Use SingleThreadedTaskQueue in DirectTransport
DirectTransport has so far used its own thread, which led to a different threading-model for in the unit-tests than is used in actual WebRTC. Because of that, some critical-sections that weren't truly necessary in WebRTC could not be replaced with thread-checks, because those checks failed in unit-tests. This CL introduces SingleThreadedTaskQueue - a TaskQueue which guarantees to run all of its tasks on the same thread (rtc::TaskQueue doesn't guarantee that on Mac) - and uses that for DirectTransport. CLs based on top of this will uncomment thread-checks which had to be commented out before, and remove unnecessary critical-sections. Future work would probably replace the thread-checkers by more sophisticated serialized-access checks, allowing us to move from the SingleThreadedTaskQueue to a normal TaskQueue. Related implementation notes: * This CL has made DirectTransport::StopSending() superfluous, and so it was deleted. BUG=webrtc:8113, webrtc:7405, webrtc:8056, webrtc:8116 Review-Url: https://codereview.webrtc.org/2998923002 Cr-Commit-Position: refs/heads/master@{#19445}
This commit is contained in:
364
webrtc/test/single_threaded_task_queue_unittest.cc
Normal file
364
webrtc/test/single_threaded_task_queue_unittest.cc
Normal file
@ -0,0 +1,364 @@
|
||||
/*
|
||||
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/test/single_threaded_task_queue.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "webrtc/rtc_base/event.h"
|
||||
#include "webrtc/rtc_base/ptr_util.h"
|
||||
#include "webrtc/test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace test {
|
||||
|
||||
namespace {
|
||||
|
||||
using TaskId = SingleThreadedTaskQueueForTesting::TaskId;
|
||||
|
||||
// Test should not rely on the object under test not being faulty. If the task
|
||||
// queue ever blocks forever, we want the tests to fail, rather than hang.
|
||||
constexpr int kMaxWaitTimeMs = 10000;
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, SanityConstructionDestruction) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, ExecutesPostedTasks) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> executed(false);
|
||||
rtc::Event done(true, false);
|
||||
|
||||
task_queue.PostTask([&executed, &done]() {
|
||||
executed.store(true);
|
||||
done.Set();
|
||||
});
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
|
||||
EXPECT_TRUE(executed.load());
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest,
|
||||
PostMultipleTasksFromSameExternalThread) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
constexpr size_t kCount = 3;
|
||||
std::atomic<bool> executed[kCount];
|
||||
for (std::atomic<bool>& exec : executed) {
|
||||
exec.store(false);
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<rtc::Event>> done_events;
|
||||
for (size_t i = 0; i < kCount; i++) {
|
||||
done_events.emplace_back(rtc::MakeUnique<rtc::Event>(false, false));
|
||||
}
|
||||
|
||||
// To avoid the tasks which comprise the actual test from running before they
|
||||
// have all be posted, which could result in only one task ever being in the
|
||||
// queue at any given time, post one waiting task that would block the
|
||||
// task-queue, and unblock only after all tasks have been posted.
|
||||
rtc::Event rendezvous(true, false);
|
||||
task_queue.PostTask([&rendezvous]() {
|
||||
ASSERT_TRUE(rendezvous.Wait(kMaxWaitTimeMs));
|
||||
});
|
||||
|
||||
// Post the tasks which comprise the test.
|
||||
for (size_t i = 0; i < kCount; i++) {
|
||||
task_queue.PostTask([&executed, &done_events, i]() { // |i| by value.
|
||||
executed[i].store(true);
|
||||
done_events[i]->Set();
|
||||
});
|
||||
}
|
||||
|
||||
rendezvous.Set(); // Release the task-queue.
|
||||
|
||||
// Wait until the task queue has executed all the tasks.
|
||||
for (size_t i = 0; i < kCount; i++) {
|
||||
ASSERT_TRUE(done_events[i]->Wait(kMaxWaitTimeMs));
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < kCount; i++) {
|
||||
EXPECT_TRUE(executed[i].load());
|
||||
}
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, PostToTaskQueueFromOwnThread) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> executed(false);
|
||||
rtc::Event done(true, false);
|
||||
|
||||
auto internally_posted_task = [&executed, &done]() {
|
||||
executed.store(true);
|
||||
done.Set();
|
||||
};
|
||||
|
||||
auto externally_posted_task = [&task_queue, &internally_posted_task]() {
|
||||
task_queue.PostTask(internally_posted_task);
|
||||
};
|
||||
|
||||
task_queue.PostTask(externally_posted_task);
|
||||
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
EXPECT_TRUE(executed.load());
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, TasksExecutedInSequence) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
// The first task would perform:
|
||||
// accumulator = 10 * accumulator + i
|
||||
// Where |i| is 1, 2 and 3 for the 1st, 2nd and 3rd tasks, respectively.
|
||||
// The result would be 123 if and only iff the tasks were executed in order.
|
||||
size_t accumulator = 0;
|
||||
size_t expected_value = 0; // Updates to the correct value.
|
||||
|
||||
// Prevent the chain from being set in motion before we've had time to
|
||||
// schedule it all, lest the queue only contain one task at a time.
|
||||
rtc::Event rendezvous(true, false);
|
||||
task_queue.PostTask([&rendezvous]() {
|
||||
ASSERT_TRUE(rendezvous.Wait(kMaxWaitTimeMs));
|
||||
});
|
||||
|
||||
for (size_t i = 0; i < 3; i++) {
|
||||
task_queue.PostTask([&accumulator, i]() { // |i| passed by value.
|
||||
accumulator = 10 * accumulator + i;
|
||||
});
|
||||
expected_value = 10 * expected_value + i;
|
||||
}
|
||||
|
||||
// The test will wait for the task-queue to finish.
|
||||
rtc::Event done(true, false);
|
||||
task_queue.PostTask([&done]() {
|
||||
done.Set();
|
||||
});
|
||||
|
||||
rendezvous.Set(); // Set the chain in motion.
|
||||
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
|
||||
EXPECT_EQ(accumulator, expected_value);
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, ExecutesPostedDelayedTask) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> executed(false);
|
||||
rtc::Event done(true, false);
|
||||
|
||||
constexpr int64_t delay_ms = 20;
|
||||
static_assert(delay_ms < kMaxWaitTimeMs / 2, "Delay too long for tests.");
|
||||
|
||||
task_queue.PostDelayedTask([&executed, &done]() {
|
||||
executed.store(true);
|
||||
done.Set();
|
||||
}, delay_ms);
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
|
||||
EXPECT_TRUE(executed.load());
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, DoesNotExecuteDelayedTaskTooSoon) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> executed(false);
|
||||
|
||||
constexpr int64_t delay_ms = 2000;
|
||||
static_assert(delay_ms < kMaxWaitTimeMs / 2, "Delay too long for tests.");
|
||||
|
||||
task_queue.PostDelayedTask([&executed]() {
|
||||
executed.store(true);
|
||||
}, delay_ms);
|
||||
|
||||
// Wait less than is enough, make sure the task was not yet executed.
|
||||
rtc::Event not_done(true, false);
|
||||
ASSERT_FALSE(not_done.Wait(delay_ms / 2));
|
||||
EXPECT_FALSE(executed.load());
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest,
|
||||
TaskWithLesserDelayPostedAfterFirstDelayedTaskExectuedBeforeFirst) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> earlier_executed(false);
|
||||
constexpr int64_t earlier_delay_ms = 500;
|
||||
|
||||
std::atomic<bool> later_executed(false);
|
||||
constexpr int64_t later_delay_ms = 1000;
|
||||
|
||||
static_assert(earlier_delay_ms + later_delay_ms < kMaxWaitTimeMs / 2,
|
||||
"Delay too long for tests.");
|
||||
|
||||
rtc::Event done(true, false);
|
||||
|
||||
auto earlier_task = [&earlier_executed, &later_executed]() {
|
||||
EXPECT_FALSE(later_executed.load());
|
||||
earlier_executed.store(true);
|
||||
};
|
||||
|
||||
auto later_task = [&earlier_executed, &later_executed, &done]() {
|
||||
EXPECT_TRUE(earlier_executed.load());
|
||||
later_executed.store(true);
|
||||
done.Set();
|
||||
};
|
||||
|
||||
task_queue.PostDelayedTask(later_task, later_delay_ms);
|
||||
task_queue.PostDelayedTask(earlier_task, earlier_delay_ms);
|
||||
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
ASSERT_TRUE(earlier_executed);
|
||||
ASSERT_TRUE(later_executed);
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest,
|
||||
TaskWithGreaterDelayPostedAfterFirstDelayedTaskExectuedAfterFirst) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> earlier_executed(false);
|
||||
constexpr int64_t earlier_delay_ms = 500;
|
||||
|
||||
std::atomic<bool> later_executed(false);
|
||||
constexpr int64_t later_delay_ms = 1000;
|
||||
|
||||
static_assert(earlier_delay_ms + later_delay_ms < kMaxWaitTimeMs / 2,
|
||||
"Delay too long for tests.");
|
||||
|
||||
rtc::Event done(true, false);
|
||||
|
||||
auto earlier_task = [&earlier_executed, &later_executed]() {
|
||||
EXPECT_FALSE(later_executed.load());
|
||||
earlier_executed.store(true);
|
||||
};
|
||||
|
||||
auto later_task = [&earlier_executed, &later_executed, &done]() {
|
||||
EXPECT_TRUE(earlier_executed.load());
|
||||
later_executed.store(true);
|
||||
done.Set();
|
||||
};
|
||||
|
||||
task_queue.PostDelayedTask(earlier_task, earlier_delay_ms);
|
||||
task_queue.PostDelayedTask(later_task, later_delay_ms);
|
||||
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
ASSERT_TRUE(earlier_executed);
|
||||
ASSERT_TRUE(later_executed);
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, ExternalThreadCancelsTask) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
rtc::Event done(true, false);
|
||||
|
||||
// Prevent the to-be-cancelled task from being executed before we've had
|
||||
// time to cancel it.
|
||||
rtc::Event rendezvous(true, false);
|
||||
task_queue.PostTask([&rendezvous]() {
|
||||
ASSERT_TRUE(rendezvous.Wait(kMaxWaitTimeMs));
|
||||
});
|
||||
|
||||
TaskId cancelled_task_id = task_queue.PostTask([]() {
|
||||
EXPECT_TRUE(false);
|
||||
});
|
||||
task_queue.PostTask([&done]() {
|
||||
done.Set();
|
||||
});
|
||||
|
||||
task_queue.CancelTask(cancelled_task_id);
|
||||
|
||||
// Set the tasks in motion; the cancelled task does not run (otherwise the
|
||||
// test would fail). The last task ends the test, showing that the queue
|
||||
// progressed beyond the cancelled task.
|
||||
rendezvous.Set();
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
}
|
||||
|
||||
// In this test, we'll set off a chain where the first task cancels the second
|
||||
// task, then a third task runs (showing that we really cancelled the task,
|
||||
// rather than just halted the task-queue).
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, InternalThreadCancelsTask) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
rtc::Event done(true, false);
|
||||
|
||||
// Prevent the chain from being set-off before we've set everything up.
|
||||
rtc::Event rendezvous(true, false);
|
||||
task_queue.PostTask([&rendezvous]() {
|
||||
ASSERT_TRUE(rendezvous.Wait(kMaxWaitTimeMs));
|
||||
});
|
||||
|
||||
// This is the canceller-task. It takes cancelled_task_id by reference,
|
||||
// because the ID will only become known after the cancelled task is
|
||||
// scheduled.
|
||||
TaskId cancelled_task_id;
|
||||
auto canceller_task = [&task_queue, &cancelled_task_id]() {
|
||||
task_queue.CancelTask(cancelled_task_id);
|
||||
};
|
||||
task_queue.PostTask(canceller_task);
|
||||
|
||||
// This task will be cancelled by the task before it.
|
||||
auto cancelled_task = []() {
|
||||
EXPECT_TRUE(false);
|
||||
};
|
||||
cancelled_task_id = task_queue.PostTask(cancelled_task);
|
||||
|
||||
// When this task runs, it will allow the test to be finished.
|
||||
auto completion_marker_task = [&done]() {
|
||||
done.Set();
|
||||
};
|
||||
task_queue.PostTask(completion_marker_task);
|
||||
|
||||
rendezvous.Set(); // Set the chain in motion.
|
||||
|
||||
ASSERT_TRUE(done.Wait(kMaxWaitTimeMs));
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest, SendTask) {
|
||||
SingleThreadedTaskQueueForTesting task_queue("task_queue");
|
||||
|
||||
std::atomic<bool> executed(false);
|
||||
|
||||
task_queue.SendTask([&executed]() {
|
||||
// Intentionally delay, so that if SendTask didn't block, the sender thread
|
||||
// would have time to read |executed|.
|
||||
rtc::Event delay(true, false);
|
||||
ASSERT_FALSE(delay.Wait(1000));
|
||||
executed.store(true);
|
||||
});
|
||||
|
||||
EXPECT_TRUE(executed);
|
||||
}
|
||||
|
||||
TEST(SingleThreadedTaskQueueForTestingTest,
|
||||
DestructTaskQueueWhileTasksPending) {
|
||||
auto task_queue =
|
||||
rtc::MakeUnique<SingleThreadedTaskQueueForTesting>("task_queue");
|
||||
|
||||
std::atomic<size_t> counter(0);
|
||||
|
||||
constexpr size_t tasks = 10;
|
||||
for (size_t i = 0; i < tasks; i++) {
|
||||
task_queue->PostTask([&counter]() {
|
||||
std::atomic_fetch_add(&counter, static_cast<size_t>(1));
|
||||
rtc::Event delay(true, false);
|
||||
ASSERT_FALSE(delay.Wait(500));
|
||||
});
|
||||
}
|
||||
|
||||
task_queue.reset();
|
||||
|
||||
EXPECT_LT(counter, tasks);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace test
|
||||
} // namespace webrtc
|
||||
Reference in New Issue
Block a user