Optimize ComputeFrequencyResponse().

Reducing pointer following. This will allow the compiler to optimize more efficiently with the "-fno-strict-aliasing" flag.

Bug: None
Change-Id: Ib1fd3a1cf3f89471b0ec87404650a6061eec5e2d
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/237782
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Commit-Queue: Christian Schuldt <cschuldt@google.com>
Cr-Commit-Position: refs/heads/main@{#35374}
This commit is contained in:
cschuldt
2021-11-15 11:00:07 +01:00
committed by WebRTC LUCI CQ
parent 7500552a8f
commit 6002b15cd1
2 changed files with 27 additions and 21 deletions

View File

@ -68,19 +68,21 @@ void ComputeFrequencyResponse_Neon(
RTC_DCHECK_EQ(H.size(), H2->capacity());
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 4) {
const float32x4_t re = vld1q_f32(&H[p][ch].re[j]);
const float32x4_t im = vld1q_f32(&H[p][ch].im[j]);
const float32x4_t re = vld1q_f32(&H_p_ch.re[j]);
const float32x4_t im = vld1q_f32(&H_p_ch.im[j]);
float32x4_t H2_new = vmulq_f32(re, re);
H2_new = vmlaq_f32(H2_new, im, im);
float32x4_t H2_p_j = vld1q_f32(&(*H2)[p][j]);
float32x4_t H2_p_j = vld1q_f32(&H2_p[j]);
H2_p_j = vmaxq_f32(H2_p_j, H2_new);
vst1q_f32(&(*H2)[p][j], H2_p_j);
vst1q_f32(&H2_p[j], H2_p_j);
}
float H2_new = H[p][ch].re[kFftLengthBy2] * H[p][ch].re[kFftLengthBy2] +
H[p][ch].im[kFftLengthBy2] * H[p][ch].im[kFftLengthBy2];
(*H2)[p][kFftLengthBy2] = std::max((*H2)[p][kFftLengthBy2], H2_new);
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}
@ -101,20 +103,22 @@ void ComputeFrequencyResponse_Sse2(
// constexpr __mmmask8 kMaxMask = static_cast<__mmmask8>(256u);
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 4) {
const __m128 re = _mm_loadu_ps(&H[p][ch].re[j]);
const __m128 re = _mm_loadu_ps(&H_p_ch.re[j]);
const __m128 re2 = _mm_mul_ps(re, re);
const __m128 im = _mm_loadu_ps(&H[p][ch].im[j]);
const __m128 im = _mm_loadu_ps(&H_p_ch.im[j]);
const __m128 im2 = _mm_mul_ps(im, im);
const __m128 H2_new = _mm_add_ps(re2, im2);
__m128 H2_k_j = _mm_loadu_ps(&(*H2)[p][j]);
__m128 H2_k_j = _mm_loadu_ps(&H2_p[j]);
H2_k_j = _mm_max_ps(H2_k_j, H2_new);
_mm_storeu_ps(&(*H2)[p][j], H2_k_j);
_mm_storeu_ps(&H2_p[j], H2_k_j);
}
float H2_new = H[p][ch].re[kFftLengthBy2] * H[p][ch].re[kFftLengthBy2] +
H[p][ch].im[kFftLengthBy2] * H[p][ch].im[kFftLengthBy2];
(*H2)[p][kFftLengthBy2] = std::max((*H2)[p][kFftLengthBy2], H2_new);
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}

View File

@ -31,19 +31,21 @@ void ComputeFrequencyResponse_Avx2(
RTC_DCHECK_EQ(H.size(), H2->capacity());
for (size_t p = 0; p < num_partitions; ++p) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, (*H2)[p].size());
auto& H2_p = (*H2)[p];
for (size_t ch = 0; ch < num_render_channels; ++ch) {
const FftData& H_p_ch = H[p][ch];
for (size_t j = 0; j < kFftLengthBy2; j += 8) {
__m256 re = _mm256_loadu_ps(&H[p][ch].re[j]);
__m256 re = _mm256_loadu_ps(&H_p_ch.re[j]);
__m256 re2 = _mm256_mul_ps(re, re);
__m256 im = _mm256_loadu_ps(&H[p][ch].im[j]);
__m256 im = _mm256_loadu_ps(&H_p_ch.im[j]);
re2 = _mm256_fmadd_ps(im, im, re2);
__m256 H2_k_j = _mm256_loadu_ps(&(*H2)[p][j]);
__m256 H2_k_j = _mm256_loadu_ps(&H2_p[j]);
H2_k_j = _mm256_max_ps(H2_k_j, re2);
_mm256_storeu_ps(&(*H2)[p][j], H2_k_j);
_mm256_storeu_ps(&H2_p[j], H2_k_j);
}
float H2_new = H[p][ch].re[kFftLengthBy2] * H[p][ch].re[kFftLengthBy2] +
H[p][ch].im[kFftLengthBy2] * H[p][ch].im[kFftLengthBy2];
(*H2)[p][kFftLengthBy2] = std::max((*H2)[p][kFftLengthBy2], H2_new);
float H2_new = H_p_ch.re[kFftLengthBy2] * H_p_ch.re[kFftLengthBy2] +
H_p_ch.im[kFftLengthBy2] * H_p_ch.im[kFftLengthBy2];
H2_p[kFftLengthBy2] = std::max(H2_p[kFftLengthBy2], H2_new);
}
}
}