Unify the FillAudioEncoderTimeSeries with existing processing functions.

Use lambdas instead of function objects.

BUG=webrtc:7323

Review-Url: https://codereview.webrtc.org/2743933004
Cr-Commit-Position: refs/heads/master@{#17208}
This commit is contained in:
terelius
2017-03-13 05:24:05 -07:00
committed by Commit bot
parent 39e1289e64
commit 53dc23c28f
2 changed files with 208 additions and 186 deletions

View File

@ -132,128 +132,124 @@ constexpr float kRightMargin = 0.02f;
constexpr float kBottomMargin = 0.02f;
constexpr float kTopMargin = 0.05f;
class PacketSizeBytes {
public:
using DataType = LoggedRtpPacket;
using ResultType = size_t;
size_t operator()(const LoggedRtpPacket& packet) {
return packet.total_length;
}
};
class SequenceNumberDiff {
public:
using DataType = LoggedRtpPacket;
using ResultType = int64_t;
int64_t operator()(const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
return WrappingDifference(new_packet.header.sequenceNumber,
old_packet.header.sequenceNumber, 1ul << 16);
}
};
class NetworkDelayDiff {
public:
class AbsSendTime {
public:
using DataType = LoggedRtpPacket;
using ResultType = double;
double operator()(const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
if (old_packet.header.extension.hasAbsoluteSendTime &&
new_packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff = WrappingDifference(
new_packet.header.extension.absoluteSendTime,
old_packet.header.extension.absoluteSendTime, 1ul << 24);
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
return static_cast<double>(recv_time_diff -
AbsSendTimeToMicroseconds(send_time_diff)) /
1000;
} else {
return 0;
}
}
};
class CaptureTime {
public:
using DataType = LoggedRtpPacket;
using ResultType = double;
double operator()(const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
int64_t send_time_diff = WrappingDifference(
new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32);
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
const double kVideoSampleRate = 90000;
// TODO(terelius): We treat all streams as video for now, even though
// audio might be sampled at e.g. 16kHz, because it is really difficult to
// figure out the true sampling rate of a stream. The effect is that the
// delay will be scaled incorrectly for non-video streams.
double delay_change =
static_cast<double>(recv_time_diff) / 1000 -
static_cast<double>(send_time_diff) / kVideoSampleRate * 1000;
if (delay_change < -10000 || 10000 < delay_change) {
LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp
<< ", received time " << old_packet.timestamp;
LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp
<< ", received time " << new_packet.timestamp;
LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
<< static_cast<double>(recv_time_diff) / 1000000 << "s";
LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
<< static_cast<double>(send_time_diff) /
kVideoSampleRate
<< "s";
}
return delay_change;
}
};
};
template <typename Extractor>
class Accumulated {
public:
using DataType = typename Extractor::DataType;
using ResultType = typename Extractor::ResultType;
ResultType operator()(const DataType& old_packet,
const DataType& new_packet) {
sum += extract(old_packet, new_packet);
return sum;
}
private:
Extractor extract;
ResultType sum = 0;
};
// For each element in data, use |Extractor| to extract a y-coordinate and
// store the result in a TimeSeries.
template <typename Extractor>
void Pointwise(const std::vector<typename Extractor::DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
Extractor extract;
for (size_t i = 0; i < data.size(); i++) {
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
float y = extract(data[i]);
result->points.emplace_back(x, y);
rtc::Optional<double> NetworkDelayDiff_AbsSendTime(
const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
if (old_packet.header.extension.hasAbsoluteSendTime &&
new_packet.header.extension.hasAbsoluteSendTime) {
int64_t send_time_diff = WrappingDifference(
new_packet.header.extension.absoluteSendTime,
old_packet.header.extension.absoluteSendTime, 1ul << 24);
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
double delay_change_us =
recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff);
return rtc::Optional<double>(delay_change_us / 1000);
} else {
return rtc::Optional<double>();
}
}
// For each pair of adjacent elements in |data|, use |Extractor| to extract a
rtc::Optional<double> NetworkDelayDiff_CaptureTime(
const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
int64_t send_time_diff = WrappingDifference(
new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32);
int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp;
const double kVideoSampleRate = 90000;
// TODO(terelius): We treat all streams as video for now, even though
// audio might be sampled at e.g. 16kHz, because it is really difficult to
// figure out the true sampling rate of a stream. The effect is that the
// delay will be scaled incorrectly for non-video streams.
double delay_change =
static_cast<double>(recv_time_diff) / 1000 -
static_cast<double>(send_time_diff) / kVideoSampleRate * 1000;
if (delay_change < -10000 || 10000 < delay_change) {
LOG(LS_WARNING) << "Very large delay change. Timestamps correct?";
LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp
<< ", received time " << old_packet.timestamp;
LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp
<< ", received time " << new_packet.timestamp;
LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = "
<< static_cast<double>(recv_time_diff) / 1000000 << "s";
LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = "
<< static_cast<double>(send_time_diff) / kVideoSampleRate
<< "s";
}
return rtc::Optional<double>(delay_change);
}
// For each element in data, use |get_y()| to extract a y-coordinate and
// store the result in a TimeSeries.
template <typename DataType>
void ProcessPoints(
rtc::FunctionView<rtc::Optional<float>(const DataType&)> get_y,
const std::vector<DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
for (size_t i = 0; i < data.size(); i++) {
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
rtc::Optional<float> y = get_y(data[i]);
if (y)
result->points.emplace_back(x, *y);
}
}
// For each pair of adjacent elements in |data|, use |get_y| to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename Extractor>
void Pairwise(const std::vector<typename Extractor::DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
Extractor extract;
template <typename DataType, typename ResultType>
void ProcessPairs(
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&,
const DataType&)> get_y,
const std::vector<DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
for (size_t i = 1; i < data.size(); i++) {
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
float y = extract(data[i - 1], data[i]);
result->points.emplace_back(x, y);
rtc::Optional<ResultType> y = get_y(data[i - 1], data[i]);
if (y)
result->points.emplace_back(x, static_cast<float>(*y));
}
}
// For each element in data, use |extract()| to extract a y-coordinate and
// store the result in a TimeSeries.
template <typename DataType, typename ResultType>
void AccumulatePoints(
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract,
const std::vector<DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
ResultType sum = 0;
for (size_t i = 0; i < data.size(); i++) {
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
rtc::Optional<ResultType> y = extract(data[i]);
if (y) {
sum += *y;
result->points.emplace_back(x, static_cast<float>(sum));
}
}
}
// For each pair of adjacent elements in |data|, use |extract()| to extract a
// y-coordinate and store the result in a TimeSeries. Note that the x-coordinate
// will be the time of the second element in the pair.
template <typename DataType, typename ResultType>
void AccumulatePairs(
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&,
const DataType&)> extract,
const std::vector<DataType>& data,
uint64_t begin_time,
TimeSeries* result) {
ResultType sum = 0;
for (size_t i = 1; i < data.size(); i++) {
float x = static_cast<float>(data[i].timestamp - begin_time) / 1000000;
rtc::Optional<ResultType> y = extract(data[i - 1], data[i]);
if (y)
sum += *y;
result->points.emplace_back(x, static_cast<float>(sum));
}
}
@ -261,33 +257,37 @@ void Pairwise(const std::vector<typename Extractor::DataType>& data,
// A data point is generated every |step| microseconds from |begin_time|
// to |end_time|. The value of each data point is the average of the data
// during the preceeding |window_duration_us| microseconds.
template <typename Extractor>
void MovingAverage(const std::vector<typename Extractor::DataType>& data,
uint64_t begin_time,
uint64_t end_time,
uint64_t window_duration_us,
uint64_t step,
float y_scaling,
webrtc::plotting::TimeSeries* result) {
template <typename DataType, typename ResultType>
void MovingAverage(
rtc::FunctionView<rtc::Optional<ResultType>(const DataType&)> extract,
const std::vector<DataType>& data,
uint64_t begin_time,
uint64_t end_time,
uint64_t window_duration_us,
uint64_t step,
webrtc::plotting::TimeSeries* result) {
size_t window_index_begin = 0;
size_t window_index_end = 0;
typename Extractor::ResultType sum_in_window = 0;
Extractor extract;
ResultType sum_in_window = 0;
for (uint64_t t = begin_time; t < end_time + step; t += step) {
while (window_index_end < data.size() &&
data[window_index_end].timestamp < t) {
sum_in_window += extract(data[window_index_end]);
rtc::Optional<ResultType> value = extract(data[window_index_end]);
if (value)
sum_in_window += *value;
++window_index_end;
}
while (window_index_begin < data.size() &&
data[window_index_begin].timestamp < t - window_duration_us) {
sum_in_window -= extract(data[window_index_begin]);
rtc::Optional<ResultType> value = extract(data[window_index_begin]);
if (value)
sum_in_window -= *value;
++window_index_begin;
}
float window_duration_s = static_cast<float>(window_duration_us) / 1000000;
float x = static_cast<float>(t - begin_time) / 1000000;
float y = sum_in_window / window_duration_s * y_scaling;
float y = sum_in_window / window_duration_s;
result->points.emplace_back(x, y);
}
}
@ -561,21 +561,6 @@ std::string EventLogAnalyzer::GetStreamName(StreamId stream_id) const {
return name.str();
}
void EventLogAnalyzer::FillAudioEncoderTimeSeries(
Plot* plot,
rtc::FunctionView<rtc::Optional<float>(
const AudioNetworkAdaptationEvent& ana_event)> get_y) const {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
for (auto& ana_event : audio_network_adaptation_events_) {
rtc::Optional<float> y = get_y(ana_event);
if (y) {
float x = static_cast<float>(ana_event.timestamp - begin_time_) / 1000000;
plot->series_list_.back().points.emplace_back(x, *y);
}
}
}
void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
Plot* plot) {
for (auto& kv : rtp_packets_) {
@ -590,7 +575,11 @@ void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
TimeSeries time_series;
time_series.label = GetStreamName(stream_id);
time_series.style = BAR_GRAPH;
Pointwise<PacketSizeBytes>(packet_stream, begin_time_, &time_series);
ProcessPoints<LoggedRtpPacket>(
[](const LoggedRtpPacket& packet) -> rtc::Optional<float> {
return rtc::Optional<float>(packet.total_length);
},
packet_stream, begin_time_, &time_series);
plot->series_list_.push_back(std::move(time_series));
}
@ -736,7 +725,15 @@ void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
TimeSeries time_series;
time_series.label = GetStreamName(stream_id);
time_series.style = BAR_GRAPH;
Pairwise<SequenceNumberDiff>(packet_stream, begin_time_, &time_series);
ProcessPairs<LoggedRtpPacket, float>(
[](const LoggedRtpPacket& old_packet,
const LoggedRtpPacket& new_packet) {
int64_t diff =
WrappingDifference(new_packet.header.sequenceNumber,
old_packet.header.sequenceNumber, 1ul << 16);
return rtc::Optional<float>(diff);
},
packet_stream, begin_time_, &time_series);
plot->series_list_.push_back(std::move(time_series));
}
@ -820,15 +817,17 @@ void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) {
TimeSeries capture_time_data;
capture_time_data.label = GetStreamName(stream_id) + " capture-time";
capture_time_data.style = BAR_GRAPH;
Pairwise<NetworkDelayDiff::CaptureTime>(packet_stream, begin_time_,
&capture_time_data);
ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime,
packet_stream, begin_time_,
&capture_time_data);
plot->series_list_.push_back(std::move(capture_time_data));
TimeSeries send_time_data;
send_time_data.label = GetStreamName(stream_id) + " abs-send-time";
send_time_data.style = BAR_GRAPH;
Pairwise<NetworkDelayDiff::AbsSendTime>(packet_stream, begin_time_,
&send_time_data);
ProcessPairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime,
packet_stream, begin_time_,
&send_time_data);
plot->series_list_.push_back(std::move(send_time_data));
}
@ -853,15 +852,17 @@ void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) {
TimeSeries capture_time_data;
capture_time_data.label = GetStreamName(stream_id) + " capture-time";
capture_time_data.style = LINE_GRAPH;
Pairwise<Accumulated<NetworkDelayDiff::CaptureTime>>(
packet_stream, begin_time_, &capture_time_data);
AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_CaptureTime,
packet_stream, begin_time_,
&capture_time_data);
plot->series_list_.push_back(std::move(capture_time_data));
TimeSeries send_time_data;
send_time_data.label = GetStreamName(stream_id) + " abs-send-time";
send_time_data.style = LINE_GRAPH;
Pairwise<Accumulated<NetworkDelayDiff::AbsSendTime>>(
packet_stream, begin_time_, &send_time_data);
AccumulatePairs<LoggedRtpPacket, double>(NetworkDelayDiff_AbsSendTime,
packet_stream, begin_time_,
&send_time_data);
plot->series_list_.push_back(std::move(send_time_data));
}
@ -985,10 +986,12 @@ void EventLogAnalyzer::CreateStreamBitrateGraph(
TimeSeries time_series;
time_series.label = GetStreamName(stream_id);
time_series.style = LINE_GRAPH;
double bytes_to_kilobits = 8.0 / 1000;
MovingAverage<PacketSizeBytes>(packet_stream, begin_time_, end_time_,
window_duration_, step_, bytes_to_kilobits,
&time_series);
MovingAverage<LoggedRtpPacket, double>(
[](const LoggedRtpPacket& packet) {
return rtc::Optional<double>(packet.total_length * 8.0 / 1000.0);
},
packet_stream, begin_time_, end_time_, window_duration_, step_,
&time_series);
plot->series_list_.push_back(std::move(time_series));
}
@ -1289,28 +1292,36 @@ void EventLogAnalyzer::CreateTimestampGraph(Plot* plot) {
}
void EventLogAnalyzer::CreateAudioEncoderTargetBitrateGraph(Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder target bitrate";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) -> rtc::Optional<float> {
if (ana_event.config.bitrate_bps)
return rtc::Optional<float>(
static_cast<float>(*ana_event.config.bitrate_bps));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder target bitrate";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Bitrate (bps)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder target bitrate");
}
void EventLogAnalyzer::CreateAudioEncoderFrameLengthGraph(Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder frame length";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.frame_length_ms)
return rtc::Optional<float>(
static_cast<float>(*ana_event.config.frame_length_ms));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder frame length";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Frame length (ms)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder frame length");
@ -1318,14 +1329,18 @@ void EventLogAnalyzer::CreateAudioEncoderFrameLengthGraph(Plot* plot) {
void EventLogAnalyzer::CreateAudioEncoderUplinkPacketLossFractionGraph(
Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [&](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder uplink packet loss fraction";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.uplink_packet_loss_fraction)
return rtc::Optional<float>(static_cast<float>(
*ana_event.config.uplink_packet_loss_fraction));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder uplink packet loss fraction";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin,
kTopMargin);
@ -1333,42 +1348,54 @@ void EventLogAnalyzer::CreateAudioEncoderUplinkPacketLossFractionGraph(
}
void EventLogAnalyzer::CreateAudioEncoderEnableFecGraph(Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [&](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder FEC";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.enable_fec)
return rtc::Optional<float>(
static_cast<float>(*ana_event.config.enable_fec));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder FEC";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "FEC (false/true)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder FEC");
}
void EventLogAnalyzer::CreateAudioEncoderEnableDtxGraph(Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [&](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder DTX";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.enable_dtx)
return rtc::Optional<float>(
static_cast<float>(*ana_event.config.enable_dtx));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder DTX";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "DTX (false/true)", kBottomMargin, kTopMargin);
plot->SetTitle("Reported audio encoder DTX");
}
void EventLogAnalyzer::CreateAudioEncoderNumChannelsGraph(Plot* plot) {
FillAudioEncoderTimeSeries(
plot, [&](const AudioNetworkAdaptationEvent& ana_event) {
plot->series_list_.push_back(TimeSeries());
plot->series_list_.back().style = LINE_DOT_GRAPH;
plot->series_list_.back().label = "Audio encoder number of channels";
ProcessPoints<AudioNetworkAdaptationEvent>(
[](const AudioNetworkAdaptationEvent& ana_event) {
if (ana_event.config.num_channels)
return rtc::Optional<float>(
static_cast<float>(*ana_event.config.num_channels));
return rtc::Optional<float>();
});
plot->series_list_.back().label = "Audio encoder number of channels";
},
audio_network_adaptation_events_, begin_time_,
&plot->series_list_.back());
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
plot->SetSuggestedYAxis(0, 1, "Number of channels (1 (mono)/2 (stereo))",
kBottomMargin, kTopMargin);

View File

@ -140,11 +140,6 @@ class EventLogAnalyzer {
std::string GetStreamName(StreamId) const;
void FillAudioEncoderTimeSeries(
Plot* plot,
rtc::FunctionView<rtc::Optional<float>(
const AudioNetworkAdaptationEvent& ana_event)> get_y) const;
const ParsedRtcEventLog& parsed_log_;
// A list of SSRCs we are interested in analysing.