Reland "Refactors UlpFec and FlexFec to use a common interface."

This is a reland of 11af1d7444fd7438766b7bc52cbd64752d72e32e

Original change's description:
> Refactors UlpFec and FlexFec to use a common interface.
>
> The new VideoFecGenerator is now injected into RtpSenderVideo,
> and generalizes the usage.
> This also prepares for being able to genera FEC in the RTP egress
> module.
>
> Bug: webrtc:11340
> Change-Id: I8aa873129b2fb4131eb3399ee88f6ea2747155a3
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168347
> Reviewed-by: Stefan Holmer <stefan@webrtc.org>
> Reviewed-by: Sebastian Jansson <srte@webrtc.org>
> Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
> Commit-Queue: Erik Språng <sprang@webrtc.org>
> Cr-Commit-Position: refs/heads/master@{#30515}

Bug: webrtc:11340, chromium:1052323
Change-Id: Id646047365f1c46cca9e6f3e8eefa5151207b4a0
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168608
Commit-Queue: Erik Språng <sprang@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30593}
This commit is contained in:
Erik Språng
2020-02-24 14:32:51 +01:00
committed by Commit Bot
parent 1883d3e231
commit 49734dc0fa
23 changed files with 574 additions and 563 deletions

View File

@ -35,11 +35,8 @@ void VerifyHeader(uint16_t seq_num,
uint32_t timestamp,
int red_payload_type,
int fec_payload_type,
RedPacket* packet,
bool marker_bit) {
EXPECT_GT(packet->length(), kRtpHeaderSize);
EXPECT_TRUE(packet->data() != NULL);
uint8_t* data = packet->data();
bool marker_bit,
const rtc::CopyOnWriteBuffer& data) {
// Marker bit not set.
EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80);
EXPECT_EQ(red_payload_type, data[1] & 0x7F);
@ -52,8 +49,12 @@ void VerifyHeader(uint16_t seq_num,
class UlpfecGeneratorTest : public ::testing::Test {
protected:
UlpfecGeneratorTest() : packet_generator_(kMediaSsrc) {}
UlpfecGeneratorTest()
: fake_clock_(1),
ulpfec_generator_(kRedPayloadType, kFecPayloadType, &fake_clock_),
packet_generator_(kMediaSsrc) {}
SimulatedClock fake_clock_;
UlpfecGenerator ulpfec_generator_;
AugmentedPacketGenerator packet_generator_;
};
@ -81,24 +82,22 @@ TEST_F(UlpfecGeneratorTest, NoEmptyFecWithSeqNumGaps) {
protected_packets.push_back({21, 0, 55, 0});
protected_packets.push_back({13, 3, 57, 1});
FecProtectionParams params = {117, 3, kFecMaskBursty};
ulpfec_generator_.SetFecParameters(params);
uint8_t packet[28] = {0};
ulpfec_generator_.SetProtectionParameters(params, params);
for (Packet p : protected_packets) {
if (p.marker_bit) {
packet[1] |= 0x80;
RtpPacketToSend packet(nullptr);
packet.SetMarker(p.marker_bit);
packet.AllocateExtension(RTPExtensionType::kRtpExtensionMid,
p.header_size - packet.headers_size());
packet.SetSequenceNumber(p.seq_num);
packet.AllocatePayload(p.payload_size);
ulpfec_generator_.AddPacketAndGenerateFec(packet);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
if (!p.marker_bit) {
EXPECT_TRUE(fec_packets.empty());
} else {
packet[1] &= ~0x80;
}
ByteWriter<uint16_t>::WriteBigEndian(&packet[2], p.seq_num);
ulpfec_generator_.AddRtpPacketAndGenerateFec(
rtc::CopyOnWriteBuffer(packet, p.payload_size + p.header_size),
p.header_size);
size_t num_fec_packets = ulpfec_generator_.NumAvailableFecPackets();
if (num_fec_packets > 0) {
std::vector<std::unique_ptr<RedPacket>> fec_packets =
ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType,
kFecPayloadType, 100);
EXPECT_EQ(num_fec_packets, fec_packets.size());
EXPECT_FALSE(fec_packets.empty());
}
}
}
@ -113,24 +112,28 @@ TEST_F(UlpfecGeneratorTest, OneFrameFec) {
constexpr size_t kNumPackets = 4;
FecProtectionParams params = {15, 3, kFecMaskRandom};
packet_generator_.NewFrame(kNumPackets);
ulpfec_generator_.SetFecParameters(params); // Expecting one FEC packet.
// Expecting one FEC packet.
ulpfec_generator_.SetProtectionParameters(params, params);
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumPackets; ++i) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i, 10);
EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec(packet->data,
kRtpHeaderSize));
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
last_timestamp = packet->header.timestamp;
}
EXPECT_TRUE(ulpfec_generator_.FecAvailable());
const uint16_t seq_num = packet_generator_.NextPacketSeqNum();
std::vector<std::unique_ptr<RedPacket>> red_packets =
ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType,
seq_num);
EXPECT_FALSE(ulpfec_generator_.FecAvailable());
ASSERT_EQ(1u, red_packets.size());
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType,
red_packets.front().get(), false);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_EQ(fec_packets.size(), 1u);
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
fec_packets[0]->SetSequenceNumber(seq_num);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
EXPECT_EQ(fec_packets[0]->headers_size(), kRtpHeaderSize);
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false,
fec_packets[0]->Buffer());
}
TEST_F(UlpfecGeneratorTest, TwoFrameFec) {
@ -145,27 +148,27 @@ TEST_F(UlpfecGeneratorTest, TwoFrameFec) {
constexpr size_t kNumFrames = 2;
FecProtectionParams params = {15, 3, kFecMaskRandom};
ulpfec_generator_.SetFecParameters(params); // Expecting one FEC packet.
// Expecting one FEC packet.
ulpfec_generator_.SetProtectionParameters(params, params);
uint32_t last_timestamp = 0;
for (size_t i = 0; i < kNumFrames; ++i) {
packet_generator_.NewFrame(kNumPackets);
for (size_t j = 0; j < kNumPackets; ++j) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i * kNumPackets + j, 10);
EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec(
packet->data, kRtpHeaderSize));
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
last_timestamp = packet->header.timestamp;
}
}
EXPECT_TRUE(ulpfec_generator_.FecAvailable());
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_EQ(fec_packets.size(), 1u);
const uint16_t seq_num = packet_generator_.NextPacketSeqNum();
std::vector<std::unique_ptr<RedPacket>> red_packets =
ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType,
seq_num);
EXPECT_FALSE(ulpfec_generator_.FecAvailable());
ASSERT_EQ(1u, red_packets.size());
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType,
red_packets.front().get(), false);
fec_packets[0]->SetSequenceNumber(seq_num);
VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false,
fec_packets[0]->Buffer());
}
TEST_F(UlpfecGeneratorTest, MixedMediaRtpHeaderLengths) {
@ -174,34 +177,43 @@ TEST_F(UlpfecGeneratorTest, MixedMediaRtpHeaderLengths) {
// Only one frame required to generate FEC.
FecProtectionParams params = {127, 1, kFecMaskRandom};
ulpfec_generator_.SetFecParameters(params);
ulpfec_generator_.SetProtectionParameters(params, params);
// Fill up internal buffer with media packets with short RTP header length.
packet_generator_.NewFrame(kUlpfecMaxMediaPackets + 1);
for (size_t i = 0; i < kUlpfecMaxMediaPackets; ++i) {
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(i, 10);
EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec(
packet->data, kShortRtpHeaderLength));
EXPECT_FALSE(ulpfec_generator_.FecAvailable());
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
EXPECT_EQ(rtp_packet.headers_size(), kShortRtpHeaderLength);
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty());
}
// Kick off FEC generation with media packet with long RTP header length.
// Since the internal buffer is full, this packet will not be protected.
std::unique_ptr<AugmentedPacket> packet =
packet_generator_.NextPacket(kUlpfecMaxMediaPackets, 10);
EXPECT_EQ(0, ulpfec_generator_.AddRtpPacketAndGenerateFec(
packet->data, kLongRtpHeaderLength));
EXPECT_TRUE(ulpfec_generator_.FecAvailable());
RtpPacketToSend rtp_packet(nullptr);
EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size()));
EXPECT_TRUE(rtp_packet.SetPayloadSize(0) != nullptr);
const uint32_t csrcs[]{1};
rtp_packet.SetCsrcs(csrcs);
EXPECT_EQ(rtp_packet.headers_size(), kLongRtpHeaderLength);
ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet);
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets =
ulpfec_generator_.GetFecPackets();
EXPECT_FALSE(fec_packets.empty());
// Ensure that the RED header is placed correctly, i.e. the correct
// RTP header length was used in the RED packet creation.
const uint16_t seq_num = packet_generator_.NextPacketSeqNum();
std::vector<std::unique_ptr<RedPacket>> red_packets =
ulpfec_generator_.GetUlpfecPacketsAsRed(kRedPayloadType, kFecPayloadType,
seq_num);
for (const auto& red_packet : red_packets) {
EXPECT_EQ(kFecPayloadType, red_packet->data()[kShortRtpHeaderLength]);
uint16_t seq_num = packet_generator_.NextPacketSeqNum();
for (const auto& fec_packet : fec_packets) {
fec_packet->SetSequenceNumber(seq_num++);
EXPECT_EQ(kFecPayloadType, fec_packet->data()[kShortRtpHeaderLength]);
}
}