 0; i < kNumUmaRampupMetrics; ++i) {
if (!rampup_uma_stats_updated_[i] && if (!rampup_uma_stats_updated_[i] &&
bitrate_kbps >= kUmaRampupMetrics[i].bitrate_kbps) { bitrate_kbps.kbps() >= kUmaRampupMetrics[i].bitrate_kbps) {
RTC_HISTOGRAMS_COUNTS_100000(i, kUmaRampupMetrics[i].metric_name, RTC_HISTOGRAMS_COUNTS_100000(i, kUmaRampupMetrics[i].metric_name,
now_ms - first_report_time_ms_); (at_time - first_report_time_).ms());
rampup_uma_stats_updated_[i] = true; rampup_uma_stats_updated_[i] = true;
} }
} }
if (IsInStartPhase(now_ms)) { if (IsInStartPhase(at_time)) {
initially_lost_packets_ += packets_lost; initially_lost_packets_ += packets_lost;
} else if (uma_update_state_ == kNoUpdate) { } else if (uma_update_state_ == kNoUpdate) {
uma_update_state_ = kFirstDone; uma_update_state_ = kFirstDone;
bitrate_at_2_seconds_kbps_ = bitrate_kbps; bitrate_at_2_seconds_ = bitrate_kbps;
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitiallyLostPackets", RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitiallyLostPackets",
initially_lost_packets_, 0, 100, 50); initially_lost_packets_, 0, 100, 50);
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialBandwidthEstimate", RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialBandwidthEstimate",
bitrate_at_2_seconds_kbps_, 0, 2000, 50); bitrate_at_2_seconds_.kbps(), 0, 2000, 50);
} else if (uma_update_state_ == kFirstDone && } else if (uma_update_state_ == kFirstDone &&
now_ms - first_report_time_ms_ >= kBweConverganceTimeMs) { at_time - first_report_time_ >= kBweConverganceTime) {
uma_update_state_ = kDone; uma_update_state_ = kDone;
int bitrate_diff_kbps = int bitrate_diff_kbps = std::max(
std::max(bitrate_at_2_seconds_kbps_ - bitrate_kbps, 0); bitrate_at_2_seconds_.kbps<int>() - bitrate_kbps.kbps<int>(), 0);
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialVsConvergedDiff", bitrate_diff_kbps, RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialVsConvergedDiff", bitrate_diff_kbps,
0, 2000, 50); 0, 2000, 50);
} }
} }
void SendSideBandwidthEstimation::UpdateRtt(int64_t rtt_ms, int64_t now_ms) { void SendSideBandwidthEstimation::UpdateRtt(TimeDelta rtt, Timestamp at_time) {
// Update RTT if we were able to compute an RTT based on this RTCP. // Update RTT if we were able to compute an RTT based on this RTCP.
// FlexFEC doesn't send RTCP SR, which means we won't be able to compute RTT. // FlexFEC doesn't send RTCP SR, which means we won't be able to compute RTT.
if (rtt_ms > 0) if (rtt > TimeDelta::Zero())
last_round_trip_time_ms_ = rtt_ms; last_round_trip_time_ = rtt;
if (!IsInStartPhase(now_ms) && uma_rtt_state_ == kNoUpdate) { if (!IsInStartPhase(at_time) && uma_rtt_state_ == kNoUpdate) {
uma_rtt_state_ = kDone; uma_rtt_state_ = kDone;
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialRtt", static_cast<int>(rtt_ms), 0, RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialRtt", rtt.ms<int>(), 0, 2000, 50);
2000, 50);
} }
} }
void SendSideBandwidthEstimation::UpdateEstimate(int64_t now_ms) { void SendSideBandwidthEstimation::UpdateEstimate(Timestamp at_time) {
uint32_t new_bitrate = current_bitrate_bps_; DataRate new_bitrate = current_bitrate_;
// We trust the REMB and/or delay-based estimate during the first 2 seconds if // We trust the REMB and/or delay-based estimate during the first 2 seconds if
// we haven't had any packet loss reported, to allow startup bitrate probing. // we haven't had any packet loss reported, to allow startup bitrate probing.
if (last_fraction_loss_ == 0 && IsInStartPhase(now_ms)) { if (last_fraction_loss_ == 0 && IsInStartPhase(at_time)) {
new_bitrate = std::max(bwe_incoming_, new_bitrate); new_bitrate = std::max(bwe_incoming_, new_bitrate);
new_bitrate = std::max(delay_based_bitrate_bps_, new_bitrate); new_bitrate = std::max(delay_based_bitrate_, new_bitrate);
if (new_bitrate != current_bitrate_bps_) { if (new_bitrate != current_bitrate_) {
min_bitrate_history_.clear(); min_bitrate_history_.clear();
min_bitrate_history_.push_back( min_bitrate_history_.push_back(std::make_pair(at_time, current_bitrate_));
std::make_pair(now_ms, current_bitrate_bps_)); CapBitrateToThresholds(at_time, new_bitrate);
CapBitrateToThresholds(now_ms, new_bitrate);
return; return;
} }
} }
UpdateMinHistory(now_ms); UpdateMinHistory(at_time);
if (last_packet_report_ms_ == -1) { if (last_loss_packet_report_.IsInfinite()) {
// No feedback received. // No feedback received.
CapBitrateToThresholds(now_ms, current_bitrate_bps_); CapBitrateToThresholds(at_time, current_bitrate_);
return; return;
} }
int64_t time_since_packet_report_ms = now_ms - last_packet_report_ms_; TimeDelta time_since_loss_packet_report = at_time - last_loss_packet_report_;
int64_t time_since_feedback_ms = now_ms - last_feedback_ms_; TimeDelta time_since_loss_feedback = at_time - last_loss_feedback_;
if (time_since_packet_report_ms < 1.2 * kFeedbackIntervalMs) { if (time_since_loss_packet_report < 1.2 * kMaxRtcpFeedbackInterval) {
// We only care about loss above a given bitrate threshold. // We only care about loss above a given bitrate threshold.
float loss = last_fraction_loss_ / 256.0f; float loss = last_fraction_loss_ / 256.0f;
// We only make decisions based on loss when the bitrate is above a // We only make decisions based on loss when the bitrate is above a
// threshold. This is a crude way of handling loss which is uncorrelated // threshold. This is a crude way of handling loss which is uncorrelated
// to congestion. // to congestion.
if (current_bitrate_bps_ < bitrate_threshold_bps_ || if (current_bitrate_ < bitrate_threshold_ || loss <= low_loss_threshold_) {
loss <= low_loss_threshold_) {
// Loss < 2%: Increase rate by 8% of the min bitrate in the last // Loss < 2%: Increase rate by 8% of the min bitrate in the last
// kBweIncreaseIntervalMs. // kBweIncreaseInterval.
// Note that by remembering the bitrate over the last second one can // Note that by remembering the bitrate over the last second one can
// rampup up one second faster than if only allowed to start ramping // rampup up one second faster than if only allowed to start ramping
// at 8% per second rate now. E.g.: // at 8% per second rate now. E.g.:
// If sending a constant 100kbps it can rampup immediatly to 108kbps // If sending a constant 100kbps it can rampup immediatly to 108kbps
// whenever a receiver report is received with lower packet loss. // whenever a receiver report is received with lower packet loss.
// If instead one would do: current_bitrate_bps_ *= 1.08^(delta time), // If instead one would do: current_bitrate_ *= 1.08^(delta time),
// it would take over one second since the lower packet loss to achieve // it would take over one second since the lower packet loss to achieve
// 108kbps. // 108kbps.
new_bitrate = static_cast<uint32_t>( new_bitrate =
min_bitrate_history_.front().second * 1.08 + 0.5); DataRate::bps(min_bitrate_history_.front().second.bps() * 1.08 + 0.5);
// Add 1 kbps extra, just to make sure that we do not get stuck // Add 1 kbps extra, just to make sure that we do not get stuck
// (gives a little extra increase at low rates, negligible at higher // (gives a little extra increase at low rates, negligible at higher
// rates). // rates).
new_bitrate += 1000; new_bitrate += DataRate::bps(1000);
} else if (current_bitrate_bps_ > bitrate_threshold_bps_) { } else if (current_bitrate_ > bitrate_threshold_) {
if (loss <= high_loss_threshold_) { if (loss <= high_loss_threshold_) {
// Loss between 2% - 10%: Do nothing. // Loss between 2% - 10%: Do nothing.
} else { } else {
// Loss > 10%: Limit the rate decreases to once a kBweDecreaseIntervalMs // Loss > 10%: Limit the rate decreases to once a kBweDecreaseInterval
// + rtt. // + rtt.
if (!has_decreased_since_last_fraction_loss_ && if (!has_decreased_since_last_fraction_loss_ &&
(now_ms - time_last_decrease_ms_) >= (at_time - time_last_decrease_) >=
(kBweDecreaseIntervalMs + last_round_trip_time_ms_)) { (kBweDecreaseInterval + last_round_trip_time_)) {
time_last_decrease_ms_ = now_ms; time_last_decrease_ = at_time;
// Reduce rate: // Reduce rate:
// newRate = rate * (1 - 0.5*lossRate); // newRate = rate * (1 - 0.5*lossRate);
// where packetLoss = 256*lossRate; // where packetLoss = 256*lossRate;
new_bitrate = static_cast<uint32_t>( new_bitrate =
(current_bitrate_bps_ * DataRate::bps((current_bitrate_.bps() *
static_cast<double>(512 - last_fraction_loss_)) / static_cast<double>(512 - last_fraction_loss_)) /
512.0); 512.0);
has_decreased_since_last_fraction_loss_ = true; has_decreased_since_last_fraction_loss_ = true;
} }
} }
} }
} else if (time_since_feedback_ms > } else if (time_since_loss_feedback >
kFeedbackTimeoutIntervals * kFeedbackIntervalMs && kFeedbackTimeoutIntervals * kMaxRtcpFeedbackInterval &&
(last_timeout_ms_ == -1 || (last_timeout_.IsInfinite() ||
now_ms - last_timeout_ms_ > kTimeoutIntervalMs)) { at_time - last_timeout_ > kTimeoutInterval)) {
if (in_timeout_experiment_) { if (in_timeout_experiment_) {
RTC_LOG(LS_WARNING) << "Feedback timed out (" << time_since_feedback_ms RTC_LOG(LS_WARNING) << "Feedback timed out ("
<< " ms), reducing bitrate."; << ToString(time_since_loss_feedback)
new_bitrate *= 0.8; << "), reducing bitrate.";
new_bitrate = new_bitrate * 0.8;
// Reset accumulators since we've already acted on missing feedback and // Reset accumulators since we've already acted on missing feedback and
// shouldn't to act again on these old lost packets. // shouldn't to act again on these old lost packets.
lost_packets_since_last_loss_update_ = 0; lost_packets_since_last_loss_update_ = 0;
expected_packets_since_last_loss_update_ = 0; expected_packets_since_last_loss_update_ = 0;
last_timeout_ms_ = now_ms; last_timeout_ = at_time;
} }
} }
CapBitrateToThresholds(now_ms, new_bitrate); CapBitrateToThresholds(at_time, new_bitrate);
} }
bool SendSideBandwidthEstimation::IsInStartPhase(int64_t now_ms) const { bool SendSideBandwidthEstimation::IsInStartPhase(Timestamp at_time) const {
return first_report_time_ms_ == -1 || return first_report_time_.IsInfinite() ||
now_ms - first_report_time_ms_ < kStartPhaseMs; at_time - first_report_time_ < kStartPhase;
} }
void SendSideBandwidthEstimation::UpdateMinHistory(int64_t now_ms) { void SendSideBandwidthEstimation::UpdateMinHistory(Timestamp at_time) {
// Remove old data points from history. // Remove old data points from history.
// Since history precision is in ms, add one so it is able to increase // Since history precision is in ms, add one so it is able to increase
// bitrate if it is off by as little as 0.5ms. // bitrate if it is off by as little as 0.5ms.
while (!min_bitrate_history_.empty() && while (!min_bitrate_history_.empty() &&
now_ms - min_bitrate_history_.front().first + 1 > at_time - min_bitrate_history_.front().first + TimeDelta::ms(1) >
kBweIncreaseIntervalMs) { kBweIncreaseInterval) {
min_bitrate_history_.pop_front(); min_bitrate_history_.pop_front();
} }
// Typical minimum sliding-window algorithm: Pop values higher than current // Typical minimum sliding-window algorithm: Pop values higher than current
// bitrate before pushing it. // bitrate before pushing it.
while (!min_bitrate_history_.empty() && while (!min_bitrate_history_.empty() &&
current_bitrate_bps_ <= min_bitrate_history_.back().second) { current_bitrate_ <= min_bitrate_history_.back().second) {
min_bitrate_history_.pop_back(); min_bitrate_history_.pop_back();
} }
min_bitrate_history_.push_back(std::make_pair(now_ms, current_bitrate_bps_)); min_bitrate_history_.push_back(std::make_pair(at_time, current_bitrate_));
} }
void SendSideBandwidthEstimation::CapBitrateToThresholds(int64_t now_ms, void SendSideBandwidthEstimation::CapBitrateToThresholds(Timestamp at_time,
uint32_t bitrate_bps) { DataRate bitrate) {
if (bwe_incoming_ > 0 && bitrate_bps > bwe_incoming_) { if (bwe_incoming_ > DataRate::Zero() && bitrate > bwe_incoming_) {
bitrate_bps = bwe_incoming_; bitrate = bwe_incoming_;
} }
if (delay_based_bitrate_bps_ > 0 && bitrate_bps > delay_based_bitrate_bps_) { if (delay_based_bitrate_ > DataRate::Zero() &&
bitrate_bps = delay_based_bitrate_bps_; bitrate > delay_based_bitrate_) {
bitrate = delay_based_bitrate_;
} }
if (bitrate_bps > max_bitrate_configured_) { if (bitrate > max_bitrate_configured_) {
bitrate_bps = max_bitrate_configured_; bitrate = max_bitrate_configured_;
} }
if (bitrate_bps < min_bitrate_configured_) { if (bitrate < min_bitrate_configured_) {
if (last_low_bitrate_log_ms_ == -1 || if (last_low_bitrate_log_.IsInfinite() ||
now_ms - last_low_bitrate_log_ms_ > kLowBitrateLogPeriodMs) { at_time - last_low_bitrate_log_ > kLowBitrateLogPeriod) {
RTC_LOG(LS_WARNING) << "Estimated available bandwidth " RTC_LOG(LS_WARNING) << "Estimated available bandwidth "
<< bitrate_bps / 1000 << ToString(bitrate)
<< " kbps is below configured min bitrate " << " is below configured min bitrate "
<< min_bitrate_configured_ / 1000 << " kbps."; << ToString(min_bitrate_configured_) << ".";
last_low_bitrate_log_ms_ = now_ms; last_low_bitrate_log_ = at_time;
} }
bitrate_bps = min_bitrate_configured_; bitrate = min_bitrate_configured_;
} }
if (bitrate_bps != current_bitrate_bps_ || if (bitrate != current_bitrate_ ||
last_fraction_loss_ != last_logged_fraction_loss_ || last_fraction_loss_ != last_logged_fraction_loss_ ||
now_ms - last_rtc_event_log_ms_ > kRtcEventLogPeriodMs) { at_time - last_rtc_event_log_ > kRtcEventLogPeriod) {
event_log_->Log(absl::make_unique<RtcEventBweUpdateLossBased>( event_log_->Log(absl::make_unique<RtcEventBweUpdateLossBased>(
bitrate_bps, last_fraction_loss_, bitrate.bps(), last_fraction_loss_,
expected_packets_since_last_loss_update_)); expected_packets_since_last_loss_update_));
last_logged_fraction_loss_ = last_fraction_loss_; last_logged_fraction_loss_ = last_fraction_loss_;
last_rtc_event_log_ms_ = now_ms; last_rtc_event_log_ = at_time;
} }
current_bitrate_bps_ = bitrate_bps; current_bitrate_ = bitrate;
} }
} // namespace webrtc } // namespace webrtc

View File

@ -17,6 +17,7 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "absl/types/optional.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
namespace webrtc { namespace webrtc {
@ -32,83 +33,86 @@ class SendSideBandwidthEstimation {
void CurrentEstimate(int* bitrate, uint8_t* loss, int64_t* rtt) const; void CurrentEstimate(int* bitrate, uint8_t* loss, int64_t* rtt) const;
// Call periodically to update estimate. // Call periodically to update estimate.
void UpdateEstimate(int64_t now_ms); void UpdateEstimate(Timestamp at_time);
// Call when we receive a RTCP message with TMMBR or REMB. // Call when we receive a RTCP message with TMMBR or REMB.
void UpdateReceiverEstimate(int64_t now_ms, uint32_t bandwidth); void UpdateReceiverEstimate(Timestamp at_time, DataRate bandwidth);
// Call when a new delay-based estimate is available. // Call when a new delay-based estimate is available.
void UpdateDelayBasedEstimate(int64_t now_ms, uint32_t bitrate_bps); void UpdateDelayBasedEstimate(Timestamp at_time, DataRate bitrate);
// Call when we receive a RTCP message with a ReceiveBlock. // Call when we receive a RTCP message with a ReceiveBlock.
void UpdateReceiverBlock(uint8_t fraction_loss, void UpdateReceiverBlock(uint8_t fraction_loss,
int64_t rtt_ms, TimeDelta rtt_ms,
int number_of_packets, int number_of_packets,
int64_t now_ms); Timestamp at_time);
// Call when we receive a RTCP message with a ReceiveBlock. // Call when we receive a RTCP message with a ReceiveBlock.
void UpdatePacketsLost(int packets_lost, void UpdatePacketsLost(int packets_lost,
int number_of_packets, int number_of_packets,
int64_t now_ms); Timestamp at_time);
// Call when we receive a RTCP message with a ReceiveBlock. // Call when we receive a RTCP message with a ReceiveBlock.
void UpdateRtt(int64_t rtt, int64_t now_ms); void UpdateRtt(TimeDelta rtt, Timestamp at_time);
void SetBitrates(int send_bitrate, int min_bitrate, int max_bitrate); void SetBitrates(absl::optional<DataRate> send_bitrate,
void SetSendBitrate(int bitrate); DataRate min_bitrate,
void SetMinMaxBitrate(int min_bitrate, int max_bitrate); DataRate max_bitrate,
Timestamp at_time);
void SetSendBitrate(DataRate bitrate, Timestamp at_time);
void SetMinMaxBitrate(DataRate min_bitrate, DataRate max_bitrate);
int GetMinBitrate() const; int GetMinBitrate() const;
private: private:
enum UmaState { kNoUpdate, kFirstDone, kDone }; enum UmaState { kNoUpdate, kFirstDone, kDone };
bool IsInStartPhase(int64_t now_ms) const; bool IsInStartPhase(Timestamp at_time) const;
void UpdateUmaStatsPacketsLost(int64_t now_ms, int packets_lost); void UpdateUmaStatsPacketsLost(Timestamp at_time, int packets_lost);
// Updates history of min bitrates. // Updates history of min bitrates.
// After this method returns min_bitrate_history_.front().second contains the // After this method returns min_bitrate_history_.front().second contains the
// min bitrate used during last kBweIncreaseIntervalMs. // min bitrate used during last kBweIncreaseIntervalMs.
void UpdateMinHistory(int64_t now_ms); void UpdateMinHistory(Timestamp at_time);
// Cap |bitrate_bps| to [min_bitrate_configured_, max_bitrate_configured_] and // Cap |bitrate| to [min_bitrate_configured_, max_bitrate_configured_] and
// set |current_bitrate_bps_| to the capped value and updates the event log. // set |current_bitrate_| to the capped value and updates the event log.
void CapBitrateToThresholds(int64_t now_ms, uint32_t bitrate_bps); void CapBitrateToThresholds(Timestamp at_time, DataRate bitrate);
std::deque<std::pair<int64_t, uint32_t> > min_bitrate_history_; std::deque<std::pair<Timestamp, DataRate> > min_bitrate_history_;
// incoming filters // incoming filters
int lost_packets_since_last_loss_update_; int lost_packets_since_last_loss_update_;
int expected_packets_since_last_loss_update_; int expected_packets_since_last_loss_update_;
uint32_t current_bitrate_bps_; DataRate current_bitrate_;
uint32_t min_bitrate_configured_; DataRate min_bitrate_configured_;
uint32_t max_bitrate_configured_; DataRate max_bitrate_configured_;
int64_t last_low_bitrate_log_ms_; Timestamp last_low_bitrate_log_;
bool has_decreased_since_last_fraction_loss_; bool has_decreased_since_last_fraction_loss_;
int64_t last_feedback_ms_; Timestamp last_loss_feedback_;
int64_t last_packet_report_ms_; Timestamp last_loss_packet_report_;
int64_t last_timeout_ms_; Timestamp last_timeout_;
uint8_t last_fraction_loss_; uint8_t last_fraction_loss_;
uint8_t last_logged_fraction_loss_; uint8_t last_logged_fraction_loss_;
int64_t last_round_trip_time_ms_; TimeDelta last_round_trip_time_;
uint32_t bwe_incoming_; DataRate bwe_incoming_;
uint32_t delay_based_bitrate_bps_; DataRate delay_based_bitrate_;
int64_t time_last_decrease_ms_; Timestamp time_last_decrease_;
int64_t first_report_time_ms_; Timestamp first_report_time_;
int initially_lost_packets_; int initially_lost_packets_;
int bitrate_at_2_seconds_kbps_; DataRate bitrate_at_2_seconds_;
UmaState uma_update_state_; UmaState uma_update_state_;
UmaState uma_rtt_state_; UmaState uma_rtt_state_;
std::vector<bool> rampup_uma_stats_updated_; std::vector<bool> rampup_uma_stats_updated_;
RtcEventLog* event_log_; RtcEventLog* event_log_;
int64_t last_rtc_event_log_ms_; Timestamp last_rtc_event_log_;
bool in_timeout_experiment_; bool in_timeout_experiment_;
float low_loss_threshold_; float low_loss_threshold_;
float high_loss_threshold_; float high_loss_threshold_;
uint32_t bitrate_threshold_bps_; DataRate bitrate_threshold_;
}; };
} // namespace webrtc } // namespace webrtc
#endif // MODULES_BITRATE_CONTROLLER_SEND_SIDE_BANDWIDTH_ESTIMATION_H_ #endif // MODULES_BITRATE_CONTROLLER_SEND_SIDE_BANDWIDTH_ESTIMATION_H_

View File

@ -35,24 +35,25 @@ MATCHER(LossBasedBweUpdateWithBitrateAndLossFraction, "") {
} }
void TestProbing(bool use_delay_based) { void TestProbing(bool use_delay_based) {
MockRtcEventLog event_log; testing::NiceMock<MockRtcEventLog> event_log;
SendSideBandwidthEstimation bwe(&event_log); SendSideBandwidthEstimation bwe(&event_log);
bwe.SetMinMaxBitrate(100000, 1500000); int64_t now_ms = 0;
bwe.SetSendBitrate(200000); bwe.SetMinMaxBitrate(DataRate::bps(100000), DataRate::bps(1500000));
bwe.SetSendBitrate(DataRate::bps(200000), Timestamp::ms(now_ms));
const int kRembBps = 1000000; const int kRembBps = 1000000;
const int kSecondRembBps = kRembBps + 500000; const int kSecondRembBps = kRembBps + 500000;
int64_t now_ms = 0;
bwe.UpdateReceiverBlock(0, 50, 1, now_ms); bwe.UpdateReceiverBlock(0, TimeDelta::ms(50), 1, Timestamp::ms(now_ms));
// Initial REMB applies immediately. // Initial REMB applies immediately.
if (use_delay_based) { if (use_delay_based) {
bwe.UpdateDelayBasedEstimate(now_ms, kRembBps); bwe.UpdateDelayBasedEstimate(Timestamp::ms(now_ms),
DataRate::bps(kRembBps));
} else { } else {
bwe.UpdateReceiverEstimate(now_ms, kRembBps); bwe.UpdateReceiverEstimate(Timestamp::ms(now_ms), DataRate::bps(kRembBps));
} }
bwe.UpdateEstimate(now_ms); bwe.UpdateEstimate(Timestamp::ms(now_ms));
int bitrate; int bitrate;
uint8_t fraction_loss; uint8_t fraction_loss;
int64_t rtt; int64_t rtt;
@ -62,11 +63,13 @@ void TestProbing(bool use_delay_based) {
// Second REMB doesn't apply immediately. // Second REMB doesn't apply immediately.
now_ms += 2001; now_ms += 2001;
if (use_delay_based) { if (use_delay_based) {
bwe.UpdateDelayBasedEstimate(now_ms, kSecondRembBps); bwe.UpdateDelayBasedEstimate(Timestamp::ms(now_ms),
DataRate::bps(kSecondRembBps));
} else { } else {
bwe.UpdateReceiverEstimate(now_ms, kSecondRembBps); bwe.UpdateReceiverEstimate(Timestamp::ms(now_ms),
DataRate::bps(kSecondRembBps));
} }
bwe.UpdateEstimate(now_ms); bwe.UpdateEstimate(Timestamp::ms(now_ms));
bitrate = 0; bitrate = 0;
bwe.CurrentEstimate(&bitrate, &fraction_loss, &rtt); bwe.CurrentEstimate(&bitrate, &fraction_loss, &rtt);
EXPECT_EQ(kRembBps, bitrate); EXPECT_EQ(kRembBps, bitrate);
@ -86,17 +89,18 @@ TEST(SendSideBweTest, DoesntReapplyBitrateDecreaseWithoutFollowingRemb) {
.Times(1); .Times(1);
EXPECT_CALL(event_log, EXPECT_CALL(event_log,
LogProxy(LossBasedBweUpdateWithBitrateAndLossFraction())) LogProxy(LossBasedBweUpdateWithBitrateAndLossFraction()))
.Times(2); .Times(1);
SendSideBandwidthEstimation bwe(&event_log); SendSideBandwidthEstimation bwe(&event_log);
static const int kMinBitrateBps = 100000; static const int kMinBitrateBps = 100000;
static const int kInitialBitrateBps = 1000000; static const int kInitialBitrateBps = 1000000;
bwe.SetMinMaxBitrate(kMinBitrateBps, 1500000); int64_t now_ms = 1000;
bwe.SetSendBitrate(kInitialBitrateBps); bwe.SetMinMaxBitrate(DataRate::bps(kMinBitrateBps), DataRate::bps(1500000));
bwe.SetSendBitrate(DataRate::bps(kInitialBitrateBps), Timestamp::ms(now_ms));
static const uint8_t kFractionLoss = 128; static const uint8_t kFractionLoss = 128;
static const int64_t kRttMs = 50; static const int64_t kRttMs = 50;
now_ms += 10000;
int64_t now_ms = 0;
int bitrate_bps; int bitrate_bps;
uint8_t fraction_loss; uint8_t fraction_loss;
int64_t rtt_ms; int64_t rtt_ms;
@ -106,10 +110,11 @@ TEST(SendSideBweTest, DoesntReapplyBitrateDecreaseWithoutFollowingRemb) {
EXPECT_EQ(0, rtt_ms); EXPECT_EQ(0, rtt_ms);
// Signal heavy loss to go down in bitrate. // Signal heavy loss to go down in bitrate.
bwe.UpdateReceiverBlock(kFractionLoss, kRttMs, 100, now_ms); bwe.UpdateReceiverBlock(kFractionLoss, TimeDelta::ms(kRttMs), 100,
Timestamp::ms(now_ms));
// Trigger an update 2 seconds later to not be rate limited. // Trigger an update 2 seconds later to not be rate limited.
now_ms += 1000; now_ms += 1000;
bwe.UpdateEstimate(now_ms); bwe.UpdateEstimate(Timestamp::ms(now_ms));
bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms); bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms);
EXPECT_LT(bitrate_bps, kInitialBitrateBps); EXPECT_LT(bitrate_bps, kInitialBitrateBps);
@ -127,7 +132,7 @@ TEST(SendSideBweTest, DoesntReapplyBitrateDecreaseWithoutFollowingRemb) {
// Trigger an update 2 seconds later to not be rate limited (but it still // Trigger an update 2 seconds later to not be rate limited (but it still
// shouldn't update). // shouldn't update).
now_ms += 1000; now_ms += 1000;
bwe.UpdateEstimate(now_ms); bwe.UpdateEstimate(Timestamp::ms(now_ms));
bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms); bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms);
EXPECT_EQ(last_bitrate_bps, bitrate_bps); EXPECT_EQ(last_bitrate_bps, bitrate_bps);
@ -150,16 +155,18 @@ TEST(SendSideBweTest, SettingSendBitrateOverridesDelayBasedEstimate) {
uint8_t fraction_loss; uint8_t fraction_loss;
int64_t rtt_ms; int64_t rtt_ms;
bwe.SetMinMaxBitrate(kMinBitrateBps, kMaxBitrateBps); bwe.SetMinMaxBitrate(DataRate::bps(kMinBitrateBps),
bwe.SetSendBitrate(kInitialBitrateBps); DataRate::bps(kMaxBitrateBps));
bwe.SetSendBitrate(DataRate::bps(kInitialBitrateBps), Timestamp::ms(now_ms));
bwe.UpdateDelayBasedEstimate(now_ms, kDelayBasedBitrateBps); bwe.UpdateDelayBasedEstimate(Timestamp::ms(now_ms),
bwe.UpdateEstimate(now_ms); DataRate::bps(kDelayBasedBitrateBps));
bwe.UpdateEstimate(Timestamp::ms(now_ms));
bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms); bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms);
EXPECT_GE(bitrate_bps, kInitialBitrateBps); EXPECT_GE(bitrate_bps, kInitialBitrateBps);
EXPECT_LE(bitrate_bps, kDelayBasedBitrateBps); EXPECT_LE(bitrate_bps, kDelayBasedBitrateBps);
bwe.SetSendBitrate(kForcedHighBitrate); bwe.SetSendBitrate(DataRate::bps(kForcedHighBitrate), Timestamp::ms(now_ms));
bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms); bwe.CurrentEstimate(&bitrate_bps, &fraction_loss, &rtt_ms);
EXPECT_EQ(bitrate_bps, kForcedHighBitrate); EXPECT_EQ(bitrate_bps, kForcedHighBitrate);
} }

View File

@ -158,7 +158,7 @@ NetworkControlUpdate GoogCcNetworkController::OnNetworkAvailability(
NetworkControlUpdate GoogCcNetworkController::OnNetworkRouteChange( NetworkControlUpdate GoogCcNetworkController::OnNetworkRouteChange(
NetworkRouteChange msg) { NetworkRouteChange msg) {
int64_t min_bitrate_bps = GetBpsOrDefault(msg.constraints.min_data_rate, -1); int64_t min_bitrate_bps = GetBpsOrDefault(msg.constraints.min_data_rate, 0);
int64_t max_bitrate_bps = GetBpsOrDefault(msg.constraints.max_data_rate, -1); int64_t max_bitrate_bps = GetBpsOrDefault(msg.constraints.max_data_rate, -1);
int64_t start_bitrate_bps = int64_t start_bitrate_bps =
GetBpsOrDefault(msg.constraints.starting_rate, -1); GetBpsOrDefault(msg.constraints.starting_rate, -1);
@ -167,8 +167,10 @@ NetworkControlUpdate GoogCcNetworkController::OnNetworkRouteChange(
bandwidth_estimation_ = bandwidth_estimation_ =
absl::make_unique<SendSideBandwidthEstimation>(event_log_); absl::make_unique<SendSideBandwidthEstimation>(event_log_);
bandwidth_estimation_->SetBitrates(start_bitrate_bps, min_bitrate_bps, bandwidth_estimation_->SetBitrates(
max_bitrate_bps); msg.constraints.starting_rate, DataRate::bps(min_bitrate_bps),
msg.constraints.max_data_rate.value_or(DataRate::Infinity()),
msg.at_time);
delay_based_bwe_.reset(new DelayBasedBwe(event_log_)); delay_based_bwe_.reset(new DelayBasedBwe(event_log_));
acknowledged_bitrate_estimator_.reset(new AcknowledgedBitrateEstimator()); acknowledged_bitrate_estimator_.reset(new AcknowledgedBitrateEstimator());
delay_based_bwe_->SetStartBitrate(start_bitrate_bps); delay_based_bwe_->SetStartBitrate(start_bitrate_bps);
@ -206,7 +208,7 @@ NetworkControlUpdate GoogCcNetworkController::OnProcessInterval(
initial_config_.reset(); initial_config_.reset();
} }
bandwidth_estimation_->UpdateEstimate(msg.at_time.ms()); bandwidth_estimation_->UpdateEstimate(msg.at_time);
absl::optional<int64_t> start_time_ms = absl::optional<int64_t> start_time_ms =
alr_detector_->GetApplicationLimitedRegionStartTime(); alr_detector_->GetApplicationLimitedRegionStartTime();
probe_controller_->SetAlrStartTimeMs(start_time_ms); probe_controller_->SetAlrStartTimeMs(start_time_ms);
@ -225,8 +227,8 @@ NetworkControlUpdate GoogCcNetworkController::OnRemoteBitrateReport(
RTC_LOG(LS_ERROR) << "Received REMB for packet feedback only GoogCC"; RTC_LOG(LS_ERROR) << "Received REMB for packet feedback only GoogCC";
return NetworkControlUpdate(); return NetworkControlUpdate();
} }
bandwidth_estimation_->UpdateReceiverEstimate(msg.receive_time.ms(), bandwidth_estimation_->UpdateReceiverEstimate(msg.receive_time,
msg.bandwidth.bps()); msg.bandwidth);
BWE_TEST_LOGGING_PLOT(1, "REMB_kbps", msg.receive_time.ms(), BWE_TEST_LOGGING_PLOT(1, "REMB_kbps", msg.receive_time.ms(),
msg.bandwidth.bps() / 1000); msg.bandwidth.bps() / 1000);
return NetworkControlUpdate(); return NetworkControlUpdate();
@ -239,8 +241,7 @@ NetworkControlUpdate GoogCcNetworkController::OnRoundTripTimeUpdate(
if (msg.smoothed) { if (msg.smoothed) {
delay_based_bwe_->OnRttUpdate(msg.round_trip_time.ms()); delay_based_bwe_->OnRttUpdate(msg.round_trip_time.ms());
} else { } else {
bandwidth_estimation_->UpdateRtt(msg.round_trip_time.ms(), bandwidth_estimation_->UpdateRtt(msg.round_trip_time, msg.receive_time);
msg.receive_time.ms());
} }
return NetworkControlUpdate(); return NetworkControlUpdate();
} }
@ -307,8 +308,10 @@ GoogCcNetworkController::UpdateBitrateConstraints(
min_bitrate_bps, start_bitrate_bps, max_bitrate_bps, min_bitrate_bps, start_bitrate_bps, max_bitrate_bps,
constraints.at_time.ms())); constraints.at_time.ms()));
bandwidth_estimation_->SetBitrates(start_bitrate_bps, min_bitrate_bps, bandwidth_estimation_->SetBitrates(
max_bitrate_bps); starting_rate, DataRate::bps(min_bitrate_bps),
constraints.max_data_rate.value_or(DataRate::Infinity()),
constraints.at_time);
if (start_bitrate_bps > 0) if (start_bitrate_bps > 0)
delay_based_bwe_->SetStartBitrate(start_bitrate_bps); delay_based_bwe_->SetStartBitrate(start_bitrate_bps);
delay_based_bwe_->SetMinBitrate(min_bitrate_bps); delay_based_bwe_->SetMinBitrate(min_bitrate_bps);
@ -322,7 +325,7 @@ NetworkControlUpdate GoogCcNetworkController::OnTransportLossReport(
int64_t total_packets_delta = int64_t total_packets_delta =
msg.packets_received_delta + msg.packets_lost_delta; msg.packets_received_delta + msg.packets_lost_delta;
bandwidth_estimation_->UpdatePacketsLost( bandwidth_estimation_->UpdatePacketsLost(
msg.packets_lost_delta, total_packets_delta, msg.receive_time.ms()); msg.packets_lost_delta, total_packets_delta, msg.receive_time);
return NetworkControlUpdate(); return NetworkControlUpdate();
} }
@ -364,8 +367,7 @@ NetworkControlUpdate GoogCcNetworkController::OnTransportPacketsFeedback(
feedback_min_rtt = std::min(rtt, feedback_min_rtt); feedback_min_rtt = std::min(rtt, feedback_min_rtt);
} }
if (feedback_min_rtt.IsFinite()) { if (feedback_min_rtt.IsFinite()) {
bandwidth_estimation_->UpdateRtt(feedback_min_rtt.ms(), bandwidth_estimation_->UpdateRtt(feedback_min_rtt, report.feedback_time);
report.feedback_time.ms());
} }
expected_packets_since_last_loss_update_ += expected_packets_since_last_loss_update_ +=
@ -378,7 +380,7 @@ NetworkControlUpdate GoogCcNetworkController::OnTransportPacketsFeedback(
next_loss_update_ = report.feedback_time + kLossUpdateInterval; next_loss_update_ = report.feedback_time + kLossUpdateInterval;
bandwidth_estimation_->UpdatePacketsLost( bandwidth_estimation_->UpdatePacketsLost(
lost_packets_since_last_loss_update_, lost_packets_since_last_loss_update_,
expected_packets_since_last_loss_update_, report.feedback_time.ms()); expected_packets_since_last_loss_update_, report.feedback_time);
expected_packets_since_last_loss_update_ = 0; expected_packets_since_last_loss_update_ = 0;
lost_packets_since_last_loss_update_ = 0; lost_packets_since_last_loss_update_ = 0;
} }
@ -407,12 +409,13 @@ NetworkControlUpdate GoogCcNetworkController::OnTransportPacketsFeedback(
NetworkControlUpdate update; NetworkControlUpdate update;
if (result.updated) { if (result.updated) {
if (result.probe) { if (result.probe) {
bandwidth_estimation_->SetSendBitrate(result.target_bitrate_bps); bandwidth_estimation_->SetSendBitrate(
DataRate::bps(result.target_bitrate_bps), report.feedback_time);
} }
// Since SetSendBitrate now resets the delay-based estimate, we have to call // Since SetSendBitrate now resets the delay-based estimate, we have to call
// UpdateDelayBasedEstimate after SetSendBitrate. // UpdateDelayBasedEstimate after SetSendBitrate.
bandwidth_estimation_->UpdateDelayBasedEstimate(report.feedback_time.ms(), bandwidth_estimation_->UpdateDelayBasedEstimate(
result.target_bitrate_bps); report.feedback_time, DataRate::bps(result.target_bitrate_bps));
// Update the estimate in the ProbeController, in case we want to probe. // Update the estimate in the ProbeController, in case we want to probe.
MaybeTriggerOnNetworkChanged(&update, report.feedback_time); MaybeTriggerOnNetworkChanged(&update, report.feedback_time);
} }

View File

@ -91,9 +91,10 @@ class GoogCcNetworkControllerTest : public ::testing::Test {
return packet_result; return packet_result;
} }
NetworkRouteChange CreateRouteChange(DataRate start_rate = DataRate::Zero(), NetworkRouteChange CreateRouteChange(
DataRate min_rate = DataRate::Zero(), absl::optional<DataRate> start_rate = absl::nullopt,
DataRate max_rate = DataRate::Zero()) { absl::optional<DataRate> min_rate = absl::nullopt,
absl::optional<DataRate> max_rate = absl::nullopt) {
NetworkRouteChange route_change; NetworkRouteChange route_change;
route_change.at_time = current_time_; route_change.at_time = current_time_;
route_change.constraints.at_time = current_time_; route_change.constraints.at_time = current_time_;

View File

@ -41,6 +41,7 @@ rtc_static_library("remote_bitrate_estimator") {
deps = [ deps = [
"../..:webrtc_common", "../..:webrtc_common",
"../../api/units:data_rate",
"../../modules:module_api", "../../modules:module_api",
"../../modules/rtp_rtcp:rtp_rtcp_format", "../../modules/rtp_rtcp:rtp_rtcp_format",
"../../rtc_base:checks", "../../rtc_base:checks",

View File

@ -26,6 +26,10 @@ int GetMinBitrateBps() {
return kMinBitrateBps; return kMinBitrateBps;
} }
DataRate GetMinBitrate() {
return DataRate::bps(GetMinBitrateBps());
}
} // namespace congestion_controller } // namespace congestion_controller
RateControlInput::RateControlInput( RateControlInput::RateControlInput(

View File

@ -12,6 +12,7 @@
#define MODULES_REMOTE_BITRATE_ESTIMATOR_INCLUDE_BWE_DEFINES_H_ #define MODULES_REMOTE_BITRATE_ESTIMATOR_INCLUDE_BWE_DEFINES_H_
#include "absl/types/optional.h" #include "absl/types/optional.h"
#include "api/units/data_rate.h"
#define BWE_MAX(a, b) ((a) > (b) ? (a) : (b)) #define BWE_MAX(a, b) ((a) > (b) ? (a) : (b))
#define BWE_MIN(a, b) ((a) < (b) ? (a) : (b)) #define BWE_MIN(a, b) ((a) < (b) ? (a) : (b))
@ -20,6 +21,7 @@ namespace webrtc {
namespace congestion_controller { namespace congestion_controller {
int GetMinBitrateBps(); int GetMinBitrateBps();
DataRate GetMinBitrate();
} // namespace congestion_controller } // namespace congestion_controller
static const int64_t kBitrateWindowMs = 1000; static const int64_t kBitrateWindowMs = 1000;