Use newer version of TimeDelta and TimeStamp factories in modules/
This change generated with following commands: find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::Micros<\(.*\)>()/TimeDelta::Micros(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::Millis<\(.*\)>()/TimeDelta::Millis(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::Seconds<\(.*\)>()/TimeDelta::Seconds(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::us/TimeDelta::Micros/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::ms/TimeDelta::Millis/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/TimeDelta::seconds/TimeDelta::Seconds/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::Micros<\(.*\)>()/Timestamp::Micros(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::Millis<\(.*\)>()/Timestamp::Millis(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::Seconds<\(.*\)>()/Timestamp::Seconds(\1)/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::us/Timestamp::Micros/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::ms/Timestamp::Millis/g" find modules -type f \( -name "*.h" -o -name "*.cc" \) | xargs sed -i -e "s/Timestamp::seconds/Timestamp::Seconds/g" git cl format Bug: None Change-Id: I117d64a54950be040d996035c54bc0043310943a Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168340 Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Commit-Queue: Danil Chapovalov <danilchap@webrtc.org> Cr-Commit-Position: refs/heads/master@{#30489}
This commit is contained in:
committed by
Commit Bot
parent
2fe31a47b6
commit
5528402ef8
@ -113,7 +113,7 @@ class ScreenshareLayerTest : public ::testing::Test {
|
||||
|
||||
Vp8FrameConfig NextFrameConfig(size_t stream_index, uint32_t timestamp) {
|
||||
int64_t timestamp_ms = timestamp / 90;
|
||||
clock_.AdvanceTime(TimeDelta::ms(timestamp_ms - rtc::TimeMillis()));
|
||||
clock_.AdvanceTime(TimeDelta::Millis(timestamp_ms - rtc::TimeMillis()));
|
||||
return layers_->NextFrameConfig(stream_index, timestamp);
|
||||
}
|
||||
|
||||
@ -563,7 +563,7 @@ TEST_F(ScreenshareLayerTest, UpdatesHistograms) {
|
||||
} else {
|
||||
RTC_NOTREACHED() << "Unexpected flags";
|
||||
}
|
||||
clock_.AdvanceTime(TimeDelta::ms(1000 / 5));
|
||||
clock_.AdvanceTime(TimeDelta::Millis(1000 / 5));
|
||||
}
|
||||
|
||||
EXPECT_TRUE(overshoot);
|
||||
@ -626,7 +626,7 @@ TEST_F(ScreenshareLayerTest, RespectsConfiguredFramerate) {
|
||||
IgnoredCodecSpecificInfo());
|
||||
}
|
||||
timestamp += kFrameIntervalsMs * 90;
|
||||
clock_.AdvanceTime(TimeDelta::ms(kFrameIntervalsMs));
|
||||
clock_.AdvanceTime(TimeDelta::Millis(kFrameIntervalsMs));
|
||||
|
||||
++num_input_frames;
|
||||
}
|
||||
@ -644,7 +644,7 @@ TEST_F(ScreenshareLayerTest, RespectsConfiguredFramerate) {
|
||||
IgnoredCodecSpecificInfo());
|
||||
}
|
||||
timestamp += kFrameIntervalsMs * 90 / 2;
|
||||
clock_.AdvanceTime(TimeDelta::ms(kFrameIntervalsMs));
|
||||
clock_.AdvanceTime(TimeDelta::Millis(kFrameIntervalsMs));
|
||||
++num_input_frames;
|
||||
}
|
||||
|
||||
|
||||
@ -92,7 +92,7 @@ void FrameBuffer::StartWaitForNextFrameOnQueue() {
|
||||
RTC_DCHECK(!callback_task_.Running());
|
||||
int64_t wait_ms = FindNextFrame(clock_->TimeInMilliseconds());
|
||||
callback_task_ = RepeatingTaskHandle::DelayedStart(
|
||||
callback_queue_->Get(), TimeDelta::ms(wait_ms), [this] {
|
||||
callback_queue_->Get(), TimeDelta::Millis(wait_ms), [this] {
|
||||
// If this task has not been cancelled, we did not get any new frames
|
||||
// while waiting. Continue with frame delivery.
|
||||
rtc::CritScope lock(&crit_);
|
||||
@ -111,7 +111,7 @@ void FrameBuffer::StartWaitForNextFrameOnQueue() {
|
||||
// means that the frame buffer was cleared between creation and
|
||||
// execution of this task. Continue waiting for the remaining time.
|
||||
int64_t wait_ms = FindNextFrame(clock_->TimeInMilliseconds());
|
||||
return TimeDelta::ms(wait_ms);
|
||||
return TimeDelta::Millis(wait_ms);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@ -135,7 +135,7 @@ class TestFrameBuffer2 : public ::testing::Test {
|
||||
|
||||
TestFrameBuffer2()
|
||||
: trial_("WebRTC-AddRttToPlayoutDelay/Enabled/"),
|
||||
time_controller_(Timestamp::seconds(0)),
|
||||
time_controller_(Timestamp::Seconds(0)),
|
||||
time_task_queue_(
|
||||
time_controller_.GetTaskQueueFactory()->CreateTaskQueue(
|
||||
"extract queue",
|
||||
@ -206,7 +206,7 @@ class TestFrameBuffer2 : public ::testing::Test {
|
||||
});
|
||||
});
|
||||
if (max_wait_time == 0) {
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(0));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(0));
|
||||
}
|
||||
}
|
||||
|
||||
@ -256,7 +256,7 @@ TEST_F(TestFrameBuffer2, WaitForFrame) {
|
||||
|
||||
ExtractFrame(50);
|
||||
InsertFrame(pid, 0, ts, false, true, kFrameSize);
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(50));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(50));
|
||||
CheckFrame(0, pid, 0);
|
||||
}
|
||||
|
||||
@ -293,7 +293,7 @@ TEST_F(TestFrameBuffer2, DISABLED_OneUnorderedSuperFrame) {
|
||||
ExtractFrame(50);
|
||||
InsertFrame(pid, 1, ts, true, true, kFrameSize);
|
||||
InsertFrame(pid, 0, ts, false, false, kFrameSize);
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(0));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(0));
|
||||
|
||||
CheckFrame(0, pid, 0);
|
||||
CheckFrame(1, pid, 1);
|
||||
@ -310,10 +310,10 @@ TEST_F(TestFrameBuffer2, DISABLED_OneLayerStreamReordered) {
|
||||
ExtractFrame(50);
|
||||
InsertFrame(pid + i + 1, 0, ts + (i + 1) * kFps10, false, true, kFrameSize,
|
||||
pid + i);
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(kFps10));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
|
||||
InsertFrame(pid + i, 0, ts + i * kFps10, false, true, kFrameSize,
|
||||
pid + i - 1);
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(kFps10));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
|
||||
ExtractFrame();
|
||||
CheckFrame(i, pid + i, 0);
|
||||
CheckFrame(i + 1, pid + i + 1, 0);
|
||||
@ -352,7 +352,7 @@ TEST_F(TestFrameBuffer2, OneLayerStream) {
|
||||
InsertFrame(pid + i, 0, ts + i * kFps10, false, true, kFrameSize,
|
||||
pid + i - 1);
|
||||
ExtractFrame();
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(kFps10));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(kFps10));
|
||||
CheckFrame(i, pid + i, 0);
|
||||
}
|
||||
}
|
||||
@ -374,7 +374,7 @@ TEST_F(TestFrameBuffer2, DropTemporalLayerSlowDecoder) {
|
||||
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
ExtractFrame();
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(70));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(70));
|
||||
}
|
||||
|
||||
CheckFrame(0, pid, 0);
|
||||
@ -400,7 +400,7 @@ TEST_F(TestFrameBuffer2, DropFramesIfSystemIsStalled) {
|
||||
|
||||
ExtractFrame();
|
||||
// Jump forward in time, simulating the system being stalled for some reason.
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(3) * kFps10);
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(3) * kFps10);
|
||||
// Extract one more frame, expect second and third frame to be dropped.
|
||||
EXPECT_CALL(stats_callback_, OnDroppedFrames(2)).Times(1);
|
||||
ExtractFrame();
|
||||
@ -683,7 +683,7 @@ TEST_F(TestFrameBuffer2, HigherSpatialLayerNonDecodable) {
|
||||
InsertFrame(pid + 2, 0, ts + kFps10, false, false, kFrameSize, pid);
|
||||
InsertFrame(pid + 2, 1, ts + kFps10, true, true, kFrameSize, pid + 1);
|
||||
|
||||
time_controller_.AdvanceTime(TimeDelta::ms(1000));
|
||||
time_controller_.AdvanceTime(TimeDelta::Millis(1000));
|
||||
// Frame pid+1 is decodable but too late.
|
||||
// In superframe pid+2 frame sid=0 is decodable, but frame sid=1 is not.
|
||||
// Incorrect implementation might skip pid+1 frame and output undecodable
|
||||
|
||||
@ -65,11 +65,11 @@ NackModule::BackoffSettings::BackoffSettings(TimeDelta min_retry,
|
||||
absl::optional<NackModule::BackoffSettings>
|
||||
NackModule::BackoffSettings::ParseFromFieldTrials() {
|
||||
// Matches magic number in RTPSender::OnReceivedNack().
|
||||
const TimeDelta kDefaultMinRetryInterval = TimeDelta::ms(5);
|
||||
const TimeDelta kDefaultMinRetryInterval = TimeDelta::Millis(5);
|
||||
// Upper bound on link-delay considered for exponential backoff.
|
||||
// Selected so that cumulative delay with 1.25 base and 10 retries ends up
|
||||
// below 3s, since above that there will be a FIR generated instead.
|
||||
const TimeDelta kDefaultMaxRtt = TimeDelta::ms(160);
|
||||
const TimeDelta kDefaultMaxRtt = TimeDelta::Millis(160);
|
||||
// Default base for exponential backoff, adds 25% RTT delay for each retry.
|
||||
const double kDefaultBase = 1.25;
|
||||
|
||||
@ -296,13 +296,13 @@ std::vector<uint16_t> NackModule::GetNackBatch(NackFilterOptions options) {
|
||||
std::vector<uint16_t> nack_batch;
|
||||
auto it = nack_list_.begin();
|
||||
while (it != nack_list_.end()) {
|
||||
TimeDelta resend_delay = TimeDelta::ms(rtt_ms_);
|
||||
TimeDelta resend_delay = TimeDelta::Millis(rtt_ms_);
|
||||
if (backoff_settings_) {
|
||||
resend_delay =
|
||||
std::max(resend_delay, backoff_settings_->min_retry_interval);
|
||||
if (it->second.retries > 1) {
|
||||
TimeDelta exponential_backoff =
|
||||
std::min(TimeDelta::ms(rtt_ms_), backoff_settings_->max_rtt) *
|
||||
std::min(TimeDelta::Millis(rtt_ms_), backoff_settings_->max_rtt) *
|
||||
std::pow(backoff_settings_->base, it->second.retries - 1);
|
||||
resend_delay = std::max(resend_delay, exponential_backoff);
|
||||
}
|
||||
|
||||
@ -184,12 +184,12 @@ TEST_P(TestNackModule, ResendNack) {
|
||||
const double b = GetParam() ? 1.25 : 1.0;
|
||||
for (int i = 2; i < 10; ++i) {
|
||||
// Change RTT, above the 40ms max for exponential backoff.
|
||||
TimeDelta rtt = TimeDelta::ms(160); // + (i * 10 - 40)
|
||||
TimeDelta rtt = TimeDelta::Millis(160); // + (i * 10 - 40)
|
||||
nack_module_.UpdateRtt(rtt.ms());
|
||||
|
||||
// RTT gets capped at 160ms in backoff calculations.
|
||||
TimeDelta expected_backoff_delay =
|
||||
std::pow(b, i - 1) * std::min(rtt, TimeDelta::ms(160));
|
||||
std::pow(b, i - 1) * std::min(rtt, TimeDelta::Millis(160));
|
||||
|
||||
// Move to one millisecond before next allowed NACK.
|
||||
clock_->AdvanceTimeMilliseconds(expected_backoff_delay.ms() - 1);
|
||||
|
||||
@ -104,9 +104,10 @@ QualityScaler::QualityScaler(AdaptationObserverInterface* observer,
|
||||
}
|
||||
RTC_DCHECK(observer_ != nullptr);
|
||||
check_qp_task_ = RepeatingTaskHandle::DelayedStart(
|
||||
TaskQueueBase::Current(), TimeDelta::ms(GetSamplingPeriodMs()), [this]() {
|
||||
TaskQueueBase::Current(), TimeDelta::Millis(GetSamplingPeriodMs()),
|
||||
[this]() {
|
||||
CheckQp();
|
||||
return TimeDelta::ms(GetSamplingPeriodMs());
|
||||
return TimeDelta::Millis(GetSamplingPeriodMs());
|
||||
});
|
||||
RTC_LOG(LS_INFO) << "QP thresholds: low: " << thresholds_.low
|
||||
<< ", high: " << thresholds_.high;
|
||||
|
||||
Reference in New Issue
Block a user