Remove TaskQueue::PostAndReply as unused

Bug: webrtc:10191, webrtc:9728
Change-Id: Iaaa7c88bbbbfdd6e3e9bf5ab683bbdb2962a5cab
Reviewed-on: https://webrtc-review.googlesource.com/c/107202
Commit-Queue: Danil Chapovalov <danilchap@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26202}
This commit is contained in:
Danil Chapovalov
2018-12-05 15:46:58 +01:00
committed by Commit Bot
parent a8f58f001e
commit 43f3982d6f
5 changed files with 9 additions and 356 deletions

View File

@ -175,11 +175,6 @@ class RTC_LOCKABLE RTC_EXPORT TaskQueue {
// Ownership of the task is passed to PostTask.
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply);
// Schedules a task to execute a specified number of milliseconds from when
// the call is made. The precision should be considered as "best effort"
@ -208,32 +203,15 @@ class RTC_LOCKABLE RTC_EXPORT TaskQueue {
PostDelayedTask(NewClosure(std::forward<Closure>(closure)), milliseconds);
}
template <class Closure1, class Closure2>
void PostTaskAndReply(Closure1&& task,
Closure2&& reply,
TaskQueue* reply_queue) {
PostTaskAndReply(NewClosure(std::forward<Closure1>(task)),
NewClosure(std::forward<Closure2>(reply)), reply_queue);
}
template <class Closure>
void PostTaskAndReply(std::unique_ptr<QueuedTask> task, Closure&& reply) {
PostTaskAndReply(std::move(task), NewClosure(std::forward<Closure>(reply)));
}
template <class Closure>
void PostTaskAndReply(Closure&& task, std::unique_ptr<QueuedTask> reply) {
PostTaskAndReply(NewClosure(std::forward<Closure>(task)), std::move(reply));
}
template <class Closure1, class Closure2>
void PostTaskAndReply(Closure1&& task, Closure2&& reply) {
PostTaskAndReply(NewClosure(std::forward(task)),
NewClosure(std::forward(reply)));
}
private:
class Impl;
// TODO(danilchap): Remove when external implementaions of TaskQueue remove
// these two functions.
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply);
const scoped_refptr<Impl> impl_;

View File

@ -55,10 +55,6 @@ class TaskQueue::Impl : public RefCountInterface {
bool IsCurrent() const;
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue);
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
private:
@ -97,41 +93,6 @@ class TaskQueue::Impl : public RefCountInterface {
std::unique_ptr<QueuedTask> task;
};
// Special case context for holding two tasks, a |first_task| + the task
// that's owned by the parent struct, TaskContext, that then becomes the
// second (i.e. 'reply') task.
struct PostTaskAndReplyContext : public TaskContext {
explicit PostTaskAndReplyContext(QueueContext* first_queue_ctx,
std::unique_ptr<QueuedTask> first_task,
QueueContext* second_queue_ctx,
std::unique_ptr<QueuedTask> second_task)
: TaskContext(second_queue_ctx, std::move(second_task)),
first_queue_ctx(first_queue_ctx),
first_task(std::move(first_task)),
reply_queue_(second_queue_ctx->queue->impl_->queue_) {
// Retain the reply queue for as long as this object lives.
// If we don't, we may have memory leaks and/or failures.
dispatch_retain(reply_queue_);
}
~PostTaskAndReplyContext() override { dispatch_release(reply_queue_); }
static void RunTask(void* context) {
auto* rc = static_cast<PostTaskAndReplyContext*>(context);
if (rc->first_queue_ctx->is_active) {
AutoSetCurrentQueuePtr set_current(rc->first_queue_ctx->queue);
if (!rc->first_task->Run())
rc->first_task.release();
}
// Post the reply task. This hands the work over to the parent struct.
// This task will eventually delete |this|.
dispatch_async_f(rc->reply_queue_, rc, &TaskContext::RunTask);
}
QueueContext* const first_queue_ctx;
std::unique_ptr<QueuedTask> first_task;
dispatch_queue_t reply_queue_;
};
dispatch_queue_t queue_;
QueueContext* const context_;
};
@ -192,14 +153,6 @@ void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
context, &TaskContext::RunTask);
}
void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue) {
auto* context = new PostTaskAndReplyContext(
context_, std::move(task), reply_queue->context_, std::move(reply));
dispatch_async_f(queue_, context, &PostTaskAndReplyContext::RunTask);
}
// Boilerplate for the PIMPL pattern.
TaskQueue::TaskQueue(const char* queue_name, Priority priority)
: impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) {
@ -221,19 +174,6 @@ void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
return TaskQueue::impl_->PostTask(std::move(task));
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
reply_queue->impl_.get());
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
impl_.get());
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds);

View File

@ -44,16 +44,14 @@ using internal::AutoSetCurrentQueuePtr;
namespace {
static const char kQuit = 1;
static const char kRunTask = 2;
static const char kRunReplyTask = 3;
using Priority = TaskQueue::Priority;
// This ignores the SIGPIPE signal on the calling thread.
// This signal can be fired when trying to write() to a pipe that's being
// closed or while closing a pipe that's being written to.
// We can run into that situation (e.g. reply tasks that don't get a chance to
// run because the task queue is being deleted) so we ignore this signal and
// continue as normal.
// We can run into that situation so we ignore this signal and continue as
// normal.
// As a side note for this implementation, it would be great if we could safely
// restore the sigmask, but unfortunately the operation of restoring it, can
// itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS)
@ -133,10 +131,6 @@ class TaskQueue::Impl : public RefCountInterface {
bool IsCurrent() const;
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue);
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
private:
@ -145,14 +139,8 @@ class TaskQueue::Impl : public RefCountInterface {
static void RunTask(int fd, short flags, void* context); // NOLINT
static void RunTimer(int fd, short flags, void* context); // NOLINT
class ReplyTaskOwner;
class PostAndReplyTask;
class SetTimerTask;
typedef RefCountedObject<ReplyTaskOwner> ReplyTaskOwnerRef;
void PrepareReplyTask(scoped_refptr<ReplyTaskOwnerRef> reply_task);
struct QueueContext;
TaskQueue* const queue_;
int wakeup_pipe_in_ = -1;
@ -162,8 +150,6 @@ class TaskQueue::Impl : public RefCountInterface {
PlatformThread thread_;
rtc::CriticalSection pending_lock_;
std::list<std::unique_ptr<QueuedTask>> pending_ RTC_GUARDED_BY(pending_lock_);
std::list<scoped_refptr<ReplyTaskOwnerRef>> pending_replies_
RTC_GUARDED_BY(pending_lock_);
};
struct TaskQueue::Impl::QueueContext {
@ -174,90 +160,6 @@ struct TaskQueue::Impl::QueueContext {
std::list<TimerEvent*> pending_timers_;
};
// Posting a reply task is tricky business. This class owns the reply task
// and a reference to it is held by both the reply queue and the first task.
// Here's an outline of what happens when dealing with a reply task.
// * The ReplyTaskOwner owns the |reply_| task.
// * One ref owned by PostAndReplyTask
// * One ref owned by the reply TaskQueue
// * ReplyTaskOwner has a flag |run_task_| initially set to false.
// * ReplyTaskOwner has a method: HasOneRef() (provided by RefCountedObject).
// * After successfully running the original |task_|, PostAndReplyTask() calls
// set_should_run_task(). This sets |run_task_| to true.
// * In PostAndReplyTask's dtor:
// * It releases its reference to ReplyTaskOwner (important to do this first).
// * Sends (write()) a kRunReplyTask message to the reply queue's pipe.
// * PostAndReplyTask doesn't care if write() fails, but when it does:
// * The reply queue is gone.
// * ReplyTaskOwner has already been deleted and the reply task too.
// * If write() succeeds:
// * ReplyQueue receives the kRunReplyTask message
// * Goes through all pending tasks, finding the first that HasOneRef()
// * Calls ReplyTaskOwner::Run()
// * if set_should_run_task() was called, the reply task will be run
// * Release the reference to ReplyTaskOwner
// * ReplyTaskOwner and associated |reply_| are deleted.
class TaskQueue::Impl::ReplyTaskOwner {
public:
ReplyTaskOwner(std::unique_ptr<QueuedTask> reply)
: reply_(std::move(reply)) {}
void Run() {
RTC_DCHECK(reply_);
if (run_task_) {
if (!reply_->Run())
reply_.release();
}
reply_.reset();
}
void set_should_run_task() {
RTC_DCHECK(!run_task_);
run_task_ = true;
}
private:
std::unique_ptr<QueuedTask> reply_;
bool run_task_ = false;
};
class TaskQueue::Impl::PostAndReplyTask : public QueuedTask {
public:
PostAndReplyTask(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue,
int reply_pipe)
: task_(std::move(task)),
reply_pipe_(reply_pipe),
reply_task_owner_(
new RefCountedObject<ReplyTaskOwner>(std::move(reply))) {
reply_queue->PrepareReplyTask(reply_task_owner_);
}
~PostAndReplyTask() override {
reply_task_owner_ = nullptr;
IgnoreSigPipeSignalOnCurrentThread();
// Send a signal to the reply queue that the reply task can run now.
// Depending on whether |set_should_run_task()| was called by the
// PostAndReplyTask(), the reply task may or may not actually run.
// In either case, it will be deleted.
char message = kRunReplyTask;
RTC_UNUSED(write(reply_pipe_, &message, sizeof(message)));
}
private:
bool Run() override {
if (!task_->Run())
task_.release();
reply_task_owner_->set_should_run_task();
return true;
}
std::unique_ptr<QueuedTask> task_;
int reply_pipe_;
scoped_refptr<RefCountedObject<ReplyTaskOwner>> reply_task_owner_;
};
class TaskQueue::Impl::SetTimerTask : public QueuedTask {
public:
SetTimerTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds)
@ -396,15 +298,6 @@ void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
}
}
void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue) {
std::unique_ptr<QueuedTask> wrapper_task(
new PostAndReplyTask(std::move(task), std::move(reply), reply_queue,
reply_queue->wakeup_pipe_in_));
PostTask(std::move(wrapper_task));
}
// static
void TaskQueue::Impl::ThreadMain(void* context) {
TaskQueue::Impl* me = static_cast<TaskQueue::Impl*>(context);
@ -448,22 +341,6 @@ void TaskQueue::Impl::OnWakeup(int socket,
task.release();
break;
}
case kRunReplyTask: {
scoped_refptr<ReplyTaskOwnerRef> reply_task;
{
CritScope lock(&ctx->queue->pending_lock_);
for (auto it = ctx->queue->pending_replies_.begin();
it != ctx->queue->pending_replies_.end(); ++it) {
if ((*it)->HasOneRef()) {
reply_task = std::move(*it);
ctx->queue->pending_replies_.erase(it);
break;
}
}
}
reply_task->Run();
break;
}
default:
RTC_NOTREACHED();
break;
@ -488,13 +365,6 @@ void TaskQueue::Impl::RunTimer(int fd, short flags, void* context) { // NOLINT
delete timer;
}
void TaskQueue::Impl::PrepareReplyTask(
scoped_refptr<ReplyTaskOwnerRef> reply_task) {
RTC_DCHECK(reply_task);
CritScope lock(&pending_lock_);
pending_replies_.push_back(std::move(reply_task));
}
TaskQueue::TaskQueue(const char* queue_name, Priority priority)
: impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) {
}
@ -515,19 +385,6 @@ void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
return TaskQueue::impl_->PostTask(std::move(task));
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
reply_queue->impl_.get());
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
impl_.get());
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds);

View File

@ -192,19 +192,6 @@ TEST(TaskQueueTest, PostDelayedAfterDestruct) {
EXPECT_FALSE(run.Wait(0)); // and should not run.
}
TEST(TaskQueueTest, PostAndReply) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event;
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
post_queue.PostTaskAndReply(Bind(&CheckCurrent, nullptr, &post_queue),
Bind(&CheckCurrent, &event, &reply_queue),
&reply_queue);
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostAndReuse) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
@ -252,20 +239,6 @@ TEST(TaskQueueTest, PostAndReuse) {
EXPECT_TRUE(event.Wait(1000));
}
TEST(TaskQueueTest, PostAndReplyLambda) {
static const char kPostQueue[] = "PostQueue";
static const char kReplyQueue[] = "ReplyQueue";
Event event;
TaskQueue post_queue(kPostQueue);
TaskQueue reply_queue(kReplyQueue);
bool my_flag = false;
post_queue.PostTaskAndReply([&my_flag]() { my_flag = true; },
[&event]() { event.Set(); }, &reply_queue);
EXPECT_TRUE(event.Wait(1000));
EXPECT_TRUE(my_flag);
}
TEST(TaskQueueTest, PostCopyableClosure) {
struct CopyableClosure {
CopyableClosure(int* num_copies, int* num_moves, Event* event)
@ -365,66 +338,6 @@ TEST(TaskQueueTest, PostMoveOnlyCleanup) {
EXPECT_TRUE(event_run.Wait(0));
}
// This test covers a particular bug that we had in the libevent implementation
// where we could hit a deadlock while trying to post a reply task to a queue
// that was being deleted. The test isn't guaranteed to hit that case but it's
// written in a way that makes it likely and by running with --gtest_repeat=1000
// the bug would occur. Alas, now it should be fixed.
TEST(TaskQueueTest, PostAndReplyDeadlock) {
Event event;
TaskQueue post_queue("PostQueue");
TaskQueue reply_queue("ReplyQueue");
post_queue.PostTaskAndReply([&event]() { event.Set(); }, []() {},
&reply_queue);
EXPECT_TRUE(event.Wait(1000));
}
// http://bugs.webrtc.org/9728
#if defined(WEBRTC_WIN)
#define MAYBE_DeleteTaskQueueAfterPostAndReply \
DISABLED_DeleteTaskQueueAfterPostAndReply
#else
#define MAYBE_DeleteTaskQueueAfterPostAndReply DeleteTaskQueueAfterPostAndReply
#endif
TEST(TaskQueueTest, MAYBE_DeleteTaskQueueAfterPostAndReply) {
Event task_deleted;
Event reply_deleted;
auto* task_queue = new TaskQueue("Queue");
task_queue->PostTaskAndReply(
/*task=*/rtc::NewClosure(
/*closure=*/[] {},
/*cleanup=*/[&task_deleted] { task_deleted.Set(); }),
/*reply=*/rtc::NewClosure(
/*closure=*/[] {},
/*cleanup=*/[&reply_deleted] { reply_deleted.Set(); }));
delete task_queue;
EXPECT_TRUE(task_deleted.Wait(1000));
EXPECT_TRUE(reply_deleted.Wait(1000));
}
void TestPostTaskAndReply(TaskQueue* work_queue, Event* event) {
ASSERT_FALSE(work_queue->IsCurrent());
work_queue->PostTaskAndReply(Bind(&CheckCurrent, nullptr, work_queue),
NewClosure([event]() { event->Set(); }));
}
// Does a PostTaskAndReply from within a task to post and reply to the current
// queue. All in all there will be 3 tasks posted and run.
TEST(TaskQueueTest, PostAndReply2) {
static const char kQueueName[] = "PostAndReply2";
static const char kWorkQueueName[] = "PostAndReply2_Worker";
Event event;
TaskQueue queue(kQueueName);
TaskQueue work_queue(kWorkQueueName);
queue.PostTask(Bind(&TestPostTaskAndReply, &work_queue, &event));
EXPECT_TRUE(event.Wait(1000));
}
// Tests posting more messages than a queue can queue up.
// In situations like that, tasks will get dropped.
TEST(TaskQueueTest, PostALot) {

View File

@ -190,10 +190,6 @@ class TaskQueue::Impl : public RefCountInterface {
}
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue);
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
void RunPendingTasks();
@ -322,24 +318,6 @@ void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
}
}
void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue::Impl* reply_queue) {
QueuedTask* task_ptr = task.release();
QueuedTask* reply_task_ptr = reply.release();
DWORD reply_thread_id = reply_queue->thread_.GetThreadRef();
PostTask([task_ptr, reply_task_ptr, reply_thread_id]() {
if (task_ptr->Run())
delete task_ptr;
// If the thread's message queue is full, we can't queue the task and will
// have to drop it (i.e. delete).
if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
reinterpret_cast<LPARAM>(reply_task_ptr))) {
delete reply_task_ptr;
}
});
}
void TaskQueue::Impl::RunPendingTasks() {
while (true) {
std::unique_ptr<QueuedTask> task;
@ -500,19 +478,6 @@ void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
return TaskQueue::impl_->PostTask(std::move(task));
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
reply_queue->impl_.get());
}
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply) {
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
impl_.get());
}
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) {
return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds);