Add helper functions to convert between integer milliseconds and fixed-point seconds.

This change adds the following helper functions to convert between "integer milliseconds"-style timestamps and durations, and "UQ32.32 and Q32.32"-style NTP timestamps and durations:
- Int64MsToQ32x32
- UInt64MsToUQ32x32
- Q32x32ToInt64Ms
- UQ32x32ToUInt64Ms

The Q-format NTP timestamps and durations are used by some RTP/RTCP packets.

Bug: webrtc:10739
Change-Id: I89123d2dba7370f26e239d722a4975bf5ac6e668
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/148444
Commit-Queue: Chen Xing <chxg@google.com>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#28878}
This commit is contained in:
Chen Xing
2019-08-16 16:00:30 +02:00
committed by Commit Bot
parent 2b9fa09fa3
commit 6094953ed1
2 changed files with 270 additions and 3 deletions

View File

@ -10,7 +10,9 @@
#ifndef SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_ #ifndef SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_
#define SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_ #define SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_
#include <stdint.h> #include <cmath>
#include <cstdint>
#include <limits>
#include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/safe_conversions.h"
@ -60,5 +62,55 @@ inline bool operator!=(const NtpTime& n1, const NtpTime& n2) {
return !(n1 == n2); return !(n1 == n2);
} }
// Converts |int64_t| milliseconds to Q32.32-formatted fixed-point seconds.
// Performs clamping if the result overflows or underflows.
inline int64_t Int64MsToQ32x32(int64_t milliseconds) {
// TODO(bugs.webrtc.org/10893): Change to use |rtc::saturated_cast| once the
// bug has been fixed.
double result =
std::round(milliseconds * (NtpTime::kFractionsPerSecond / 1000.0));
if (result <= std::numeric_limits<int64_t>::min()) {
return std::numeric_limits<int64_t>::min();
}
if (result >= std::numeric_limits<int64_t>::max()) {
return std::numeric_limits<int64_t>::max();
}
return rtc::dchecked_cast<int64_t>(result);
}
// Converts |int64_t| milliseconds to UQ32.32-formatted fixed-point seconds.
// Performs clamping if the result overflows or underflows.
inline uint64_t Int64MsToUQ32x32(int64_t milliseconds) {
// TODO(bugs.webrtc.org/10893): Change to use |rtc::saturated_cast| once the
// bug has been fixed.
double result =
std::round(milliseconds * (NtpTime::kFractionsPerSecond / 1000.0));
if (result <= std::numeric_limits<uint64_t>::min()) {
return std::numeric_limits<uint64_t>::min();
}
if (result >= std::numeric_limits<uint64_t>::max()) {
return std::numeric_limits<uint64_t>::max();
}
return rtc::dchecked_cast<uint64_t>(result);
}
// Converts Q32.32-formatted fixed-point seconds to |int64_t| milliseconds.
inline int64_t Q32x32ToInt64Ms(int64_t q32x32) {
return rtc::dchecked_cast<int64_t>(
std::round(q32x32 * (1000.0 / NtpTime::kFractionsPerSecond)));
}
// Converts UQ32.32-formatted fixed-point seconds to |int64_t| milliseconds.
inline int64_t UQ32x32ToInt64Ms(uint64_t q32x32) {
return rtc::dchecked_cast<int64_t>(
std::round(q32x32 * (1000.0 / NtpTime::kFractionsPerSecond)));
}
} // namespace webrtc } // namespace webrtc
#endif // SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_ #endif // SYSTEM_WRAPPERS_INCLUDE_NTP_TIME_H_

View File

@ -10,14 +10,19 @@
#include "system_wrappers/include/ntp_time.h" #include "system_wrappers/include/ntp_time.h"
#include <random>
#include "system_wrappers/include/clock.h" #include "system_wrappers/include/clock.h"
#include "test/gtest.h" #include "test/gtest.h"
namespace webrtc { namespace webrtc {
namespace { namespace {
const uint32_t kNtpSec = 0x12345678; constexpr uint32_t kNtpSec = 0x12345678;
const uint32_t kNtpFrac = 0x23456789; constexpr uint32_t kNtpFrac = 0x23456789;
constexpr int64_t kOneSecQ32x32 = uint64_t{1} << 32;
constexpr int64_t kOneMsQ32x32 = 4294967;
TEST(NtpTimeTest, NoValueMeansInvalid) { TEST(NtpTimeTest, NoValueMeansInvalid) {
NtpTime ntp; NtpTime ntp;
@ -62,5 +67,215 @@ TEST(NtpTimeTest, CanExplicitlyConvertToAndFromUint64) {
EXPECT_EQ(NtpTime(0x12345678, 0x90abcdef), NtpTime(0x1234567890abcdef)); EXPECT_EQ(NtpTime(0x12345678, 0x90abcdef), NtpTime(0x1234567890abcdef));
} }
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearZero) {
// Zero
EXPECT_EQ(Int64MsToQ32x32(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(1), kOneMsQ32x32);
// Zero - 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(-1), -kOneMsQ32x32);
// Zero + 1 second
EXPECT_EQ(Int64MsToQ32x32(1000), kOneSecQ32x32);
// Zero - 1 second
EXPECT_EQ(Int64MsToQ32x32(-1000), -kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32NearZero) {
// Zero
EXPECT_EQ(Int64MsToUQ32x32(0), uint64_t{0});
// Zero + 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(1), uint64_t{kOneMsQ32x32});
// Zero - 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(-1), uint64_t{0}); // Clamped
// Zero + 1 second
EXPECT_EQ(Int64MsToUQ32x32(1000), uint64_t{kOneSecQ32x32});
// Zero - 1 second
EXPECT_EQ(Int64MsToUQ32x32(-1000), uint64_t{0}); // Clamped
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearZero) {
// Zero
EXPECT_EQ(Q32x32ToInt64Ms(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kOneMsQ32x32), 1);
// Zero - 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(-kOneMsQ32x32), -1);
// Zero + 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kOneSecQ32x32), 1000);
// Zero - 1 second
EXPECT_EQ(Q32x32ToInt64Ms(-kOneSecQ32x32), -1000);
}
TEST(NtpTimeTest, VerifyUQ32x32ToInt64MsNearZero) {
// Zero
EXPECT_EQ(UQ32x32ToInt64Ms(0), 0);
// Zero + 1 millisecond
EXPECT_EQ(UQ32x32ToInt64Ms(kOneMsQ32x32), 1);
// Zero + 1 second
EXPECT_EQ(UQ32x32ToInt64Ms(kOneSecQ32x32), 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearMax) {
constexpr int64_t kMaxQ32x32 = std::numeric_limits<int64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxQ32x32 >> 32) * 1000 + 999;
// Max
const int64_t boundary_q32x32 = Int64MsToQ32x32(kBoundaryMs);
EXPECT_LE(boundary_q32x32, kMaxQ32x32);
EXPECT_GT(boundary_q32x32, kMaxQ32x32 - kOneMsQ32x32);
// Max + 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1), kMaxQ32x32); // Clamped
// Max - 1 millisecond
EXPECT_LE(Int64MsToQ32x32(kBoundaryMs - 1), kMaxQ32x32 - kOneMsQ32x32);
// Max + 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1000), kMaxQ32x32); // Clamped
// Max - 1 second
EXPECT_LE(Int64MsToQ32x32(kBoundaryMs - 1000), kMaxQ32x32 - kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32NearMax) {
constexpr uint64_t kMaxUQ32x32 = std::numeric_limits<uint64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxUQ32x32 >> 32) * 1000 + 999;
// Max
const uint64_t boundary_uq32x32 = Int64MsToUQ32x32(kBoundaryMs);
EXPECT_LE(boundary_uq32x32, kMaxUQ32x32);
EXPECT_GT(boundary_uq32x32, kMaxUQ32x32 - kOneMsQ32x32);
// Max + 1 millisecond
EXPECT_EQ(Int64MsToUQ32x32(kBoundaryMs + 1), kMaxUQ32x32); // Clamped
// Max - 1 millisecond
EXPECT_LE(Int64MsToUQ32x32(kBoundaryMs - 1), kMaxUQ32x32 - kOneMsQ32x32);
// Max + 1 second
EXPECT_EQ(Int64MsToUQ32x32(kBoundaryMs + 1000), kMaxUQ32x32); // Clamped
// Max - 1 second
EXPECT_LE(Int64MsToUQ32x32(kBoundaryMs - 1000), kMaxUQ32x32 - kOneSecQ32x32);
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearMax) {
constexpr int64_t kMaxQ32x32 = std::numeric_limits<int64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxQ32x32 >> 32) * 1000 + 1000;
// Max
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32), kBoundaryMs);
// Max - 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32 - kOneMsQ32x32), kBoundaryMs - 1);
// Max - 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kMaxQ32x32 - kOneSecQ32x32), kBoundaryMs - 1000);
}
TEST(NtpTimeTest, VerifyUQ32x32ToInt64MsNearMax) {
constexpr uint64_t kMaxUQ32x32 = std::numeric_limits<uint64_t>::max();
constexpr int64_t kBoundaryMs = (kMaxUQ32x32 >> 32) * 1000 + 1000;
// Max
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32), kBoundaryMs);
// Max - 1 millisecond
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32 - kOneMsQ32x32), kBoundaryMs - 1);
// Max - 1 second
EXPECT_EQ(UQ32x32ToInt64Ms(kMaxUQ32x32 - kOneSecQ32x32), kBoundaryMs - 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32NearMin) {
constexpr int64_t kBoundaryQ32x32 = 0x8000000000000000;
constexpr int64_t kBoundaryMs = -int64_t{0x80000000} * 1000;
// Min
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs), kBoundaryQ32x32);
// Min + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(Int64MsToQ32x32(kBoundaryMs + 1)), kBoundaryMs + 1);
// Min - 1 millisecond
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs - 1), kBoundaryQ32x32); // Clamped
// Min + 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs + 1000),
kBoundaryQ32x32 + kOneSecQ32x32);
// Min - 1 second
EXPECT_EQ(Int64MsToQ32x32(kBoundaryMs - 1000), kBoundaryQ32x32); // Clamped
}
TEST(NtpTimeTest, VerifyQ32x32ToInt64MsNearMin) {
constexpr int64_t kBoundaryQ32x32 = 0x8000000000000000;
constexpr int64_t kBoundaryMs = -int64_t{0x80000000} * 1000;
// Min
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32), kBoundaryMs);
// Min + 1 millisecond
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32 + kOneMsQ32x32), kBoundaryMs + 1);
// Min + 1 second
EXPECT_EQ(Q32x32ToInt64Ms(kBoundaryQ32x32 + kOneSecQ32x32),
kBoundaryMs + 1000);
}
TEST(NtpTimeTest, VerifyInt64MsToQ32x32RoundTrip) {
constexpr int kIterations = 50000;
std::mt19937 generator(123456789);
std::uniform_int_distribution<int64_t> distribution(
Q32x32ToInt64Ms(std::numeric_limits<int64_t>::min()),
Q32x32ToInt64Ms(std::numeric_limits<int64_t>::max()));
for (int iteration = 0; iteration < kIterations; ++iteration) {
int64_t input_ms = distribution(generator);
int64_t transit_q32x32 = Int64MsToQ32x32(input_ms);
int64_t output_ms = Q32x32ToInt64Ms(transit_q32x32);
ASSERT_EQ(input_ms, output_ms)
<< "iteration = " << iteration << ", input_ms = " << input_ms
<< ", transit_q32x32 = " << transit_q32x32
<< ", output_ms = " << output_ms;
}
}
TEST(NtpTimeTest, VerifyInt64MsToUQ32x32RoundTrip) {
constexpr int kIterations = 50000;
std::mt19937 generator(123456789);
std::uniform_int_distribution<uint64_t> distribution(
UQ32x32ToInt64Ms(std::numeric_limits<uint64_t>::min()),
UQ32x32ToInt64Ms(std::numeric_limits<uint64_t>::max()));
for (int iteration = 0; iteration < kIterations; ++iteration) {
uint64_t input_ms = distribution(generator);
uint64_t transit_uq32x32 = Int64MsToUQ32x32(input_ms);
uint64_t output_ms = UQ32x32ToInt64Ms(transit_uq32x32);
ASSERT_EQ(input_ms, output_ms)
<< "iteration = " << iteration << ", input_ms = " << input_ms
<< ", transit_uq32x32 = " << transit_uq32x32
<< ", output_ms = " << output_ms;
}
}
} // namespace } // namespace
} // namespace webrtc } // namespace webrtc