Remove deprecated legacy AEC code

This CL removes the deprecated legacy AEC code.

Note that this CL should not be landed before the M80 release has been cut.

Bug: webrtc:11165
Change-Id: I59ee94526e62f702bb9fa9fa2d38c4e48f44753c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/161238
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30036}
This commit is contained in:
Per Åhgren
2019-12-09 10:18:44 +01:00
committed by Commit Bot
parent 5b030cabcc
commit 62ea0aaea0
38 changed files with 31 additions and 8261 deletions

View File

@ -473,7 +473,6 @@ bool WebRtcVoiceEngine::ApplyOptions(const AudioOptions& options_in) {
if (options.echo_cancellation) {
apm_config.echo_canceller.enabled = *options.echo_cancellation;
apm_config.echo_canceller.mobile_mode = use_mobile_software_aec;
apm_config.echo_canceller.legacy_moderate_suppression_level = false;
}
if (options.auto_gain_control) {

View File

@ -11,13 +11,6 @@ if (rtc_enable_protobuf) {
import("//third_party/protobuf/proto_library.gni")
}
declare_args() {
# Disables the usual mode where we trust the reported system delay
# values the AEC receives. The corresponding define is set appropriately
# in the code, but it can be force-enabled here for testing.
aec_untrusted_delay_for_testing = false
}
config("apm_debug_dump") {
if (apm_debug_dump) {
defines = [ "WEBRTC_APM_DEBUG_DUMP=1" ]
@ -112,8 +105,6 @@ rtc_library("audio_processing") {
"audio_processing_impl.cc",
"audio_processing_impl.h",
"common.h",
"echo_cancellation_impl.cc",
"echo_cancellation_impl.h",
"echo_control_mobile_impl.cc",
"echo_control_mobile_impl.h",
"echo_detector/circular_buffer.cc",
@ -187,8 +178,6 @@ rtc_library("audio_processing") {
"../../system_wrappers:cpu_features_api",
"../../system_wrappers:field_trial",
"../../system_wrappers:metrics",
"aec",
"aec:aec_core",
"aec3",
"aecm:aecm_core",
"agc",
@ -202,10 +191,6 @@ rtc_library("audio_processing") {
"//third_party/abseil-cpp/absl/types:optional",
]
if (aec_untrusted_delay_for_testing) {
defines += [ "WEBRTC_UNTRUSTED_DELAY" ]
}
if (rtc_prefer_fixed_point) {
defines += [ "WEBRTC_NS_FIXED" ]
} else {
@ -400,7 +385,6 @@ if (rtc_include_tests) {
"audio_buffer_unittest.cc",
"audio_frame_view_unittest.cc",
"config_unittest.cc",
"echo_cancellation_impl_unittest.cc",
"echo_control_mobile_unittest.cc",
"gain_controller2_unittest.cc",
"splitting_filter_unittest.cc",
@ -451,8 +435,6 @@ if (rtc_include_tests) {
"../../test:rtc_expect_death",
"../../test:test_support",
"../audio_coding:neteq_input_audio_tools",
"aec:aec_core",
"aec:aec_unittests",
"aec_dump:mock_aec_dump_unittests",
"agc:agc_unittests",
"agc2:adaptive_digital_unittests",
@ -463,7 +445,6 @@ if (rtc_include_tests) {
"agc2:test_utils",
"agc2/rnn_vad:unittests",
"test/conversational_speech:unittest",
"utility:block_mean_calculator_unittest",
"utility:legacy_delay_estimator_unittest",
"utility:pffft_wrapper_unittest",
"vad:vad_unittests",
@ -499,7 +480,6 @@ if (rtc_include_tests) {
"audio_processing_impl_locking_unittest.cc",
"audio_processing_impl_unittest.cc",
"audio_processing_unittest.cc",
"echo_cancellation_bit_exact_unittest.cc",
"echo_control_mobile_bit_exact_unittest.cc",
"echo_detector/circular_buffer_unittest.cc",
"echo_detector/mean_variance_estimator_unittest.cc",

View File

@ -1,91 +0,0 @@
# Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../../webrtc.gni")
rtc_library("aec") {
configs += [ "..:apm_debug_dump" ]
sources = [
"aec_resampler.cc",
"aec_resampler.h",
"echo_cancellation.cc",
"echo_cancellation.h",
]
deps = [
":aec_core",
"..:apm_logging",
"../../../common_audio:common_audio_c",
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
]
}
rtc_library("aec_core") {
configs += [ "..:apm_debug_dump" ]
sources = [
"aec_common.h",
"aec_core.cc",
"aec_core.h",
"aec_core_optimized_methods.h",
]
deps = [
"..:apm_logging",
"../../../common_audio:common_audio_c",
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
"../../../rtc_base/system:arch",
"../../../system_wrappers:cpu_features_api",
"../../../system_wrappers:metrics",
"../utility:block_mean_calculator",
"../utility:legacy_delay_estimator",
"../utility:ooura_fft",
]
cflags = []
if (current_cpu == "x86" || current_cpu == "x64") {
sources += [ "aec_core_sse2.cc" ]
if (is_posix || is_fuchsia) {
cflags += [ "-msse2" ]
}
}
if (rtc_build_with_neon) {
sources += [ "aec_core_neon.cc" ]
if (current_cpu != "arm64") {
# Enable compilation for the NEON instruction set.
suppressed_configs += [ "//build/config/compiler:compiler_arm_fpu" ]
cflags += [ "-mfpu=neon" ]
}
deps += [ "../../../common_audio" ]
}
if (current_cpu == "mipsel" && mips_float_abi == "hard") {
sources += [ "aec_core_mips.cc" ]
}
}
if (rtc_include_tests) {
rtc_library("aec_unittests") {
testonly = true
sources = [
"echo_cancellation_unittest.cc",
"system_delay_unittest.cc",
]
deps = [
":aec",
":aec_core",
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
"../../../test:test_support",
"//testing/gtest",
]
}
}

View File

@ -1,37 +0,0 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC_AEC_COMMON_H_
#define MODULES_AUDIO_PROCESSING_AEC_AEC_COMMON_H_
#ifdef _MSC_VER /* visual c++ */
#define ALIGN16_BEG __declspec(align(16))
#define ALIGN16_END
#else /* gcc or icc */
#define ALIGN16_BEG
#define ALIGN16_END __attribute__((aligned(16)))
#endif
#ifdef __cplusplus
namespace webrtc {
#endif
extern ALIGN16_BEG const float ALIGN16_END WebRtcAec_sqrtHanning[65];
extern ALIGN16_BEG const float ALIGN16_END WebRtcAec_weightCurve[65];
extern ALIGN16_BEG const float ALIGN16_END WebRtcAec_overDriveCurve[65];
extern const float WebRtcAec_kExtendedSmoothingCoefficients[2][2];
extern const float WebRtcAec_kNormalSmoothingCoefficients[2][2];
extern const float WebRtcAec_kMinFarendPSD;
#ifdef __cplusplus
} // namespace webrtc
#endif
#endif // MODULES_AUDIO_PROCESSING_AEC_AEC_COMMON_H_

File diff suppressed because it is too large Load Diff

View File

@ -1,333 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Specifies the interface for the AEC core.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_
#define MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_
#include <stddef.h>
#include <memory>
extern "C" {
#include "common_audio/ring_buffer.h"
}
#include "modules/audio_processing/aec/aec_common.h"
#include "modules/audio_processing/utility/block_mean_calculator.h"
#include "modules/audio_processing/utility/ooura_fft.h"
#include "rtc_base/constructor_magic.h"
namespace webrtc {
#define FRAME_LEN 80
#define PART_LEN 64 // Length of partition
#define PART_LEN1 (PART_LEN + 1) // Unique fft coefficients
#define PART_LEN2 (PART_LEN * 2) // Length of partition * 2
#define NUM_HIGH_BANDS_MAX 2 // Max number of high bands
class ApmDataDumper;
typedef float complex_t[2];
// For performance reasons, some arrays of complex numbers are replaced by twice
// as long arrays of float, all the real parts followed by all the imaginary
// ones (complex_t[SIZE] -> float[2][SIZE]). This allows SIMD optimizations and
// is better than two arrays (one for the real parts and one for the imaginary
// parts) as this other way would require two pointers instead of one and cause
// extra register spilling. This also allows the offsets to be calculated at
// compile time.
// Metrics
enum { kOffsetLevel = -100 };
typedef struct Stats {
float instant;
float average;
float min;
float max;
float sum;
float hisum;
float himean;
size_t counter;
size_t hicounter;
} Stats;
// Number of partitions for the extended filter mode. The first one is an enum
// to be used in array declarations, as it represents the maximum filter length.
enum { kExtendedNumPartitions = 32 };
static const int kNormalNumPartitions = 12;
// Delay estimator constants, used for logging and delay compensation if
// if reported delays are disabled.
enum { kLookaheadBlocks = 15 };
enum {
// 500 ms for 16 kHz which is equivalent with the limit of reported delays.
kHistorySizeBlocks = 125
};
typedef struct PowerLevel {
PowerLevel();
BlockMeanCalculator framelevel;
BlockMeanCalculator averagelevel;
float minlevel;
} PowerLevel;
class Aec2BlockBuffer {
public:
Aec2BlockBuffer();
~Aec2BlockBuffer();
void ReInit();
void Insert(const float block[PART_LEN]);
void ExtractExtendedBlock(float extended_block[PART_LEN]);
int AdjustSize(int buffer_size_decrease);
size_t Size();
size_t AvaliableSpace();
private:
RingBuffer* buffer_;
};
class DivergentFilterFraction {
public:
DivergentFilterFraction();
// Reset.
void Reset();
void AddObservation(const PowerLevel& nearlevel,
const PowerLevel& linoutlevel,
const PowerLevel& nlpoutlevel);
// Return the latest fraction.
float GetLatestFraction() const;
private:
// Clear all values added.
void Clear();
size_t count_;
size_t occurrence_;
float fraction_;
RTC_DISALLOW_COPY_AND_ASSIGN(DivergentFilterFraction);
};
typedef struct CoherenceState {
complex_t sde[PART_LEN1]; // cross-psd of nearend and error
complex_t sxd[PART_LEN1]; // cross-psd of farend and nearend
float sx[PART_LEN1], sd[PART_LEN1], se[PART_LEN1]; // far, near, error psd
} CoherenceState;
struct AecCore {
explicit AecCore(int instance_index);
~AecCore();
std::unique_ptr<ApmDataDumper> data_dumper;
const OouraFft ooura_fft;
CoherenceState coherence_state;
int farBufWritePos, farBufReadPos;
int knownDelay;
int inSamples, outSamples;
int delayEstCtr;
// Nearend buffer used for changing from FRAME_LEN to PART_LEN sample block
// sizes. The buffer stores all the incoming bands and for each band a maximum
// of PART_LEN - (FRAME_LEN - PART_LEN) values need to be buffered in order to
// change the block size from FRAME_LEN to PART_LEN.
float nearend_buffer[NUM_HIGH_BANDS_MAX + 1]
[PART_LEN - (FRAME_LEN - PART_LEN)];
size_t nearend_buffer_size;
float output_buffer[NUM_HIGH_BANDS_MAX + 1][2 * PART_LEN];
size_t output_buffer_size;
float eBuf[PART_LEN2]; // error
float previous_nearend_block[NUM_HIGH_BANDS_MAX + 1][PART_LEN];
float xPow[PART_LEN1];
float dPow[PART_LEN1];
float dMinPow[PART_LEN1];
float dInitMinPow[PART_LEN1];
float* noisePow;
float xfBuf[2][kExtendedNumPartitions * PART_LEN1]; // farend fft buffer
float wfBuf[2][kExtendedNumPartitions * PART_LEN1]; // filter fft
// Farend windowed fft buffer.
complex_t xfwBuf[kExtendedNumPartitions * PART_LEN1];
float hNs[PART_LEN1];
float hNlFbMin, hNlFbLocalMin;
float hNlXdAvgMin;
int hNlNewMin, hNlMinCtr;
float overDrive;
float overdrive_scaling;
int nlp_mode;
float outBuf[PART_LEN];
int delayIdx;
short stNearState, echoState;
short divergeState;
int xfBufBlockPos;
Aec2BlockBuffer farend_block_buffer_;
int system_delay; // Current system delay buffered in AEC.
int mult; // sampling frequency multiple
int sampFreq = 16000;
size_t num_bands;
uint32_t seed;
float filter_step_size; // stepsize
float error_threshold; // error threshold
int noiseEstCtr;
PowerLevel farlevel;
PowerLevel nearlevel;
PowerLevel linoutlevel;
PowerLevel nlpoutlevel;
int metricsMode;
int stateCounter;
Stats erl;
Stats erle;
Stats aNlp;
Stats rerl;
DivergentFilterFraction divergent_filter_fraction;
// Quantities to control H band scaling for SWB input
int freq_avg_ic; // initial bin for averaging nlp gain
int flag_Hband_cn; // for comfort noise
float cn_scale_Hband; // scale for comfort noise in H band
int delay_metrics_delivered;
int delay_histogram[kHistorySizeBlocks];
int num_delay_values;
int delay_median;
int delay_std;
float fraction_poor_delays;
int delay_logging_enabled;
void* delay_estimator_farend;
void* delay_estimator;
// Variables associated with delay correction through signal based delay
// estimation feedback.
int previous_delay;
int delay_correction_count;
int shift_offset;
float delay_quality_threshold;
int frame_count;
// 0 = delay agnostic mode (signal based delay correction) disabled.
// Otherwise enabled.
int delay_agnostic_enabled;
// 1 = extended filter mode enabled, 0 = disabled.
int extended_filter_enabled;
// 1 = refined filter adaptation aec mode enabled, 0 = disabled.
bool refined_adaptive_filter_enabled;
// Runtime selection of number of filter partitions.
int num_partitions;
// Flag that extreme filter divergence has been detected by the Echo
// Suppressor.
int extreme_filter_divergence;
};
AecCore* WebRtcAec_CreateAec(int instance_count); // Returns NULL on error.
void WebRtcAec_FreeAec(AecCore* aec);
int WebRtcAec_InitAec(AecCore* aec, int sampFreq);
void WebRtcAec_InitAec_SSE2(void);
#if defined(MIPS_FPU_LE)
void WebRtcAec_InitAec_mips(void);
#endif
#if defined(WEBRTC_HAS_NEON)
void WebRtcAec_InitAec_neon(void);
#endif
void WebRtcAec_BufferFarendBlock(AecCore* aec, const float* farend);
void WebRtcAec_ProcessFrames(AecCore* aec,
const float* const* nearend,
size_t num_bands,
size_t num_samples,
int knownDelay,
float* const* out);
// A helper function to call adjust the farend buffer size.
// Returns the number of elements the size was decreased with, and adjusts
// |system_delay| by the corresponding amount in ms.
int WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(AecCore* aec,
int size_decrease);
// Calculates the median, standard deviation and amount of poor values among the
// delay estimates aggregated up to the first call to the function. After that
// first call the metrics are aggregated and updated every second. With poor
// values we mean values that most likely will cause the AEC to perform poorly.
// TODO(bjornv): Consider changing tests and tools to handle constant
// constant aggregation window throughout the session instead.
int WebRtcAec_GetDelayMetricsCore(AecCore* self,
int* median,
int* std,
float* fraction_poor_delays);
// Returns the echo state (1: echo, 0: no echo).
int WebRtcAec_echo_state(AecCore* self);
// Gets statistics of the echo metrics ERL, ERLE, A_NLP.
void WebRtcAec_GetEchoStats(AecCore* self,
Stats* erl,
Stats* erle,
Stats* a_nlp,
float* divergent_filter_fraction);
// Sets local configuration modes.
void WebRtcAec_SetConfigCore(AecCore* self,
int nlp_mode,
int metrics_mode,
int delay_logging);
// Non-zero enables, zero disables.
void WebRtcAec_enable_delay_agnostic(AecCore* self, int enable);
// Returns non-zero if delay agnostic (i.e., signal based delay estimation) is
// enabled and zero if disabled.
int WebRtcAec_delay_agnostic_enabled(AecCore* self);
// Turns on/off the refined adaptive filter feature.
void WebRtcAec_enable_refined_adaptive_filter(AecCore* self, bool enable);
// Returns whether the refined adaptive filter is enabled.
bool WebRtcAec_refined_adaptive_filter(const AecCore* self);
// Enables or disables extended filter mode. Non-zero enables, zero disables.
void WebRtcAec_enable_extended_filter(AecCore* self, int enable);
// Returns non-zero if extended filter mode is enabled and zero if disabled.
int WebRtcAec_extended_filter_enabled(AecCore* self);
// Returns the current |system_delay|, i.e., the buffered difference between
// far-end and near-end.
int WebRtcAec_system_delay(AecCore* self);
// Sets the |system_delay| to |value|. Note that if the value is changed
// improperly, there can be a performance regression. So it should be used with
// care.
void WebRtcAec_SetSystemDelay(AecCore* self, int delay);
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_

View File

@ -1,485 +0,0 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, which is presented with time-aligned signals.
*/
#include <math.h>
#include "modules/audio_processing/aec/aec_core.h"
extern "C" {
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aec/aec_core_optimized_methods.h"
#include "modules/audio_processing/utility/ooura_fft.h"
namespace webrtc {
extern const float WebRtcAec_weightCurve[65];
extern const float WebRtcAec_overDriveCurve[65];
void WebRtcAec_FilterFar_mips(
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float y_fft[2][PART_LEN1]) {
int i;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * (PART_LEN1);
}
float* yf0 = y_fft[0];
float* yf1 = y_fft[1];
float* aRe = x_fft_buf[0] + xPos;
float* aIm = x_fft_buf[1] + xPos;
float* bRe = h_fft_buf[0] + pos;
float* bIm = h_fft_buf[1] + pos;
float f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13;
int len = PART_LEN1 >> 1;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[bRe]) \n\t"
"lwc1 %[f2], 0(%[bIm]) \n\t"
"lwc1 %[f3], 0(%[aIm]) \n\t"
"lwc1 %[f4], 4(%[aRe]) \n\t"
"lwc1 %[f5], 4(%[bRe]) \n\t"
"lwc1 %[f6], 4(%[bIm]) \n\t"
"mul.s %[f8], %[f0], %[f1] \n\t"
"mul.s %[f0], %[f0], %[f2] \n\t"
"mul.s %[f9], %[f4], %[f5] \n\t"
"mul.s %[f4], %[f4], %[f6] \n\t"
"lwc1 %[f7], 4(%[aIm]) \n\t"
#if !defined(MIPS32_R2_LE)
"mul.s %[f12], %[f2], %[f3] \n\t"
"mul.s %[f1], %[f3], %[f1] \n\t"
"mul.s %[f11], %[f6], %[f7] \n\t"
"addiu %[aRe], %[aRe], 8 \n\t"
"addiu %[aIm], %[aIm], 8 \n\t"
"addiu %[len], %[len], -1 \n\t"
"sub.s %[f8], %[f8], %[f12] \n\t"
"mul.s %[f12], %[f7], %[f5] \n\t"
"lwc1 %[f2], 0(%[yf0]) \n\t"
"add.s %[f1], %[f0], %[f1] \n\t"
"lwc1 %[f3], 0(%[yf1]) \n\t"
"sub.s %[f9], %[f9], %[f11] \n\t"
"lwc1 %[f6], 4(%[yf0]) \n\t"
"add.s %[f4], %[f4], %[f12] \n\t"
#else // #if !defined(MIPS32_R2_LE)
"addiu %[aRe], %[aRe], 8 \n\t"
"addiu %[aIm], %[aIm], 8 \n\t"
"addiu %[len], %[len], -1 \n\t"
"nmsub.s %[f8], %[f8], %[f2], %[f3] \n\t"
"lwc1 %[f2], 0(%[yf0]) \n\t"
"madd.s %[f1], %[f0], %[f3], %[f1] \n\t"
"lwc1 %[f3], 0(%[yf1]) \n\t"
"nmsub.s %[f9], %[f9], %[f6], %[f7] \n\t"
"lwc1 %[f6], 4(%[yf0]) \n\t"
"madd.s %[f4], %[f4], %[f7], %[f5] \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"lwc1 %[f5], 4(%[yf1]) \n\t"
"add.s %[f2], %[f2], %[f8] \n\t"
"addiu %[bRe], %[bRe], 8 \n\t"
"addiu %[bIm], %[bIm], 8 \n\t"
"add.s %[f3], %[f3], %[f1] \n\t"
"add.s %[f6], %[f6], %[f9] \n\t"
"add.s %[f5], %[f5], %[f4] \n\t"
"swc1 %[f2], 0(%[yf0]) \n\t"
"swc1 %[f3], 0(%[yf1]) \n\t"
"swc1 %[f6], 4(%[yf0]) \n\t"
"swc1 %[f5], 4(%[yf1]) \n\t"
"addiu %[yf0], %[yf0], 8 \n\t"
"bgtz %[len], 1b \n\t"
" addiu %[yf1], %[yf1], 8 \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[bRe]) \n\t"
"lwc1 %[f2], 0(%[bIm]) \n\t"
"lwc1 %[f3], 0(%[aIm]) \n\t"
"mul.s %[f8], %[f0], %[f1] \n\t"
"mul.s %[f0], %[f0], %[f2] \n\t"
#if !defined(MIPS32_R2_LE)
"mul.s %[f12], %[f2], %[f3] \n\t"
"mul.s %[f1], %[f3], %[f1] \n\t"
"sub.s %[f8], %[f8], %[f12] \n\t"
"lwc1 %[f2], 0(%[yf0]) \n\t"
"add.s %[f1], %[f0], %[f1] \n\t"
"lwc1 %[f3], 0(%[yf1]) \n\t"
#else // #if !defined(MIPS32_R2_LE)
"nmsub.s %[f8], %[f8], %[f2], %[f3] \n\t"
"lwc1 %[f2], 0(%[yf0]) \n\t"
"madd.s %[f1], %[f0], %[f3], %[f1] \n\t"
"lwc1 %[f3], 0(%[yf1]) \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"add.s %[f2], %[f2], %[f8] \n\t"
"add.s %[f3], %[f3], %[f1] \n\t"
"swc1 %[f2], 0(%[yf0]) \n\t"
"swc1 %[f3], 0(%[yf1]) \n\t"
".set pop \n\t"
: [f0] "=&f"(f0), [f1] "=&f"(f1), [f2] "=&f"(f2), [f3] "=&f"(f3),
[f4] "=&f"(f4), [f5] "=&f"(f5), [f6] "=&f"(f6), [f7] "=&f"(f7),
[f8] "=&f"(f8), [f9] "=&f"(f9), [f10] "=&f"(f10), [f11] "=&f"(f11),
[f12] "=&f"(f12), [f13] "=&f"(f13), [aRe] "+r"(aRe), [aIm] "+r"(aIm),
[bRe] "+r"(bRe), [bIm] "+r"(bIm), [yf0] "+r"(yf0), [yf1] "+r"(yf1),
[len] "+r"(len)
:
: "memory");
}
}
void WebRtcAec_FilterAdaptation_mips(
const OouraFft& ooura_fft,
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float e_fft[2][PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
float fft[PART_LEN2];
int i;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
int pos;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
pos = i * PART_LEN1;
float* aRe = x_fft_buf[0] + xPos;
float* aIm = x_fft_buf[1] + xPos;
float* bRe = e_fft[0];
float* bIm = e_fft[1];
float* fft_tmp;
float f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12;
int len = PART_LEN >> 1;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"addiu %[fft_tmp], %[fft], 0 \n\t"
"1: \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[bRe]) \n\t"
"lwc1 %[f2], 0(%[bIm]) \n\t"
"lwc1 %[f4], 4(%[aRe]) \n\t"
"lwc1 %[f5], 4(%[bRe]) \n\t"
"lwc1 %[f6], 4(%[bIm]) \n\t"
"addiu %[aRe], %[aRe], 8 \n\t"
"addiu %[bRe], %[bRe], 8 \n\t"
"mul.s %[f8], %[f0], %[f1] \n\t"
"mul.s %[f0], %[f0], %[f2] \n\t"
"lwc1 %[f3], 0(%[aIm]) \n\t"
"mul.s %[f9], %[f4], %[f5] \n\t"
"lwc1 %[f7], 4(%[aIm]) \n\t"
"mul.s %[f4], %[f4], %[f6] \n\t"
#if !defined(MIPS32_R2_LE)
"mul.s %[f10], %[f3], %[f2] \n\t"
"mul.s %[f1], %[f3], %[f1] \n\t"
"mul.s %[f11], %[f7], %[f6] \n\t"
"mul.s %[f5], %[f7], %[f5] \n\t"
"addiu %[aIm], %[aIm], 8 \n\t"
"addiu %[bIm], %[bIm], 8 \n\t"
"addiu %[len], %[len], -1 \n\t"
"add.s %[f8], %[f8], %[f10] \n\t"
"sub.s %[f1], %[f0], %[f1] \n\t"
"add.s %[f9], %[f9], %[f11] \n\t"
"sub.s %[f5], %[f4], %[f5] \n\t"
#else // #if !defined(MIPS32_R2_LE)
"addiu %[aIm], %[aIm], 8 \n\t"
"addiu %[bIm], %[bIm], 8 \n\t"
"addiu %[len], %[len], -1 \n\t"
"madd.s %[f8], %[f8], %[f3], %[f2] \n\t"
"nmsub.s %[f1], %[f0], %[f3], %[f1] \n\t"
"madd.s %[f9], %[f9], %[f7], %[f6] \n\t"
"nmsub.s %[f5], %[f4], %[f7], %[f5] \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"swc1 %[f8], 0(%[fft_tmp]) \n\t"
"swc1 %[f1], 4(%[fft_tmp]) \n\t"
"swc1 %[f9], 8(%[fft_tmp]) \n\t"
"swc1 %[f5], 12(%[fft_tmp]) \n\t"
"bgtz %[len], 1b \n\t"
" addiu %[fft_tmp], %[fft_tmp], 16 \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[bRe]) \n\t"
"lwc1 %[f2], 0(%[bIm]) \n\t"
"lwc1 %[f3], 0(%[aIm]) \n\t"
"mul.s %[f8], %[f0], %[f1] \n\t"
#if !defined(MIPS32_R2_LE)
"mul.s %[f10], %[f3], %[f2] \n\t"
"add.s %[f8], %[f8], %[f10] \n\t"
#else // #if !defined(MIPS32_R2_LE)
"madd.s %[f8], %[f8], %[f3], %[f2] \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"swc1 %[f8], 4(%[fft]) \n\t"
".set pop \n\t"
: [f0] "=&f"(f0), [f1] "=&f"(f1), [f2] "=&f"(f2), [f3] "=&f"(f3),
[f4] "=&f"(f4), [f5] "=&f"(f5), [f6] "=&f"(f6), [f7] "=&f"(f7),
[f8] "=&f"(f8), [f9] "=&f"(f9), [f10] "=&f"(f10), [f11] "=&f"(f11),
[f12] "=&f"(f12), [aRe] "+r"(aRe), [aIm] "+r"(aIm), [bRe] "+r"(bRe),
[bIm] "+r"(bIm), [fft_tmp] "=&r"(fft_tmp), [len] "+r"(len)
: [fft] "r"(fft)
: "memory");
ooura_fft.InverseFft(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"addiu %[fft_tmp], %[fft], 0 \n\t"
"addiu %[len], $zero, 8 \n\t"
"1: \n\t"
"addiu %[len], %[len], -1 \n\t"
"lwc1 %[f0], 0(%[fft_tmp]) \n\t"
"lwc1 %[f1], 4(%[fft_tmp]) \n\t"
"lwc1 %[f2], 8(%[fft_tmp]) \n\t"
"lwc1 %[f3], 12(%[fft_tmp]) \n\t"
"mul.s %[f0], %[f0], %[scale] \n\t"
"mul.s %[f1], %[f1], %[scale] \n\t"
"mul.s %[f2], %[f2], %[scale] \n\t"
"mul.s %[f3], %[f3], %[scale] \n\t"
"lwc1 %[f4], 16(%[fft_tmp]) \n\t"
"lwc1 %[f5], 20(%[fft_tmp]) \n\t"
"lwc1 %[f6], 24(%[fft_tmp]) \n\t"
"lwc1 %[f7], 28(%[fft_tmp]) \n\t"
"mul.s %[f4], %[f4], %[scale] \n\t"
"mul.s %[f5], %[f5], %[scale] \n\t"
"mul.s %[f6], %[f6], %[scale] \n\t"
"mul.s %[f7], %[f7], %[scale] \n\t"
"swc1 %[f0], 0(%[fft_tmp]) \n\t"
"swc1 %[f1], 4(%[fft_tmp]) \n\t"
"swc1 %[f2], 8(%[fft_tmp]) \n\t"
"swc1 %[f3], 12(%[fft_tmp]) \n\t"
"swc1 %[f4], 16(%[fft_tmp]) \n\t"
"swc1 %[f5], 20(%[fft_tmp]) \n\t"
"swc1 %[f6], 24(%[fft_tmp]) \n\t"
"swc1 %[f7], 28(%[fft_tmp]) \n\t"
"bgtz %[len], 1b \n\t"
" addiu %[fft_tmp], %[fft_tmp], 32 \n\t"
".set pop \n\t"
: [f0] "=&f"(f0), [f1] "=&f"(f1), [f2] "=&f"(f2), [f3] "=&f"(f3),
[f4] "=&f"(f4), [f5] "=&f"(f5), [f6] "=&f"(f6), [f7] "=&f"(f7),
[len] "=&r"(len), [fft_tmp] "=&r"(fft_tmp)
: [scale] "f"(scale), [fft] "r"(fft)
: "memory");
}
ooura_fft.Fft(fft);
aRe = h_fft_buf[0] + pos;
aIm = h_fft_buf[1] + pos;
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"addiu %[fft_tmp], %[fft], 0 \n\t"
"addiu %[len], $zero, 31 \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[fft_tmp]) \n\t"
"lwc1 %[f2], 256(%[aRe]) \n\t"
"lwc1 %[f3], 4(%[fft_tmp]) \n\t"
"lwc1 %[f4], 4(%[aRe]) \n\t"
"lwc1 %[f5], 8(%[fft_tmp]) \n\t"
"lwc1 %[f6], 4(%[aIm]) \n\t"
"lwc1 %[f7], 12(%[fft_tmp]) \n\t"
"add.s %[f0], %[f0], %[f1] \n\t"
"add.s %[f2], %[f2], %[f3] \n\t"
"add.s %[f4], %[f4], %[f5] \n\t"
"add.s %[f6], %[f6], %[f7] \n\t"
"addiu %[fft_tmp], %[fft_tmp], 16 \n\t"
"swc1 %[f0], 0(%[aRe]) \n\t"
"swc1 %[f2], 256(%[aRe]) \n\t"
"swc1 %[f4], 4(%[aRe]) \n\t"
"addiu %[aRe], %[aRe], 8 \n\t"
"swc1 %[f6], 4(%[aIm]) \n\t"
"addiu %[aIm], %[aIm], 8 \n\t"
"1: \n\t"
"lwc1 %[f0], 0(%[aRe]) \n\t"
"lwc1 %[f1], 0(%[fft_tmp]) \n\t"
"lwc1 %[f2], 0(%[aIm]) \n\t"
"lwc1 %[f3], 4(%[fft_tmp]) \n\t"
"lwc1 %[f4], 4(%[aRe]) \n\t"
"lwc1 %[f5], 8(%[fft_tmp]) \n\t"
"lwc1 %[f6], 4(%[aIm]) \n\t"
"lwc1 %[f7], 12(%[fft_tmp]) \n\t"
"add.s %[f0], %[f0], %[f1] \n\t"
"add.s %[f2], %[f2], %[f3] \n\t"
"add.s %[f4], %[f4], %[f5] \n\t"
"add.s %[f6], %[f6], %[f7] \n\t"
"addiu %[len], %[len], -1 \n\t"
"addiu %[fft_tmp], %[fft_tmp], 16 \n\t"
"swc1 %[f0], 0(%[aRe]) \n\t"
"swc1 %[f2], 0(%[aIm]) \n\t"
"swc1 %[f4], 4(%[aRe]) \n\t"
"addiu %[aRe], %[aRe], 8 \n\t"
"swc1 %[f6], 4(%[aIm]) \n\t"
"bgtz %[len], 1b \n\t"
" addiu %[aIm], %[aIm], 8 \n\t"
".set pop \n\t"
: [f0] "=&f"(f0), [f1] "=&f"(f1), [f2] "=&f"(f2), [f3] "=&f"(f3),
[f4] "=&f"(f4), [f5] "=&f"(f5), [f6] "=&f"(f6), [f7] "=&f"(f7),
[len] "=&r"(len), [fft_tmp] "=&r"(fft_tmp), [aRe] "+r"(aRe),
[aIm] "+r"(aIm)
: [fft] "r"(fft)
: "memory");
}
}
void WebRtcAec_Overdrive_mips(float overdrive_scaling,
float hNlFb,
float hNl[PART_LEN1]) {
const float one = 1.0;
float* p_hNl;
const float* p_WebRtcAec_wC;
float temp1, temp2, temp3, temp4;
p_hNl = &hNl[0];
p_WebRtcAec_wC = &WebRtcAec_weightCurve[0];
for (int i = 0; i < PART_LEN1; ++i) {
// Weight subbands
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"lwc1 %[temp1], 0(%[p_hNl]) \n\t"
"lwc1 %[temp2], 0(%[p_wC]) \n\t"
"c.lt.s %[hNlFb], %[temp1] \n\t"
"bc1f 1f \n\t"
" mul.s %[temp3], %[temp2], %[hNlFb] \n\t"
"sub.s %[temp4], %[one], %[temp2] \n\t"
#if !defined(MIPS32_R2_LE)
"mul.s %[temp1], %[temp1], %[temp4] \n\t"
"add.s %[temp1], %[temp3], %[temp1] \n\t"
#else // #if !defined(MIPS32_R2_LE)
"madd.s %[temp1], %[temp3], %[temp1], %[temp4] \n\t"
#endif // #if !defined(MIPS32_R2_LE)
"swc1 %[temp1], 0(%[p_hNl]) \n\t"
"1: \n\t"
"addiu %[p_wC], %[p_wC], 4 \n\t"
".set pop \n\t"
: [temp1] "=&f"(temp1), [temp2] "=&f"(temp2), [temp3] "=&f"(temp3),
[temp4] "=&f"(temp4), [p_wC] "+r"(p_WebRtcAec_wC)
: [hNlFb] "f"(hNlFb), [one] "f"(one), [p_hNl] "r"(p_hNl)
: "memory");
hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]);
}
}
void WebRtcAec_Suppress_mips(const float hNl[PART_LEN1],
float efw[2][PART_LEN1]) {
const float* p_hNl;
float* p_efw0;
float* p_efw1;
float temp1, temp2, temp3, temp4;
p_hNl = &hNl[0];
p_efw0 = &efw[0][0];
p_efw1 = &efw[1][0];
for (int i = 0; i < PART_LEN1; ++i) {
__asm __volatile(
"lwc1 %[temp1], 0(%[p_hNl]) \n\t"
"lwc1 %[temp3], 0(%[p_efw1]) \n\t"
"lwc1 %[temp2], 0(%[p_efw0]) \n\t"
"addiu %[p_hNl], %[p_hNl], 4 \n\t"
"mul.s %[temp3], %[temp3], %[temp1] \n\t"
"mul.s %[temp2], %[temp2], %[temp1] \n\t"
"addiu %[p_efw0], %[p_efw0], 4 \n\t"
"addiu %[p_efw1], %[p_efw1], 4 \n\t"
"neg.s %[temp4], %[temp3] \n\t"
"swc1 %[temp2], -4(%[p_efw0]) \n\t"
"swc1 %[temp4], -4(%[p_efw1]) \n\t"
: [temp1] "=&f"(temp1), [temp2] "=&f"(temp2), [temp3] "=&f"(temp3),
[temp4] "=&f"(temp4), [p_efw0] "+r"(p_efw0), [p_efw1] "+r"(p_efw1),
[p_hNl] "+r"(p_hNl)
:
: "memory");
}
}
void WebRtcAec_ScaleErrorSignal_mips(float mu,
float error_threshold,
float x_pow[PART_LEN1],
float ef[2][PART_LEN1]) {
int len = (PART_LEN1);
float* ef0 = ef[0];
float* ef1 = ef[1];
float fac1 = 1e-10f;
float err_th2 = error_threshold * error_threshold;
float f0, f1, f2;
#if !defined(MIPS32_R2_LE)
float f3;
#endif
__asm __volatile(
".set push \n\t"
".set noreorder \n\t"
"1: \n\t"
"lwc1 %[f0], 0(%[x_pow]) \n\t"
"lwc1 %[f1], 0(%[ef0]) \n\t"
"lwc1 %[f2], 0(%[ef1]) \n\t"
"add.s %[f0], %[f0], %[fac1] \n\t"
"div.s %[f1], %[f1], %[f0] \n\t"
"div.s %[f2], %[f2], %[f0] \n\t"
"mul.s %[f0], %[f1], %[f1] \n\t"
#if defined(MIPS32_R2_LE)
"madd.s %[f0], %[f0], %[f2], %[f2] \n\t"
#else
"mul.s %[f3], %[f2], %[f2] \n\t"
"add.s %[f0], %[f0], %[f3] \n\t"
#endif
"c.le.s %[f0], %[err_th2] \n\t"
"nop \n\t"
"bc1t 2f \n\t"
" nop \n\t"
"sqrt.s %[f0], %[f0] \n\t"
"add.s %[f0], %[f0], %[fac1] \n\t"
"div.s %[f0], %[err_th], %[f0] \n\t"
"mul.s %[f1], %[f1], %[f0] \n\t"
"mul.s %[f2], %[f2], %[f0] \n\t"
"2: \n\t"
"mul.s %[f1], %[f1], %[mu] \n\t"
"mul.s %[f2], %[f2], %[mu] \n\t"
"swc1 %[f1], 0(%[ef0]) \n\t"
"swc1 %[f2], 0(%[ef1]) \n\t"
"addiu %[len], %[len], -1 \n\t"
"addiu %[x_pow], %[x_pow], 4 \n\t"
"addiu %[ef0], %[ef0], 4 \n\t"
"bgtz %[len], 1b \n\t"
" addiu %[ef1], %[ef1], 4 \n\t"
".set pop \n\t"
: [f0] "=&f"(f0), [f1] "=&f"(f1), [f2] "=&f"(f2),
#if !defined(MIPS32_R2_LE)
[f3] "=&f"(f3),
#endif
[x_pow] "+r"(x_pow), [ef0] "+r"(ef0), [ef1] "+r"(ef1), [len] "+r"(len)
: [fac1] "f"(fac1), [err_th2] "f"(err_th2), [mu] "f"(mu),
[err_th] "f"(error_threshold)
: "memory");
}
void WebRtcAec_InitAec_mips(void) {
WebRtcAec_FilterFar = WebRtcAec_FilterFar_mips;
WebRtcAec_FilterAdaptation = WebRtcAec_FilterAdaptation_mips;
WebRtcAec_ScaleErrorSignal = WebRtcAec_ScaleErrorSignal_mips;
WebRtcAec_Overdrive = WebRtcAec_Overdrive_mips;
WebRtcAec_Suppress = WebRtcAec_Suppress_mips;
}
} // namespace webrtc

View File

@ -1,736 +0,0 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, neon version of speed-critical functions.
*
* Based on aec_core_sse2.c.
*/
#include <arm_neon.h>
#include <math.h>
#include <string.h> // memset
extern "C" {
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aec/aec_common.h"
#include "modules/audio_processing/aec/aec_core_optimized_methods.h"
#include "modules/audio_processing/utility/ooura_fft.h"
namespace webrtc {
enum { kShiftExponentIntoTopMantissa = 8 };
enum { kFloatExponentShift = 23 };
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
return aRe * bIm + aIm * bRe;
}
static void FilterFarNEON(
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float y_fft[2][PART_LEN1]) {
int i;
for (i = 0; i < num_partitions; i++) {
int j;
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
const float32x4_t h_fft_buf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
const float32x4_t h_fft_buf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
const float32x4_t y_fft_re = vld1q_f32(&y_fft[0][j]);
const float32x4_t y_fft_im = vld1q_f32(&y_fft[1][j]);
const float32x4_t a = vmulq_f32(x_fft_buf_re, h_fft_buf_re);
const float32x4_t e = vmlsq_f32(a, x_fft_buf_im, h_fft_buf_im);
const float32x4_t c = vmulq_f32(x_fft_buf_re, h_fft_buf_im);
const float32x4_t f = vmlaq_f32(c, x_fft_buf_im, h_fft_buf_re);
const float32x4_t g = vaddq_f32(y_fft_re, e);
const float32x4_t h = vaddq_f32(y_fft_im, f);
vst1q_f32(&y_fft[0][j], g);
vst1q_f32(&y_fft[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
}
}
}
// ARM64's arm_neon.h has already defined vdivq_f32 vsqrtq_f32.
#if !defined(WEBRTC_ARCH_ARM64)
static float32x4_t vdivq_f32(float32x4_t a, float32x4_t b) {
int i;
float32x4_t x = vrecpeq_f32(b);
// from arm documentation
// The Newton-Raphson iteration:
// x[n+1] = x[n] * (2 - d * x[n])
// converges to (1/d) if x0 is the result of VRECPE applied to d.
//
// Note: The precision did not improve after 2 iterations.
for (i = 0; i < 2; i++) {
x = vmulq_f32(vrecpsq_f32(b, x), x);
}
// a/b = a*(1/b)
return vmulq_f32(a, x);
}
static float32x4_t vsqrtq_f32(float32x4_t s) {
int i;
float32x4_t x = vrsqrteq_f32(s);
// Code to handle sqrt(0).
// If the input to sqrtf() is zero, a zero will be returned.
// If the input to vrsqrteq_f32() is zero, positive infinity is returned.
const uint32x4_t vec_p_inf = vdupq_n_u32(0x7F800000);
// check for divide by zero
const uint32x4_t div_by_zero = vceqq_u32(vec_p_inf, vreinterpretq_u32_f32(x));
// zero out the positive infinity results
x = vreinterpretq_f32_u32(
vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(x)));
// from arm documentation
// The Newton-Raphson iteration:
// x[n+1] = x[n] * (3 - d * (x[n] * x[n])) / 2)
// converges to (1/√d) if x0 is the result of VRSQRTE applied to d.
//
// Note: The precision did not improve after 2 iterations.
for (i = 0; i < 2; i++) {
x = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, x), s), x);
}
// sqrt(s) = s * 1/sqrt(s)
return vmulq_f32(s, x);
}
#endif // WEBRTC_ARCH_ARM64
static void ScaleErrorSignalNEON(float mu,
float error_threshold,
float x_pow[PART_LEN1],
float ef[2][PART_LEN1]) {
const float32x4_t k1e_10f = vdupq_n_f32(1e-10f);
const float32x4_t kMu = vmovq_n_f32(mu);
const float32x4_t kThresh = vmovq_n_f32(error_threshold);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t x_pow_local = vld1q_f32(&x_pow[i]);
const float32x4_t ef_re_base = vld1q_f32(&ef[0][i]);
const float32x4_t ef_im_base = vld1q_f32(&ef[1][i]);
const float32x4_t xPowPlus = vaddq_f32(x_pow_local, k1e_10f);
float32x4_t ef_re = vdivq_f32(ef_re_base, xPowPlus);
float32x4_t ef_im = vdivq_f32(ef_im_base, xPowPlus);
const float32x4_t ef_re2 = vmulq_f32(ef_re, ef_re);
const float32x4_t ef_sum2 = vmlaq_f32(ef_re2, ef_im, ef_im);
const float32x4_t absEf = vsqrtq_f32(ef_sum2);
const uint32x4_t bigger = vcgtq_f32(absEf, kThresh);
const float32x4_t absEfPlus = vaddq_f32(absEf, k1e_10f);
const float32x4_t absEfInv = vdivq_f32(kThresh, absEfPlus);
uint32x4_t ef_re_if = vreinterpretq_u32_f32(vmulq_f32(ef_re, absEfInv));
uint32x4_t ef_im_if = vreinterpretq_u32_f32(vmulq_f32(ef_im, absEfInv));
uint32x4_t ef_re_u32 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_re));
uint32x4_t ef_im_u32 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(ef_im));
ef_re_if = vandq_u32(bigger, ef_re_if);
ef_im_if = vandq_u32(bigger, ef_im_if);
ef_re_u32 = vorrq_u32(ef_re_u32, ef_re_if);
ef_im_u32 = vorrq_u32(ef_im_u32, ef_im_if);
ef_re = vmulq_f32(vreinterpretq_f32_u32(ef_re_u32), kMu);
ef_im = vmulq_f32(vreinterpretq_f32_u32(ef_im_u32), kMu);
vst1q_f32(&ef[0][i], ef_re);
vst1q_f32(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
float abs_ef;
ef[0][i] /= (x_pow[i] + 1e-10f);
ef[1][i] /= (x_pow[i] + 1e-10f);
abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (abs_ef > error_threshold) {
abs_ef = error_threshold / (abs_ef + 1e-10f);
ef[0][i] *= abs_ef;
ef[1][i] *= abs_ef;
}
// Stepsize factor
ef[0][i] *= mu;
ef[1][i] *= mu;
}
}
static void FilterAdaptationNEON(
const OouraFft& ooura_fft,
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float e_fft[2][PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
float fft[PART_LEN2];
int i;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
int j;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// Process the whole array...
for (j = 0; j < PART_LEN; j += 4) {
// Load x_fft_buf and e_fft.
const float32x4_t x_fft_buf_re = vld1q_f32(&x_fft_buf[0][xPos + j]);
const float32x4_t x_fft_buf_im = vld1q_f32(&x_fft_buf[1][xPos + j]);
const float32x4_t e_fft_re = vld1q_f32(&e_fft[0][j]);
const float32x4_t e_fft_im = vld1q_f32(&e_fft[1][j]);
// Calculate the product of conjugate(x_fft_buf) by e_fft.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const float32x4_t a = vmulq_f32(x_fft_buf_re, e_fft_re);
const float32x4_t e = vmlaq_f32(a, x_fft_buf_im, e_fft_im);
const float32x4_t c = vmulq_f32(x_fft_buf_re, e_fft_im);
const float32x4_t f = vmlsq_f32(c, x_fft_buf_im, e_fft_re);
// Interleave real and imaginary parts.
const float32x4x2_t g_n_h = vzipq_f32(e, f);
// Store
vst1q_f32(&fft[2 * j + 0], g_n_h.val[0]);
vst1q_f32(&fft[2 * j + 4], g_n_h.val[1]);
}
// ... and fixup the first imaginary entry.
fft[1] =
MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
ooura_fft.InverseFft(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
const float scale = 2.0f / PART_LEN2;
const float32x4_t scale_ps = vmovq_n_f32(scale);
for (j = 0; j < PART_LEN; j += 4) {
const float32x4_t fft_ps = vld1q_f32(&fft[j]);
const float32x4_t fft_scale = vmulq_f32(fft_ps, scale_ps);
vst1q_f32(&fft[j], fft_scale);
}
}
ooura_fft.Fft(fft);
{
const float wt1 = h_fft_buf[1][pos];
h_fft_buf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j += 4) {
float32x4_t wtBuf_re = vld1q_f32(&h_fft_buf[0][pos + j]);
float32x4_t wtBuf_im = vld1q_f32(&h_fft_buf[1][pos + j]);
const float32x4_t fft0 = vld1q_f32(&fft[2 * j + 0]);
const float32x4_t fft4 = vld1q_f32(&fft[2 * j + 4]);
const float32x4x2_t fft_re_im = vuzpq_f32(fft0, fft4);
wtBuf_re = vaddq_f32(wtBuf_re, fft_re_im.val[0]);
wtBuf_im = vaddq_f32(wtBuf_im, fft_re_im.val[1]);
vst1q_f32(&h_fft_buf[0][pos + j], wtBuf_re);
vst1q_f32(&h_fft_buf[1][pos + j], wtBuf_im);
}
h_fft_buf[1][pos] = wt1;
}
}
}
static float32x4_t vpowq_f32(float32x4_t a, float32x4_t b) {
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
float32x4_t log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
const uint32x4_t vec_float_exponent_mask = vdupq_n_u32(0x7F800000);
const uint32x4_t vec_eight_biased_exponent = vdupq_n_u32(0x43800000);
const uint32x4_t vec_implicit_leading_one = vdupq_n_u32(0x43BF8000);
const uint32x4_t two_n =
vandq_u32(vreinterpretq_u32_f32(a), vec_float_exponent_mask);
const uint32x4_t n_1 = vshrq_n_u32(two_n, kShiftExponentIntoTopMantissa);
const uint32x4_t n_0 = vorrq_u32(n_1, vec_eight_biased_exponent);
const float32x4_t n =
vsubq_f32(vreinterpretq_f32_u32(n_0),
vreinterpretq_f32_u32(vec_implicit_leading_one));
// Compute y.
const uint32x4_t vec_mantissa_mask = vdupq_n_u32(0x007FFFFF);
const uint32x4_t vec_zero_biased_exponent_is_one = vdupq_n_u32(0x3F800000);
const uint32x4_t mantissa =
vandq_u32(vreinterpretq_u32_f32(a), vec_mantissa_mask);
const float32x4_t y = vreinterpretq_f32_u32(
vorrq_u32(mantissa, vec_zero_biased_exponent_is_one));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
const float32x4_t C5 = vdupq_n_f32(-3.4436006e-2f);
const float32x4_t C4 = vdupq_n_f32(3.1821337e-1f);
const float32x4_t C3 = vdupq_n_f32(-1.2315303f);
const float32x4_t C2 = vdupq_n_f32(2.5988452f);
const float32x4_t C1 = vdupq_n_f32(-3.3241990f);
const float32x4_t C0 = vdupq_n_f32(3.1157899f);
float32x4_t pol5_y = C5;
pol5_y = vmlaq_f32(C4, y, pol5_y);
pol5_y = vmlaq_f32(C3, y, pol5_y);
pol5_y = vmlaq_f32(C2, y, pol5_y);
pol5_y = vmlaq_f32(C1, y, pol5_y);
pol5_y = vmlaq_f32(C0, y, pol5_y);
const float32x4_t y_minus_one =
vsubq_f32(y, vreinterpretq_f32_u32(vec_zero_biased_exponent_is_one));
const float32x4_t log2_y = vmulq_f32(y_minus_one, pol5_y);
// Combine parts.
log2_a = vaddq_f32(n, log2_y);
}
// b * log2(a)
b_log2_a = vmulq_f32(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
const float32x4_t max_input = vdupq_n_f32(129.f);
const float32x4_t min_input = vdupq_n_f32(-126.99999f);
const float32x4_t x_min = vminq_f32(b_log2_a, max_input);
const float32x4_t x_max = vmaxq_f32(x_min, min_input);
// Compute n.
const float32x4_t half = vdupq_n_f32(0.5f);
const float32x4_t x_minus_half = vsubq_f32(x_max, half);
const int32x4_t x_minus_half_floor = vcvtq_s32_f32(x_minus_half);
// Compute 2^n.
const int32x4_t float_exponent_bias = vdupq_n_s32(127);
const int32x4_t two_n_exponent =
vaddq_s32(x_minus_half_floor, float_exponent_bias);
const float32x4_t two_n =
vreinterpretq_f32_s32(vshlq_n_s32(two_n_exponent, kFloatExponentShift));
// Compute y.
const float32x4_t y = vsubq_f32(x_max, vcvtq_f32_s32(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
const float32x4_t C2 = vdupq_n_f32(3.3718944e-1f);
const float32x4_t C1 = vdupq_n_f32(6.5763628e-1f);
const float32x4_t C0 = vdupq_n_f32(1.0017247f);
float32x4_t exp2_y = C2;
exp2_y = vmlaq_f32(C1, y, exp2_y);
exp2_y = vmlaq_f32(C0, y, exp2_y);
// Combine parts.
a_exp_b = vmulq_f32(exp2_y, two_n);
}
return a_exp_b;
}
static void OverdriveNEON(float overdrive_scaling,
float hNlFb,
float hNl[PART_LEN1]) {
int i;
const float32x4_t vec_hNlFb = vmovq_n_f32(hNlFb);
const float32x4_t vec_one = vdupq_n_f32(1.0f);
const float32x4_t vec_overdrive_scaling = vmovq_n_f32(overdrive_scaling);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
// Weight subbands
float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
const float32x4_t vec_weightCurve = vld1q_f32(&WebRtcAec_weightCurve[i]);
const uint32x4_t bigger = vcgtq_f32(vec_hNl, vec_hNlFb);
const float32x4_t vec_weightCurve_hNlFb =
vmulq_f32(vec_weightCurve, vec_hNlFb);
const float32x4_t vec_one_weightCurve = vsubq_f32(vec_one, vec_weightCurve);
const float32x4_t vec_one_weightCurve_hNl =
vmulq_f32(vec_one_weightCurve, vec_hNl);
const uint32x4_t vec_if0 =
vandq_u32(vmvnq_u32(bigger), vreinterpretq_u32_f32(vec_hNl));
const float32x4_t vec_one_weightCurve_add =
vaddq_f32(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl);
const uint32x4_t vec_if1 =
vandq_u32(bigger, vreinterpretq_u32_f32(vec_one_weightCurve_add));
vec_hNl = vreinterpretq_f32_u32(vorrq_u32(vec_if0, vec_if1));
const float32x4_t vec_overDriveCurve =
vld1q_f32(&WebRtcAec_overDriveCurve[i]);
const float32x4_t vec_overDriveSm_overDriveCurve =
vmulq_f32(vec_overdrive_scaling, vec_overDriveCurve);
vec_hNl = vpowq_f32(vec_hNl, vec_overDriveSm_overDriveCurve);
vst1q_f32(&hNl[i], vec_hNl);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]);
}
}
static void SuppressNEON(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) {
int i;
const float32x4_t vec_minus_one = vdupq_n_f32(-1.0f);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
float32x4_t vec_hNl = vld1q_f32(&hNl[i]);
float32x4_t vec_efw_re = vld1q_f32(&efw[0][i]);
float32x4_t vec_efw_im = vld1q_f32(&efw[1][i]);
vec_efw_re = vmulq_f32(vec_efw_re, vec_hNl);
vec_efw_im = vmulq_f32(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = vmulq_f32(vec_efw_im, vec_minus_one);
vst1q_f32(&efw[0][i], vec_efw_re);
vst1q_f32(&efw[1][i], vec_efw_im);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
static int PartitionDelayNEON(
int num_partitions,
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
// Measures the energy in each filter partition and returns the partition with
// highest energy.
// TODO(bjornv): Spread computational cost by computing one partition per
// block?
float wfEnMax = 0;
int i;
int delay = 0;
for (i = 0; i < num_partitions; i++) {
int j;
int pos = i * PART_LEN1;
float wfEn = 0;
float32x4_t vec_wfEn = vdupq_n_f32(0.0f);
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const float32x4_t vec_wfBuf0 = vld1q_f32(&h_fft_buf[0][pos + j]);
const float32x4_t vec_wfBuf1 = vld1q_f32(&h_fft_buf[1][pos + j]);
vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf0, vec_wfBuf0);
vec_wfEn = vmlaq_f32(vec_wfEn, vec_wfBuf1, vec_wfBuf1);
}
{
float32x2_t vec_total;
// A B C D
vec_total = vpadd_f32(vget_low_f32(vec_wfEn), vget_high_f32(vec_wfEn));
// A+B C+D
vec_total = vpadd_f32(vec_total, vec_total);
// A+B+C+D A+B+C+D
wfEn = vget_lane_f32(vec_total, 0);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] +
h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j];
}
if (wfEn > wfEnMax) {
wfEnMax = wfEn;
delay = i;
}
}
return delay;
}
// Updates the following smoothed Power Spectral Densities (PSD):
// - sd : near-end
// - se : residual echo
// - sx : far-end
// - sde : cross-PSD of near-end and residual echo
// - sxd : cross-PSD of near-end and far-end
//
// In addition to updating the PSDs, also the filter diverge state is determined
// upon actions are taken.
static void UpdateCoherenceSpectraNEON(int mult,
bool extended_filter_enabled,
float efw[2][PART_LEN1],
float dfw[2][PART_LEN1],
float xfw[2][PART_LEN1],
CoherenceState* coherence_state,
short* filter_divergence_state,
int* extreme_filter_divergence) {
// Power estimate smoothing coefficients.
const float* ptrGCoh =
extended_filter_enabled
? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1]
: WebRtcAec_kNormalSmoothingCoefficients[mult - 1];
int i;
float sdSum = 0, seSum = 0;
const float32x4_t vec_15 = vdupq_n_f32(WebRtcAec_kMinFarendPSD);
float32x4_t vec_sdSum = vdupq_n_f32(0.0f);
float32x4_t vec_seSum = vdupq_n_f32(0.0f);
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t vec_dfw0 = vld1q_f32(&dfw[0][i]);
const float32x4_t vec_dfw1 = vld1q_f32(&dfw[1][i]);
const float32x4_t vec_efw0 = vld1q_f32(&efw[0][i]);
const float32x4_t vec_efw1 = vld1q_f32(&efw[1][i]);
const float32x4_t vec_xfw0 = vld1q_f32(&xfw[0][i]);
const float32x4_t vec_xfw1 = vld1q_f32(&xfw[1][i]);
float32x4_t vec_sd =
vmulq_n_f32(vld1q_f32(&coherence_state->sd[i]), ptrGCoh[0]);
float32x4_t vec_se =
vmulq_n_f32(vld1q_f32(&coherence_state->se[i]), ptrGCoh[0]);
float32x4_t vec_sx =
vmulq_n_f32(vld1q_f32(&coherence_state->sx[i]), ptrGCoh[0]);
float32x4_t vec_dfw_sumsq = vmulq_f32(vec_dfw0, vec_dfw0);
float32x4_t vec_efw_sumsq = vmulq_f32(vec_efw0, vec_efw0);
float32x4_t vec_xfw_sumsq = vmulq_f32(vec_xfw0, vec_xfw0);
vec_dfw_sumsq = vmlaq_f32(vec_dfw_sumsq, vec_dfw1, vec_dfw1);
vec_efw_sumsq = vmlaq_f32(vec_efw_sumsq, vec_efw1, vec_efw1);
vec_xfw_sumsq = vmlaq_f32(vec_xfw_sumsq, vec_xfw1, vec_xfw1);
vec_xfw_sumsq = vmaxq_f32(vec_xfw_sumsq, vec_15);
vec_sd = vmlaq_n_f32(vec_sd, vec_dfw_sumsq, ptrGCoh[1]);
vec_se = vmlaq_n_f32(vec_se, vec_efw_sumsq, ptrGCoh[1]);
vec_sx = vmlaq_n_f32(vec_sx, vec_xfw_sumsq, ptrGCoh[1]);
vst1q_f32(&coherence_state->sd[i], vec_sd);
vst1q_f32(&coherence_state->se[i], vec_se);
vst1q_f32(&coherence_state->sx[i], vec_sx);
{
float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]);
float32x4_t vec_dfwefw0011 = vmulq_f32(vec_dfw0, vec_efw0);
float32x4_t vec_dfwefw0110 = vmulq_f32(vec_dfw0, vec_efw1);
vec_sde.val[0] = vmulq_n_f32(vec_sde.val[0], ptrGCoh[0]);
vec_sde.val[1] = vmulq_n_f32(vec_sde.val[1], ptrGCoh[0]);
vec_dfwefw0011 = vmlaq_f32(vec_dfwefw0011, vec_dfw1, vec_efw1);
vec_dfwefw0110 = vmlsq_f32(vec_dfwefw0110, vec_dfw1, vec_efw0);
vec_sde.val[0] = vmlaq_n_f32(vec_sde.val[0], vec_dfwefw0011, ptrGCoh[1]);
vec_sde.val[1] = vmlaq_n_f32(vec_sde.val[1], vec_dfwefw0110, ptrGCoh[1]);
vst2q_f32(&coherence_state->sde[i][0], vec_sde);
}
{
float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]);
float32x4_t vec_dfwxfw0011 = vmulq_f32(vec_dfw0, vec_xfw0);
float32x4_t vec_dfwxfw0110 = vmulq_f32(vec_dfw0, vec_xfw1);
vec_sxd.val[0] = vmulq_n_f32(vec_sxd.val[0], ptrGCoh[0]);
vec_sxd.val[1] = vmulq_n_f32(vec_sxd.val[1], ptrGCoh[0]);
vec_dfwxfw0011 = vmlaq_f32(vec_dfwxfw0011, vec_dfw1, vec_xfw1);
vec_dfwxfw0110 = vmlsq_f32(vec_dfwxfw0110, vec_dfw1, vec_xfw0);
vec_sxd.val[0] = vmlaq_n_f32(vec_sxd.val[0], vec_dfwxfw0011, ptrGCoh[1]);
vec_sxd.val[1] = vmlaq_n_f32(vec_sxd.val[1], vec_dfwxfw0110, ptrGCoh[1]);
vst2q_f32(&coherence_state->sxd[i][0], vec_sxd);
}
vec_sdSum = vaddq_f32(vec_sdSum, vec_sd);
vec_seSum = vaddq_f32(vec_seSum, vec_se);
}
{
float32x2_t vec_sdSum_total;
float32x2_t vec_seSum_total;
// A B C D
vec_sdSum_total =
vpadd_f32(vget_low_f32(vec_sdSum), vget_high_f32(vec_sdSum));
vec_seSum_total =
vpadd_f32(vget_low_f32(vec_seSum), vget_high_f32(vec_seSum));
// A+B C+D
vec_sdSum_total = vpadd_f32(vec_sdSum_total, vec_sdSum_total);
vec_seSum_total = vpadd_f32(vec_seSum_total, vec_seSum_total);
// A+B+C+D A+B+C+D
sdSum = vget_lane_f32(vec_sdSum_total, 0);
seSum = vget_lane_f32(vec_seSum_total, 0);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
coherence_state->sd[i] =
ptrGCoh[0] * coherence_state->sd[i] +
ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
coherence_state->se[i] =
ptrGCoh[0] * coherence_state->se[i] +
ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
// We threshold here to protect against the ill-effects of a zero farend.
// The threshold is not arbitrarily chosen, but balances protection and
// adverse interaction with the algorithm's tuning.
// TODO(bjornv): investigate further why this is so sensitive.
coherence_state->sx[i] =
ptrGCoh[0] * coherence_state->sx[i] +
ptrGCoh[1] *
WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
WebRtcAec_kMinFarendPSD);
coherence_state->sde[i][0] =
ptrGCoh[0] * coherence_state->sde[i][0] +
ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
coherence_state->sde[i][1] =
ptrGCoh[0] * coherence_state->sde[i][1] +
ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
coherence_state->sxd[i][0] =
ptrGCoh[0] * coherence_state->sxd[i][0] +
ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
coherence_state->sxd[i][1] =
ptrGCoh[0] * coherence_state->sxd[i][1] +
ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
sdSum += coherence_state->sd[i];
seSum += coherence_state->se[i];
}
// Divergent filter safeguard update.
*filter_divergence_state =
(*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum;
// Signal extreme filter divergence if the error is significantly larger
// than the nearend (13 dB).
*extreme_filter_divergence = (seSum > (19.95f * sdSum));
}
// Window time domain data to be used by the fft.
static void WindowDataNEON(float* x_windowed, const float* x) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const float32x4_t vec_Buf1 = vld1q_f32(&x[i]);
const float32x4_t vec_Buf2 = vld1q_f32(&x[PART_LEN + i]);
const float32x4_t vec_sqrtHanning = vld1q_f32(&WebRtcAec_sqrtHanning[i]);
// A B C D
float32x4_t vec_sqrtHanning_rev =
vld1q_f32(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
// B A D C
vec_sqrtHanning_rev = vrev64q_f32(vec_sqrtHanning_rev);
// D C B A
vec_sqrtHanning_rev = vcombine_f32(vget_high_f32(vec_sqrtHanning_rev),
vget_low_f32(vec_sqrtHanning_rev));
vst1q_f32(&x_windowed[i], vmulq_f32(vec_Buf1, vec_sqrtHanning));
vst1q_f32(&x_windowed[PART_LEN + i],
vmulq_f32(vec_Buf2, vec_sqrtHanning_rev));
}
}
// Puts fft output data into a complex valued array.
static void StoreAsComplexNEON(const float* data,
float data_complex[2][PART_LEN1]) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const float32x4x2_t vec_data = vld2q_f32(&data[2 * i]);
vst1q_f32(&data_complex[0][i], vec_data.val[0]);
vst1q_f32(&data_complex[1][i], vec_data.val[1]);
}
// fix beginning/end values
data_complex[1][0] = 0;
data_complex[1][PART_LEN] = 0;
data_complex[0][0] = data[0];
data_complex[0][PART_LEN] = data[1];
}
static void ComputeCoherenceNEON(const CoherenceState* coherence_state,
float* cohde,
float* cohxd) {
int i;
{
const float32x4_t vec_1eminus10 = vdupq_n_f32(1e-10f);
// Subband coherence
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const float32x4_t vec_sd = vld1q_f32(&coherence_state->sd[i]);
const float32x4_t vec_se = vld1q_f32(&coherence_state->se[i]);
const float32x4_t vec_sx = vld1q_f32(&coherence_state->sx[i]);
const float32x4_t vec_sdse = vmlaq_f32(vec_1eminus10, vec_sd, vec_se);
const float32x4_t vec_sdsx = vmlaq_f32(vec_1eminus10, vec_sd, vec_sx);
float32x4x2_t vec_sde = vld2q_f32(&coherence_state->sde[i][0]);
float32x4x2_t vec_sxd = vld2q_f32(&coherence_state->sxd[i][0]);
float32x4_t vec_cohde = vmulq_f32(vec_sde.val[0], vec_sde.val[0]);
float32x4_t vec_cohxd = vmulq_f32(vec_sxd.val[0], vec_sxd.val[0]);
vec_cohde = vmlaq_f32(vec_cohde, vec_sde.val[1], vec_sde.val[1]);
vec_cohde = vdivq_f32(vec_cohde, vec_sdse);
vec_cohxd = vmlaq_f32(vec_cohxd, vec_sxd.val[1], vec_sxd.val[1]);
vec_cohxd = vdivq_f32(vec_cohxd, vec_sdsx);
vst1q_f32(&cohde[i], vec_cohde);
vst1q_f32(&cohxd[i], vec_cohxd);
}
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] +
coherence_state->sde[i][1] * coherence_state->sde[i][1]) /
(coherence_state->sd[i] * coherence_state->se[i] + 1e-10f);
cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] +
coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) /
(coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f);
}
}
void WebRtcAec_InitAec_neon(void) {
WebRtcAec_FilterFar = FilterFarNEON;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalNEON;
WebRtcAec_FilterAdaptation = FilterAdaptationNEON;
WebRtcAec_Overdrive = OverdriveNEON;
WebRtcAec_Suppress = SuppressNEON;
WebRtcAec_ComputeCoherence = ComputeCoherenceNEON;
WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectraNEON;
WebRtcAec_StoreAsComplex = StoreAsComplexNEON;
WebRtcAec_PartitionDelay = PartitionDelayNEON;
WebRtcAec_WindowData = WindowDataNEON;
}
} // namespace webrtc

View File

@ -1,79 +0,0 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_OPTIMIZED_METHODS_H_
#define MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_OPTIMIZED_METHODS_H_
#include <memory>
#include "modules/audio_processing/aec/aec_core.h"
namespace webrtc {
typedef void (*WebRtcAecFilterFar)(
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float y_fft[2][PART_LEN1]);
extern WebRtcAecFilterFar WebRtcAec_FilterFar;
typedef void (*WebRtcAecScaleErrorSignal)(float mu,
float error_threshold,
float x_pow[PART_LEN1],
float ef[2][PART_LEN1]);
extern WebRtcAecScaleErrorSignal WebRtcAec_ScaleErrorSignal;
typedef void (*WebRtcAecFilterAdaptation)(
const OouraFft& ooura_fft,
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float e_fft[2][PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]);
extern WebRtcAecFilterAdaptation WebRtcAec_FilterAdaptation;
typedef void (*WebRtcAecOverdrive)(float overdrive_scaling,
const float hNlFb,
float hNl[PART_LEN1]);
extern WebRtcAecOverdrive WebRtcAec_Overdrive;
typedef void (*WebRtcAecSuppress)(const float hNl[PART_LEN1],
float efw[2][PART_LEN1]);
extern WebRtcAecSuppress WebRtcAec_Suppress;
typedef void (*WebRtcAecComputeCoherence)(const CoherenceState* coherence_state,
float* cohde,
float* cohxd);
extern WebRtcAecComputeCoherence WebRtcAec_ComputeCoherence;
typedef void (*WebRtcAecUpdateCoherenceSpectra)(int mult,
bool extended_filter_enabled,
float efw[2][PART_LEN1],
float dfw[2][PART_LEN1],
float xfw[2][PART_LEN1],
CoherenceState* coherence_state,
short* filter_divergence_state,
int* extreme_filter_divergence);
extern WebRtcAecUpdateCoherenceSpectra WebRtcAec_UpdateCoherenceSpectra;
typedef int (*WebRtcAecPartitionDelay)(
int num_partitions,
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]);
extern WebRtcAecPartitionDelay WebRtcAec_PartitionDelay;
typedef void (*WebRtcAecStoreAsComplex)(const float* data,
float data_complex[2][PART_LEN1]);
extern WebRtcAecStoreAsComplex WebRtcAec_StoreAsComplex;
typedef void (*WebRtcAecWindowData)(float* x_windowed, const float* x);
extern WebRtcAecWindowData WebRtcAec_WindowData;
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_OPTIMIZED_METHODS_H_

View File

@ -1,749 +0,0 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, SSE2 version of speed-critical functions.
*/
#include <emmintrin.h>
#include <math.h>
#include <string.h> // memset
extern "C" {
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aec/aec_common.h"
#include "modules/audio_processing/aec/aec_core_optimized_methods.h"
#include "modules/audio_processing/utility/ooura_fft.h"
namespace webrtc {
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
return aRe * bIm + aIm * bRe;
}
static void FilterFarSSE2(
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float y_fft[2][PART_LEN1]) {
int i;
for (i = 0; i < num_partitions; i++) {
int j;
int xPos = (i + x_fft_buf_block_pos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * (PART_LEN1);
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
const __m128 h_fft_buf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
const __m128 h_fft_buf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
const __m128 y_fft_re = _mm_loadu_ps(&y_fft[0][j]);
const __m128 y_fft_im = _mm_loadu_ps(&y_fft[1][j]);
const __m128 a = _mm_mul_ps(x_fft_buf_re, h_fft_buf_re);
const __m128 b = _mm_mul_ps(x_fft_buf_im, h_fft_buf_im);
const __m128 c = _mm_mul_ps(x_fft_buf_re, h_fft_buf_im);
const __m128 d = _mm_mul_ps(x_fft_buf_im, h_fft_buf_re);
const __m128 e = _mm_sub_ps(a, b);
const __m128 f = _mm_add_ps(c, d);
const __m128 g = _mm_add_ps(y_fft_re, e);
const __m128 h = _mm_add_ps(y_fft_im, f);
_mm_storeu_ps(&y_fft[0][j], g);
_mm_storeu_ps(&y_fft[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
y_fft[0][j] += MulRe(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
y_fft[1][j] += MulIm(x_fft_buf[0][xPos + j], x_fft_buf[1][xPos + j],
h_fft_buf[0][pos + j], h_fft_buf[1][pos + j]);
}
}
}
static void ScaleErrorSignalSSE2(float mu,
float error_threshold,
float x_pow[PART_LEN1],
float ef[2][PART_LEN1]) {
const __m128 k1e_10f = _mm_set1_ps(1e-10f);
const __m128 kMu = _mm_set1_ps(mu);
const __m128 kThresh = _mm_set1_ps(error_threshold);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 x_pow_local = _mm_loadu_ps(&x_pow[i]);
const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
const __m128 xPowPlus = _mm_add_ps(x_pow_local, k1e_10f);
__m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
__m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
const __m128 absEf = _mm_sqrt_ps(ef_sum2);
const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
__m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
__m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
__m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
ef_re_if = _mm_and_ps(bigger, ef_re_if);
ef_im_if = _mm_and_ps(bigger, ef_im_if);
ef_re = _mm_andnot_ps(bigger, ef_re);
ef_im = _mm_andnot_ps(bigger, ef_im);
ef_re = _mm_or_ps(ef_re, ef_re_if);
ef_im = _mm_or_ps(ef_im, ef_im_if);
ef_re = _mm_mul_ps(ef_re, kMu);
ef_im = _mm_mul_ps(ef_im, kMu);
_mm_storeu_ps(&ef[0][i], ef_re);
_mm_storeu_ps(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
{
for (; i < (PART_LEN1); i++) {
float abs_ef;
ef[0][i] /= (x_pow[i] + 1e-10f);
ef[1][i] /= (x_pow[i] + 1e-10f);
abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (abs_ef > error_threshold) {
abs_ef = error_threshold / (abs_ef + 1e-10f);
ef[0][i] *= abs_ef;
ef[1][i] *= abs_ef;
}
// Stepsize factor
ef[0][i] *= mu;
ef[1][i] *= mu;
}
}
}
static void FilterAdaptationSSE2(
const OouraFft& ooura_fft,
int num_partitions,
int x_fft_buf_block_pos,
float x_fft_buf[2][kExtendedNumPartitions * PART_LEN1],
float e_fft[2][PART_LEN1],
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
float fft[PART_LEN2];
int i, j;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + x_fft_buf_block_pos) * (PART_LEN1);
int pos = i * PART_LEN1;
// Check for wrap
if (i + x_fft_buf_block_pos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// Process the whole array...
for (j = 0; j < PART_LEN; j += 4) {
// Load x_fft_buf and e_fft.
const __m128 x_fft_buf_re = _mm_loadu_ps(&x_fft_buf[0][xPos + j]);
const __m128 x_fft_buf_im = _mm_loadu_ps(&x_fft_buf[1][xPos + j]);
const __m128 e_fft_re = _mm_loadu_ps(&e_fft[0][j]);
const __m128 e_fft_im = _mm_loadu_ps(&e_fft[1][j]);
// Calculate the product of conjugate(x_fft_buf) by e_fft.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const __m128 a = _mm_mul_ps(x_fft_buf_re, e_fft_re);
const __m128 b = _mm_mul_ps(x_fft_buf_im, e_fft_im);
const __m128 c = _mm_mul_ps(x_fft_buf_re, e_fft_im);
const __m128 d = _mm_mul_ps(x_fft_buf_im, e_fft_re);
const __m128 e = _mm_add_ps(a, b);
const __m128 f = _mm_sub_ps(c, d);
// Interleave real and imaginary parts.
const __m128 g = _mm_unpacklo_ps(e, f);
const __m128 h = _mm_unpackhi_ps(e, f);
// Store
_mm_storeu_ps(&fft[2 * j + 0], g);
_mm_storeu_ps(&fft[2 * j + 4], h);
}
// ... and fixup the first imaginary entry.
fft[1] =
MulRe(x_fft_buf[0][xPos + PART_LEN], -x_fft_buf[1][xPos + PART_LEN],
e_fft[0][PART_LEN], e_fft[1][PART_LEN]);
ooura_fft.InverseFft(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
const __m128 scale_ps = _mm_load_ps1(&scale);
for (j = 0; j < PART_LEN; j += 4) {
const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
_mm_storeu_ps(&fft[j], fft_scale);
}
}
ooura_fft.Fft(fft);
{
float wt1 = h_fft_buf[1][pos];
h_fft_buf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j += 4) {
__m128 wtBuf_re = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
__m128 wtBuf_im = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
const __m128 fft_re =
_mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 fft_im =
_mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1));
wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
_mm_storeu_ps(&h_fft_buf[0][pos + j], wtBuf_re);
_mm_storeu_ps(&h_fft_buf[1][pos + j], wtBuf_im);
}
h_fft_buf[1][pos] = wt1;
}
}
}
static __m128 mm_pow_ps(__m128 a, __m128 b) {
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
__m128 log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = {
0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = {
0x43800000, 0x43800000, 0x43800000, 0x43800000};
static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = {
0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
static const int shift_exponent_into_top_mantissa = 8;
const __m128 two_n =
_mm_and_ps(a, *(reinterpret_cast<const __m128*>(float_exponent_mask)));
const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(
_mm_castps_si128(two_n), shift_exponent_into_top_mantissa));
const __m128 n_0 = _mm_or_ps(
n_1, *(reinterpret_cast<const __m128*>(eight_biased_exponent)));
const __m128 n = _mm_sub_ps(
n_0, *(reinterpret_cast<const __m128*>(implicit_leading_one)));
// Compute y.
static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = {
0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = {
0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
const __m128 mantissa =
_mm_and_ps(a, *(reinterpret_cast<const __m128*>(mantissa_mask)));
const __m128 y = _mm_or_ps(
mantissa,
*(reinterpret_cast<const __m128*>(zero_biased_exponent_is_one)));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
static const ALIGN16_BEG float ALIGN16_END C5[4] = {
-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
static const ALIGN16_BEG float ALIGN16_END C4[4] = {
3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
static const ALIGN16_BEG float ALIGN16_END C3[4] = {
-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
static const ALIGN16_BEG float ALIGN16_END C2[4] = {2.5988452f, 2.5988452f,
2.5988452f, 2.5988452f};
static const ALIGN16_BEG float ALIGN16_END C1[4] = {
-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
static const ALIGN16_BEG float ALIGN16_END C0[4] = {3.1157899f, 3.1157899f,
3.1157899f, 3.1157899f};
const __m128 pol5_y_0 =
_mm_mul_ps(y, *(reinterpret_cast<const __m128*>(C5)));
const __m128 pol5_y_1 =
_mm_add_ps(pol5_y_0, *(reinterpret_cast<const __m128*>(C4)));
const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
const __m128 pol5_y_3 =
_mm_add_ps(pol5_y_2, *(reinterpret_cast<const __m128*>(C3)));
const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
const __m128 pol5_y_5 =
_mm_add_ps(pol5_y_4, *(reinterpret_cast<const __m128*>(C2)));
const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
const __m128 pol5_y_7 =
_mm_add_ps(pol5_y_6, *(reinterpret_cast<const __m128*>(C1)));
const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
const __m128 pol5_y =
_mm_add_ps(pol5_y_8, *(reinterpret_cast<const __m128*>(C0)));
const __m128 y_minus_one = _mm_sub_ps(
y, *(reinterpret_cast<const __m128*>(zero_biased_exponent_is_one)));
const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y);
// Combine parts.
log2_a = _mm_add_ps(n, log2_y);
}
// b * log2(a)
b_log2_a = _mm_mul_ps(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f,
129.f, 129.f};
static const ALIGN16_BEG float min_input[4] ALIGN16_END = {
-126.99999f, -126.99999f, -126.99999f, -126.99999f};
const __m128 x_min =
_mm_min_ps(b_log2_a, *(reinterpret_cast<const __m128*>(max_input)));
const __m128 x_max =
_mm_max_ps(x_min, *(reinterpret_cast<const __m128*>(min_input)));
// Compute n.
static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 0.5f,
0.5f};
const __m128 x_minus_half =
_mm_sub_ps(x_max, *(reinterpret_cast<const __m128*>(half)));
const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
// Compute 2^n.
static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = {
127, 127, 127, 127};
static const int float_exponent_shift = 23;
const __m128i two_n_exponent =
_mm_add_epi32(x_minus_half_floor,
*(reinterpret_cast<const __m128i*>(float_exponent_bias)));
const __m128 two_n =
_mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift));
// Compute y.
const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
static const ALIGN16_BEG float C2[4] ALIGN16_END = {
3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
static const ALIGN16_BEG float C1[4] ALIGN16_END = {
6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f,
1.0017247f, 1.0017247f};
const __m128 exp2_y_0 =
_mm_mul_ps(y, *(reinterpret_cast<const __m128*>(C2)));
const __m128 exp2_y_1 =
_mm_add_ps(exp2_y_0, *(reinterpret_cast<const __m128*>(C1)));
const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
const __m128 exp2_y =
_mm_add_ps(exp2_y_2, *(reinterpret_cast<const __m128*>(C0)));
// Combine parts.
a_exp_b = _mm_mul_ps(exp2_y, two_n);
}
return a_exp_b;
}
static void OverdriveSSE2(float overdrive_scaling,
float hNlFb,
float hNl[PART_LEN1]) {
int i;
const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
const __m128 vec_one = _mm_set1_ps(1.0f);
const __m128 vec_overdrive_scaling = _mm_set1_ps(overdrive_scaling);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
// Weight subbands
__m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb);
const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
const __m128 vec_one_weightCurve_hNl =
_mm_mul_ps(vec_one_weightCurve, vec_hNl);
const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
const __m128 vec_if1 = _mm_and_ps(
bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
vec_hNl = _mm_or_ps(vec_if0, vec_if1);
const __m128 vec_overDriveCurve =
_mm_loadu_ps(&WebRtcAec_overDriveCurve[i]);
const __m128 vec_overDriveSm_overDriveCurve =
_mm_mul_ps(vec_overdrive_scaling, vec_overDriveCurve);
vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
_mm_storeu_ps(&hNl[i], vec_hNl);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], overdrive_scaling * WebRtcAec_overDriveCurve[i]);
}
}
static void SuppressSSE2(const float hNl[PART_LEN1], float efw[2][PART_LEN1]) {
int i;
const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
// Suppress error signal
__m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
__m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
__m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
_mm_storeu_ps(&efw[0][i], vec_efw_re);
_mm_storeu_ps(&efw[1][i], vec_efw_im);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Suppress error signal
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
__inline static void _mm_add_ps_4x1(__m128 sum, float* dst) {
// A+B C+D
sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(0, 0, 3, 2)));
// A+B+C+D A+B+C+D
sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dst, sum);
}
static int PartitionDelaySSE2(
int num_partitions,
float h_fft_buf[2][kExtendedNumPartitions * PART_LEN1]) {
// Measures the energy in each filter partition and returns the partition with
// highest energy.
// TODO(bjornv): Spread computational cost by computing one partition per
// block?
float wfEnMax = 0;
int i;
int delay = 0;
for (i = 0; i < num_partitions; i++) {
int j;
int pos = i * PART_LEN1;
float wfEn = 0;
__m128 vec_wfEn = _mm_set1_ps(0.0f);
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 vec_wfBuf0 = _mm_loadu_ps(&h_fft_buf[0][pos + j]);
const __m128 vec_wfBuf1 = _mm_loadu_ps(&h_fft_buf[1][pos + j]);
vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf0, vec_wfBuf0));
vec_wfEn = _mm_add_ps(vec_wfEn, _mm_mul_ps(vec_wfBuf1, vec_wfBuf1));
}
_mm_add_ps_4x1(vec_wfEn, &wfEn);
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
wfEn += h_fft_buf[0][pos + j] * h_fft_buf[0][pos + j] +
h_fft_buf[1][pos + j] * h_fft_buf[1][pos + j];
}
if (wfEn > wfEnMax) {
wfEnMax = wfEn;
delay = i;
}
}
return delay;
}
// Updates the following smoothed Power Spectral Densities (PSD):
// - sd : near-end
// - se : residual echo
// - sx : far-end
// - sde : cross-PSD of near-end and residual echo
// - sxd : cross-PSD of near-end and far-end
//
// In addition to updating the PSDs, also the filter diverge state is determined
// upon actions are taken.
static void UpdateCoherenceSpectraSSE2(int mult,
bool extended_filter_enabled,
float efw[2][PART_LEN1],
float dfw[2][PART_LEN1],
float xfw[2][PART_LEN1],
CoherenceState* coherence_state,
short* filter_divergence_state,
int* extreme_filter_divergence) {
// Power estimate smoothing coefficients.
const float* ptrGCoh =
extended_filter_enabled
? WebRtcAec_kExtendedSmoothingCoefficients[mult - 1]
: WebRtcAec_kNormalSmoothingCoefficients[mult - 1];
int i;
float sdSum = 0, seSum = 0;
const __m128 vec_15 = _mm_set1_ps(WebRtcAec_kMinFarendPSD);
const __m128 vec_GCoh0 = _mm_set1_ps(ptrGCoh[0]);
const __m128 vec_GCoh1 = _mm_set1_ps(ptrGCoh[1]);
__m128 vec_sdSum = _mm_set1_ps(0.0f);
__m128 vec_seSum = _mm_set1_ps(0.0f);
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 vec_dfw0 = _mm_loadu_ps(&dfw[0][i]);
const __m128 vec_dfw1 = _mm_loadu_ps(&dfw[1][i]);
const __m128 vec_efw0 = _mm_loadu_ps(&efw[0][i]);
const __m128 vec_efw1 = _mm_loadu_ps(&efw[1][i]);
const __m128 vec_xfw0 = _mm_loadu_ps(&xfw[0][i]);
const __m128 vec_xfw1 = _mm_loadu_ps(&xfw[1][i]);
__m128 vec_sd =
_mm_mul_ps(_mm_loadu_ps(&coherence_state->sd[i]), vec_GCoh0);
__m128 vec_se =
_mm_mul_ps(_mm_loadu_ps(&coherence_state->se[i]), vec_GCoh0);
__m128 vec_sx =
_mm_mul_ps(_mm_loadu_ps(&coherence_state->sx[i]), vec_GCoh0);
__m128 vec_dfw_sumsq = _mm_mul_ps(vec_dfw0, vec_dfw0);
__m128 vec_efw_sumsq = _mm_mul_ps(vec_efw0, vec_efw0);
__m128 vec_xfw_sumsq = _mm_mul_ps(vec_xfw0, vec_xfw0);
vec_dfw_sumsq = _mm_add_ps(vec_dfw_sumsq, _mm_mul_ps(vec_dfw1, vec_dfw1));
vec_efw_sumsq = _mm_add_ps(vec_efw_sumsq, _mm_mul_ps(vec_efw1, vec_efw1));
vec_xfw_sumsq = _mm_add_ps(vec_xfw_sumsq, _mm_mul_ps(vec_xfw1, vec_xfw1));
vec_xfw_sumsq = _mm_max_ps(vec_xfw_sumsq, vec_15);
vec_sd = _mm_add_ps(vec_sd, _mm_mul_ps(vec_dfw_sumsq, vec_GCoh1));
vec_se = _mm_add_ps(vec_se, _mm_mul_ps(vec_efw_sumsq, vec_GCoh1));
vec_sx = _mm_add_ps(vec_sx, _mm_mul_ps(vec_xfw_sumsq, vec_GCoh1));
_mm_storeu_ps(&coherence_state->sd[i], vec_sd);
_mm_storeu_ps(&coherence_state->se[i], vec_se);
_mm_storeu_ps(&coherence_state->sx[i], vec_sx);
{
const __m128 vec_3210 = _mm_loadu_ps(&coherence_state->sde[i][0]);
const __m128 vec_7654 = _mm_loadu_ps(&coherence_state->sde[i + 2][0]);
__m128 vec_a =
_mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
__m128 vec_b =
_mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_dfwefw0011 = _mm_mul_ps(vec_dfw0, vec_efw0);
__m128 vec_dfwefw0110 = _mm_mul_ps(vec_dfw0, vec_efw1);
vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
vec_dfwefw0011 =
_mm_add_ps(vec_dfwefw0011, _mm_mul_ps(vec_dfw1, vec_efw1));
vec_dfwefw0110 =
_mm_sub_ps(vec_dfwefw0110, _mm_mul_ps(vec_dfw1, vec_efw0));
vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwefw0011, vec_GCoh1));
vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwefw0110, vec_GCoh1));
_mm_storeu_ps(&coherence_state->sde[i][0], _mm_unpacklo_ps(vec_a, vec_b));
_mm_storeu_ps(&coherence_state->sde[i + 2][0],
_mm_unpackhi_ps(vec_a, vec_b));
}
{
const __m128 vec_3210 = _mm_loadu_ps(&coherence_state->sxd[i][0]);
const __m128 vec_7654 = _mm_loadu_ps(&coherence_state->sxd[i + 2][0]);
__m128 vec_a =
_mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(2, 0, 2, 0));
__m128 vec_b =
_mm_shuffle_ps(vec_3210, vec_7654, _MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_dfwxfw0011 = _mm_mul_ps(vec_dfw0, vec_xfw0);
__m128 vec_dfwxfw0110 = _mm_mul_ps(vec_dfw0, vec_xfw1);
vec_a = _mm_mul_ps(vec_a, vec_GCoh0);
vec_b = _mm_mul_ps(vec_b, vec_GCoh0);
vec_dfwxfw0011 =
_mm_add_ps(vec_dfwxfw0011, _mm_mul_ps(vec_dfw1, vec_xfw1));
vec_dfwxfw0110 =
_mm_sub_ps(vec_dfwxfw0110, _mm_mul_ps(vec_dfw1, vec_xfw0));
vec_a = _mm_add_ps(vec_a, _mm_mul_ps(vec_dfwxfw0011, vec_GCoh1));
vec_b = _mm_add_ps(vec_b, _mm_mul_ps(vec_dfwxfw0110, vec_GCoh1));
_mm_storeu_ps(&coherence_state->sxd[i][0], _mm_unpacklo_ps(vec_a, vec_b));
_mm_storeu_ps(&coherence_state->sxd[i + 2][0],
_mm_unpackhi_ps(vec_a, vec_b));
}
vec_sdSum = _mm_add_ps(vec_sdSum, vec_sd);
vec_seSum = _mm_add_ps(vec_seSum, vec_se);
}
_mm_add_ps_4x1(vec_sdSum, &sdSum);
_mm_add_ps_4x1(vec_seSum, &seSum);
for (; i < PART_LEN1; i++) {
coherence_state->sd[i] =
ptrGCoh[0] * coherence_state->sd[i] +
ptrGCoh[1] * (dfw[0][i] * dfw[0][i] + dfw[1][i] * dfw[1][i]);
coherence_state->se[i] =
ptrGCoh[0] * coherence_state->se[i] +
ptrGCoh[1] * (efw[0][i] * efw[0][i] + efw[1][i] * efw[1][i]);
// We threshold here to protect against the ill-effects of a zero farend.
// The threshold is not arbitrarily chosen, but balances protection and
// adverse interaction with the algorithm's tuning.
// TODO(bjornv): investigate further why this is so sensitive.
coherence_state->sx[i] =
ptrGCoh[0] * coherence_state->sx[i] +
ptrGCoh[1] *
WEBRTC_SPL_MAX(xfw[0][i] * xfw[0][i] + xfw[1][i] * xfw[1][i],
WebRtcAec_kMinFarendPSD);
coherence_state->sde[i][0] =
ptrGCoh[0] * coherence_state->sde[i][0] +
ptrGCoh[1] * (dfw[0][i] * efw[0][i] + dfw[1][i] * efw[1][i]);
coherence_state->sde[i][1] =
ptrGCoh[0] * coherence_state->sde[i][1] +
ptrGCoh[1] * (dfw[0][i] * efw[1][i] - dfw[1][i] * efw[0][i]);
coherence_state->sxd[i][0] =
ptrGCoh[0] * coherence_state->sxd[i][0] +
ptrGCoh[1] * (dfw[0][i] * xfw[0][i] + dfw[1][i] * xfw[1][i]);
coherence_state->sxd[i][1] =
ptrGCoh[0] * coherence_state->sxd[i][1] +
ptrGCoh[1] * (dfw[0][i] * xfw[1][i] - dfw[1][i] * xfw[0][i]);
sdSum += coherence_state->sd[i];
seSum += coherence_state->se[i];
}
// Divergent filter safeguard update.
*filter_divergence_state =
(*filter_divergence_state ? 1.05f : 1.0f) * seSum > sdSum;
// Signal extreme filter divergence if the error is significantly larger
// than the nearend (13 dB).
*extreme_filter_divergence = (seSum > (19.95f * sdSum));
}
// Window time domain data to be used by the fft.
static void WindowDataSSE2(float* x_windowed, const float* x) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const __m128 vec_Buf1 = _mm_loadu_ps(&x[i]);
const __m128 vec_Buf2 = _mm_loadu_ps(&x[PART_LEN + i]);
const __m128 vec_sqrtHanning = _mm_load_ps(&WebRtcAec_sqrtHanning[i]);
// A B C D
__m128 vec_sqrtHanning_rev =
_mm_loadu_ps(&WebRtcAec_sqrtHanning[PART_LEN - i - 3]);
// D C B A
vec_sqrtHanning_rev = _mm_shuffle_ps(
vec_sqrtHanning_rev, vec_sqrtHanning_rev, _MM_SHUFFLE(0, 1, 2, 3));
_mm_storeu_ps(&x_windowed[i], _mm_mul_ps(vec_Buf1, vec_sqrtHanning));
_mm_storeu_ps(&x_windowed[PART_LEN + i],
_mm_mul_ps(vec_Buf2, vec_sqrtHanning_rev));
}
}
// Puts fft output data into a complex valued array.
static void StoreAsComplexSSE2(const float* data,
float data_complex[2][PART_LEN1]) {
int i;
for (i = 0; i < PART_LEN; i += 4) {
const __m128 vec_fft0 = _mm_loadu_ps(&data[2 * i]);
const __m128 vec_fft4 = _mm_loadu_ps(&data[2 * i + 4]);
const __m128 vec_a =
_mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_b =
_mm_shuffle_ps(vec_fft0, vec_fft4, _MM_SHUFFLE(3, 1, 3, 1));
_mm_storeu_ps(&data_complex[0][i], vec_a);
_mm_storeu_ps(&data_complex[1][i], vec_b);
}
// fix beginning/end values
data_complex[1][0] = 0;
data_complex[1][PART_LEN] = 0;
data_complex[0][0] = data[0];
data_complex[0][PART_LEN] = data[1];
}
static void ComputeCoherenceSSE2(const CoherenceState* coherence_state,
float* cohde,
float* cohxd) {
int i;
{
const __m128 vec_1eminus10 = _mm_set1_ps(1e-10f);
// Subband coherence
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 vec_sd = _mm_loadu_ps(&coherence_state->sd[i]);
const __m128 vec_se = _mm_loadu_ps(&coherence_state->se[i]);
const __m128 vec_sx = _mm_loadu_ps(&coherence_state->sx[i]);
const __m128 vec_sdse =
_mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_se));
const __m128 vec_sdsx =
_mm_add_ps(vec_1eminus10, _mm_mul_ps(vec_sd, vec_sx));
const __m128 vec_sde_3210 = _mm_loadu_ps(&coherence_state->sde[i][0]);
const __m128 vec_sde_7654 = _mm_loadu_ps(&coherence_state->sde[i + 2][0]);
const __m128 vec_sxd_3210 = _mm_loadu_ps(&coherence_state->sxd[i][0]);
const __m128 vec_sxd_7654 = _mm_loadu_ps(&coherence_state->sxd[i + 2][0]);
const __m128 vec_sde_0 =
_mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_sde_1 =
_mm_shuffle_ps(vec_sde_3210, vec_sde_7654, _MM_SHUFFLE(3, 1, 3, 1));
const __m128 vec_sxd_0 =
_mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vec_sxd_1 =
_mm_shuffle_ps(vec_sxd_3210, vec_sxd_7654, _MM_SHUFFLE(3, 1, 3, 1));
__m128 vec_cohde = _mm_mul_ps(vec_sde_0, vec_sde_0);
__m128 vec_cohxd = _mm_mul_ps(vec_sxd_0, vec_sxd_0);
vec_cohde = _mm_add_ps(vec_cohde, _mm_mul_ps(vec_sde_1, vec_sde_1));
vec_cohde = _mm_div_ps(vec_cohde, vec_sdse);
vec_cohxd = _mm_add_ps(vec_cohxd, _mm_mul_ps(vec_sxd_1, vec_sxd_1));
vec_cohxd = _mm_div_ps(vec_cohxd, vec_sdsx);
_mm_storeu_ps(&cohde[i], vec_cohde);
_mm_storeu_ps(&cohxd[i], vec_cohxd);
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
cohde[i] = (coherence_state->sde[i][0] * coherence_state->sde[i][0] +
coherence_state->sde[i][1] * coherence_state->sde[i][1]) /
(coherence_state->sd[i] * coherence_state->se[i] + 1e-10f);
cohxd[i] = (coherence_state->sxd[i][0] * coherence_state->sxd[i][0] +
coherence_state->sxd[i][1] * coherence_state->sxd[i][1]) /
(coherence_state->sx[i] * coherence_state->sd[i] + 1e-10f);
}
}
}
void WebRtcAec_InitAec_SSE2(void) {
WebRtcAec_FilterFar = FilterFarSSE2;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
WebRtcAec_Overdrive = OverdriveSSE2;
WebRtcAec_Suppress = SuppressSSE2;
WebRtcAec_ComputeCoherence = ComputeCoherenceSSE2;
WebRtcAec_UpdateCoherenceSpectra = UpdateCoherenceSpectraSSE2;
WebRtcAec_StoreAsComplex = StoreAsComplexSSE2;
WebRtcAec_PartitionDelay = PartitionDelaySSE2;
WebRtcAec_WindowData = WindowDataSSE2;
}
} // namespace webrtc

View File

@ -1,206 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* Resamples a signal to an arbitrary rate. Used by the AEC to compensate for
* clock skew by resampling the farend signal.
*/
#include "modules/audio_processing/aec/aec_resampler.h"
#include <stdlib.h>
#include <string.h>
#include "modules/audio_processing/aec/aec_core.h"
#include "rtc_base/checks.h"
namespace webrtc {
enum { kEstimateLengthFrames = 400 };
typedef struct {
float buffer[kResamplerBufferSize];
float position;
int deviceSampleRateHz;
int skewData[kEstimateLengthFrames];
int skewDataIndex;
float skewEstimate;
} AecResampler;
static int EstimateSkew(const int* rawSkew,
int size,
int deviceSampleRateHz,
float* skewEst);
void* WebRtcAec_CreateResampler() {
return malloc(sizeof(AecResampler));
}
int WebRtcAec_InitResampler(void* resampInst, int deviceSampleRateHz) {
AecResampler* obj = static_cast<AecResampler*>(resampInst);
memset(obj->buffer, 0, sizeof(obj->buffer));
obj->position = 0.0;
obj->deviceSampleRateHz = deviceSampleRateHz;
memset(obj->skewData, 0, sizeof(obj->skewData));
obj->skewDataIndex = 0;
obj->skewEstimate = 0.0;
return 0;
}
void WebRtcAec_FreeResampler(void* resampInst) {
AecResampler* obj = static_cast<AecResampler*>(resampInst);
free(obj);
}
void WebRtcAec_ResampleLinear(void* resampInst,
const float* inspeech,
size_t size,
float skew,
float* outspeech,
size_t* size_out) {
AecResampler* obj = static_cast<AecResampler*>(resampInst);
float* y;
float be, tnew;
size_t tn, mm;
RTC_DCHECK_LE(size, 2 * FRAME_LEN);
RTC_DCHECK(resampInst);
RTC_DCHECK(inspeech);
RTC_DCHECK(outspeech);
RTC_DCHECK(size_out);
// Add new frame data in lookahead
memcpy(&obj->buffer[FRAME_LEN + kResamplingDelay], inspeech,
size * sizeof(inspeech[0]));
// Sample rate ratio
be = 1 + skew;
// Loop over input frame
mm = 0;
y = &obj->buffer[FRAME_LEN]; // Point at current frame
tnew = be * mm + obj->position;
tn = (size_t)tnew;
while (tn < size) {
// Interpolation
outspeech[mm] = y[tn] + (tnew - tn) * (y[tn + 1] - y[tn]);
mm++;
tnew = be * mm + obj->position;
tn = static_cast<int>(tnew);
}
*size_out = mm;
obj->position += (*size_out) * be - size;
// Shift buffer
memmove(obj->buffer, &obj->buffer[size],
(kResamplerBufferSize - size) * sizeof(obj->buffer[0]));
}
int WebRtcAec_GetSkew(void* resampInst, int rawSkew, float* skewEst) {
AecResampler* obj = static_cast<AecResampler*>(resampInst);
int err = 0;
if (obj->skewDataIndex < kEstimateLengthFrames) {
obj->skewData[obj->skewDataIndex] = rawSkew;
obj->skewDataIndex++;
} else if (obj->skewDataIndex == kEstimateLengthFrames) {
err = EstimateSkew(obj->skewData, kEstimateLengthFrames,
obj->deviceSampleRateHz, skewEst);
obj->skewEstimate = *skewEst;
obj->skewDataIndex++;
} else {
*skewEst = obj->skewEstimate;
}
return err;
}
int EstimateSkew(const int* rawSkew,
int size,
int deviceSampleRateHz,
float* skewEst) {
const int absLimitOuter = static_cast<int>(0.04f * deviceSampleRateHz);
const int absLimitInner = static_cast<int>(0.0025f * deviceSampleRateHz);
int i = 0;
int n = 0;
float rawAvg = 0;
float err = 0;
float rawAbsDev = 0;
int upperLimit = 0;
int lowerLimit = 0;
float cumSum = 0;
float x = 0;
float x2 = 0;
float y = 0;
float xy = 0;
float xAvg = 0;
float denom = 0;
float skew = 0;
*skewEst = 0; // Set in case of error below.
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
n++;
rawAvg += rawSkew[i];
}
}
if (n == 0) {
return -1;
}
RTC_DCHECK_GT(n, 0);
rawAvg /= n;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitOuter && rawSkew[i] > -absLimitOuter)) {
err = rawSkew[i] - rawAvg;
rawAbsDev += err >= 0 ? err : -err;
}
}
RTC_DCHECK_GT(n, 0);
rawAbsDev /= n;
upperLimit = static_cast<int>(rawAvg + 5 * rawAbsDev + 1); // +1 for ceiling.
lowerLimit = static_cast<int>(rawAvg - 5 * rawAbsDev - 1); // -1 for floor.
n = 0;
for (i = 0; i < size; i++) {
if ((rawSkew[i] < absLimitInner && rawSkew[i] > -absLimitInner) ||
(rawSkew[i] < upperLimit && rawSkew[i] > lowerLimit)) {
n++;
cumSum += rawSkew[i];
x += n;
x2 += n * n;
y += cumSum;
xy += n * cumSum;
}
}
if (n == 0) {
return -1;
}
RTC_DCHECK_GT(n, 0);
xAvg = x / n;
denom = x2 - xAvg * x;
if (denom != 0) {
skew = (xy - xAvg * y) / denom;
}
*skewEst = skew;
return 0;
}
} // namespace webrtc

View File

@ -1,41 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC_AEC_RESAMPLER_H_
#define MODULES_AUDIO_PROCESSING_AEC_AEC_RESAMPLER_H_
#include <stddef.h>
#include "modules/audio_processing/aec/aec_core.h"
namespace webrtc {
enum { kResamplingDelay = 1 };
enum { kResamplerBufferSize = FRAME_LEN * 4 };
// Unless otherwise specified, functions return 0 on success and -1 on error.
void* WebRtcAec_CreateResampler(); // Returns NULL on error.
int WebRtcAec_InitResampler(void* resampInst, int deviceSampleRateHz);
void WebRtcAec_FreeResampler(void* resampInst);
// Estimates skew from raw measurement.
int WebRtcAec_GetSkew(void* resampInst, int rawSkew, float* skewEst);
// Resamples input using linear interpolation.
void WebRtcAec_ResampleLinear(void* resampInst,
const float* inspeech,
size_t size,
float skew,
float* outspeech,
size_t* size_out);
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC_AEC_RESAMPLER_H_

View File

@ -1,864 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Contains the API functions for the AEC.
*/
#include "modules/audio_processing/aec/echo_cancellation.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
extern "C" {
#include "common_audio/ring_buffer.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
}
#include "modules/audio_processing/aec/aec_core.h"
#include "modules/audio_processing/aec/aec_resampler.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
namespace webrtc {
Aec::Aec() = default;
Aec::~Aec() = default;
// Measured delays [ms]
// Device Chrome GTP
// MacBook Air 10
// MacBook Retina 10 100
// MacPro 30?
//
// Win7 Desktop 70 80?
// Win7 T430s 110
// Win8 T420s 70
//
// Daisy 50
// Pixel (w/ preproc?) 240
// Pixel (w/o preproc?) 110 110
// The extended filter mode gives us the flexibility to ignore the system's
// reported delays. We do this for platforms which we believe provide results
// which are incompatible with the AEC's expectations. Based on measurements
// (some provided above) we set a conservative (i.e. lower than measured)
// fixed delay.
//
// WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode|
// is enabled. See the note along with |DelayCorrection| in
// echo_cancellation_impl.h for more details on the mode.
//
// Justification:
// Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays
// havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms
// and then compensate by rewinding by 10 ms (in wideband) through
// kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind
// values, but fortunately this is sufficient.
//
// Chromium/Linux(ChromeOS): The values we get on this platform don't correspond
// well to reality. The variance doesn't match the AEC's buffer changes, and the
// bulk values tend to be too low. However, the range across different hardware
// appears to be too large to choose a single value.
//
// GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values.
#if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC)
#define WEBRTC_UNTRUSTED_DELAY
#endif
#if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC)
static const int kDelayDiffOffsetSamples = -160;
#else
// Not enabled for now.
static const int kDelayDiffOffsetSamples = 0;
#endif
#if defined(WEBRTC_MAC)
static const int kFixedDelayMs = 20;
#else
static const int kFixedDelayMs = 50;
#endif
#if !defined(WEBRTC_UNTRUSTED_DELAY)
static const int kMinTrustedDelayMs = 20;
#endif
static const int kMaxTrustedDelayMs = 500;
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
// TODO(bjornv): Replace with kResamplerBufferSize
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int kMaxBufSizeStart = 62; // In partitions
static const int sampMsNb = 8; // samples per ms in nb
static const int initCheck = 42;
int Aec::instance_count = 0;
// Estimates delay to set the position of the far-end buffer read pointer
// (controlled by knownDelay)
static void EstBufDelayNormal(Aec* aecInst);
static void EstBufDelayExtended(Aec* aecInst);
static int ProcessNormal(Aec* aecInst,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t num_samples,
int16_t reported_delay_ms,
int32_t skew);
static void ProcessExtended(Aec* aecInst,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t num_samples,
int16_t reported_delay_ms,
int32_t skew);
void* WebRtcAec_Create() {
Aec* aecpc = new Aec();
if (!aecpc) {
return NULL;
}
aecpc->data_dumper.reset(new ApmDataDumper(aecpc->instance_count));
aecpc->aec = WebRtcAec_CreateAec(aecpc->instance_count);
if (!aecpc->aec) {
WebRtcAec_Free(aecpc);
return NULL;
}
aecpc->resampler = WebRtcAec_CreateResampler();
if (!aecpc->resampler) {
WebRtcAec_Free(aecpc);
return NULL;
}
// Create far-end pre-buffer. The buffer size has to be large enough for
// largest possible drift compensation (kResamplerBufferSize) + "almost" an
// FFT buffer (PART_LEN2 - 1).
aecpc->far_pre_buf =
WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float));
if (!aecpc->far_pre_buf) {
WebRtcAec_Free(aecpc);
return NULL;
}
aecpc->initFlag = 0;
aecpc->instance_count++;
return aecpc;
}
void WebRtcAec_Free(void* aecInst) {
Aec* aecpc = reinterpret_cast<Aec*>(aecInst);
if (aecpc == NULL) {
return;
}
WebRtc_FreeBuffer(aecpc->far_pre_buf);
WebRtcAec_FreeAec(aecpc->aec);
WebRtcAec_FreeResampler(aecpc->resampler);
delete aecpc;
}
int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) {
Aec* aecpc = reinterpret_cast<Aec*>(aecInst);
aecpc->data_dumper->InitiateNewSetOfRecordings();
AecConfig aecConfig;
if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000 &&
sampFreq != 48000) {
return AEC_BAD_PARAMETER_ERROR;
}
aecpc->sampFreq = sampFreq;
if (scSampFreq < 1 || scSampFreq > 96000) {
return AEC_BAD_PARAMETER_ERROR;
}
aecpc->scSampFreq = scSampFreq;
// Initialize echo canceller core
if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
return AEC_UNSPECIFIED_ERROR;
}
if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
return AEC_UNSPECIFIED_ERROR;
}
WebRtc_InitBuffer(aecpc->far_pre_buf);
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap.
aecpc->initFlag = initCheck; // indicates that initialization has been done
if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) {
aecpc->splitSampFreq = 16000;
} else {
aecpc->splitSampFreq = sampFreq;
}
aecpc->delayCtr = 0;
aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
// Sampling frequency multiplier (SWB is processed as 160 frame size).
aecpc->rate_factor = aecpc->splitSampFreq / 8000;
aecpc->sum = 0;
aecpc->counter = 0;
aecpc->checkBuffSize = 1;
aecpc->firstVal = 0;
// We skip the startup_phase completely (setting to 0) if DA-AEC is enabled,
// but not extended_filter mode.
aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) ||
!WebRtcAec_delay_agnostic_enabled(aecpc->aec);
aecpc->bufSizeStart = 0;
aecpc->checkBufSizeCtr = 0;
aecpc->msInSndCardBuf = 0;
aecpc->filtDelay = -1; // -1 indicates an initialized state.
aecpc->timeForDelayChange = 0;
aecpc->knownDelay = 0;
aecpc->lastDelayDiff = 0;
aecpc->skewFrCtr = 0;
aecpc->resample = kAecFalse;
aecpc->highSkewCtr = 0;
aecpc->skew = 0;
aecpc->farend_started = 0;
// Default settings.
aecConfig.nlpMode = kAecNlpModerate;
aecConfig.skewMode = kAecFalse;
aecConfig.metricsMode = kAecFalse;
aecConfig.delay_logging = kAecFalse;
if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
return AEC_UNSPECIFIED_ERROR;
}
return 0;
}
// Returns any error that is caused when buffering the
// far-end signal.
int32_t WebRtcAec_GetBufferFarendError(void* aecInst,
const float* farend,
size_t nrOfSamples) {
Aec* aecpc = reinterpret_cast<Aec*>(aecInst);
if (!farend)
return AEC_NULL_POINTER_ERROR;
if (aecpc->initFlag != initCheck)
return AEC_UNINITIALIZED_ERROR;
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160)
return AEC_BAD_PARAMETER_ERROR;
return 0;
}
// only buffer L band for farend
int32_t WebRtcAec_BufferFarend(void* aecInst,
const float* farend,
size_t nrOfSamples) {
Aec* aecpc = reinterpret_cast<Aec*>(aecInst);
size_t newNrOfSamples = nrOfSamples;
float new_farend[MAX_RESAMP_LEN];
const float* farend_ptr = farend;
// Get any error caused by buffering the farend signal.
int32_t error_code =
WebRtcAec_GetBufferFarendError(aecInst, farend, nrOfSamples);
if (error_code != 0)
return error_code;
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
// Resample and get a new number of samples
WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, aecpc->skew,
new_farend, &newNrOfSamples);
farend_ptr = new_farend;
}
aecpc->farend_started = 1;
WebRtcAec_SetSystemDelay(aecpc->aec, WebRtcAec_system_delay(aecpc->aec) +
static_cast<int>(newNrOfSamples));
// Write the time-domain data to |far_pre_buf|.
WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples);
// TODO(minyue): reduce to |PART_LEN| samples for each buffering.
while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
// We have enough data to pass to the FFT, hence read PART_LEN2 samples.
{
float* ptmp = NULL;
float tmp[PART_LEN2];
WebRtc_ReadBuffer(aecpc->far_pre_buf, reinterpret_cast<void**>(&ptmp),
tmp, PART_LEN2);
WebRtcAec_BufferFarendBlock(aecpc->aec, &ptmp[PART_LEN]);
}
// Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
}
return 0;
}
int32_t WebRtcAec_Process(void* aecInst,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t nrOfSamples,
int16_t msInSndCardBuf,
int32_t skew) {
Aec* aecpc = reinterpret_cast<Aec*>(aecInst);
int32_t retVal = 0;
if (out == NULL) {
return AEC_NULL_POINTER_ERROR;
}
if (aecpc->initFlag != initCheck) {
return AEC_UNINITIALIZED_ERROR;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
return AEC_BAD_PARAMETER_ERROR;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
retVal = AEC_BAD_PARAMETER_WARNING;
} else if (msInSndCardBuf > kMaxTrustedDelayMs) {
// The clamping is now done in ProcessExtended/Normal().
retVal = AEC_BAD_PARAMETER_WARNING;
}
// This returns the value of aec->extended_filter_enabled.
if (WebRtcAec_extended_filter_enabled(aecpc->aec)) {
ProcessExtended(aecpc, nearend, num_bands, out, nrOfSamples, msInSndCardBuf,
skew);
} else {
retVal = ProcessNormal(aecpc, nearend, num_bands, out, nrOfSamples,
msInSndCardBuf, skew);
}
int far_buf_size_samples = WebRtcAec_system_delay(aecpc->aec);
aecpc->data_dumper->DumpRaw("aec_system_delay", 1, &far_buf_size_samples);
aecpc->data_dumper->DumpRaw("aec_known_delay", 1, &aecpc->knownDelay);
return retVal;
}
int WebRtcAec_set_config(void* handle, AecConfig config) {
Aec* self = reinterpret_cast<Aec*>(handle);
if (self->initFlag != initCheck) {
return AEC_UNINITIALIZED_ERROR;
}
if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
return AEC_BAD_PARAMETER_ERROR;
}
self->skewMode = config.skewMode;
if (config.nlpMode != kAecNlpConservative &&
config.nlpMode != kAecNlpModerate &&
config.nlpMode != kAecNlpAggressive) {
return AEC_BAD_PARAMETER_ERROR;
}
if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
return AEC_BAD_PARAMETER_ERROR;
}
if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
return AEC_BAD_PARAMETER_ERROR;
}
WebRtcAec_SetConfigCore(self->aec, config.nlpMode, config.metricsMode,
config.delay_logging);
return 0;
}
int WebRtcAec_get_echo_status(void* handle, int* status) {
Aec* self = reinterpret_cast<Aec*>(handle);
if (status == NULL) {
return AEC_NULL_POINTER_ERROR;
}
if (self->initFlag != initCheck) {
return AEC_UNINITIALIZED_ERROR;
}
*status = WebRtcAec_echo_state(self->aec);
return 0;
}
int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) {
const float kUpWeight = 0.7f;
float dtmp;
int stmp;
Aec* self = reinterpret_cast<Aec*>(handle);
Stats erl;
Stats erle;
Stats a_nlp;
if (handle == NULL) {
return -1;
}
if (metrics == NULL) {
return AEC_NULL_POINTER_ERROR;
}
if (self->initFlag != initCheck) {
return AEC_UNINITIALIZED_ERROR;
}
WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp,
&metrics->divergent_filter_fraction);
// ERL
metrics->erl.instant = static_cast<int>(erl.instant);
if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average;
metrics->erl.average = static_cast<int>(dtmp);
} else {
metrics->erl.average = kOffsetLevel;
}
metrics->erl.max = static_cast<int>(erl.max);
if (erl.min < (kOffsetLevel * (-1))) {
metrics->erl.min = static_cast<int>(erl.min);
} else {
metrics->erl.min = kOffsetLevel;
}
// ERLE
metrics->erle.instant = static_cast<int>(erle.instant);
if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average;
metrics->erle.average = static_cast<int>(dtmp);
} else {
metrics->erle.average = kOffsetLevel;
}
metrics->erle.max = static_cast<int>(erle.max);
if (erle.min < (kOffsetLevel * (-1))) {
metrics->erle.min = static_cast<int>(erle.min);
} else {
metrics->erle.min = kOffsetLevel;
}
// RERL
if ((metrics->erl.average > kOffsetLevel) &&
(metrics->erle.average > kOffsetLevel)) {
stmp = metrics->erl.average + metrics->erle.average;
} else {
stmp = kOffsetLevel;
}
metrics->rerl.average = stmp;
// No other statistics needed, but returned for completeness.
metrics->rerl.instant = stmp;
metrics->rerl.max = stmp;
metrics->rerl.min = stmp;
// A_NLP
metrics->aNlp.instant = static_cast<int>(a_nlp.instant);
if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) {
// Use a mix between regular average and upper part average.
dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average;
metrics->aNlp.average = static_cast<int>(dtmp);
} else {
metrics->aNlp.average = kOffsetLevel;
}
metrics->aNlp.max = static_cast<int>(a_nlp.max);
if (a_nlp.min < (kOffsetLevel * (-1))) {
metrics->aNlp.min = static_cast<int>(a_nlp.min);
} else {
metrics->aNlp.min = kOffsetLevel;
}
return 0;
}
int WebRtcAec_GetDelayMetrics(void* handle,
int* median,
int* std,
float* fraction_poor_delays) {
Aec* self = reinterpret_cast<Aec*>(handle);
if (median == NULL) {
return AEC_NULL_POINTER_ERROR;
}
if (std == NULL) {
return AEC_NULL_POINTER_ERROR;
}
if (self->initFlag != initCheck) {
return AEC_UNINITIALIZED_ERROR;
}
if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std,
fraction_poor_delays) == -1) {
// Logging disabled.
return AEC_UNSUPPORTED_FUNCTION_ERROR;
}
return 0;
}
AecCore* WebRtcAec_aec_core(void* handle) {
if (!handle) {
return NULL;
}
return reinterpret_cast<Aec*>(handle)->aec;
}
static int ProcessNormal(Aec* aecInst,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t num_samples,
int16_t reported_delay_ms,
int32_t skew) {
int retVal = 0;
size_t i;
size_t nBlocks10ms;
// Limit resampling to doubling/halving of signal
const float minSkewEst = -0.5f;
const float maxSkewEst = 1.0f;
reported_delay_ms = reported_delay_ms > kMaxTrustedDelayMs
? kMaxTrustedDelayMs
: reported_delay_ms;
// TODO(andrew): we need to investigate if this +10 is really wanted.
reported_delay_ms += 10;
aecInst->msInSndCardBuf = reported_delay_ms;
if (aecInst->skewMode == kAecTrue) {
if (aecInst->skewFrCtr < 25) {
aecInst->skewFrCtr++;
} else {
retVal = WebRtcAec_GetSkew(aecInst->resampler, skew, &aecInst->skew);
if (retVal == -1) {
aecInst->skew = 0;
retVal = AEC_BAD_PARAMETER_WARNING;
}
aecInst->skew /= aecInst->sampFactor * num_samples;
if (aecInst->skew < 1.0e-3 && aecInst->skew > -1.0e-3) {
aecInst->resample = kAecFalse;
} else {
aecInst->resample = kAecTrue;
}
if (aecInst->skew < minSkewEst) {
aecInst->skew = minSkewEst;
} else if (aecInst->skew > maxSkewEst) {
aecInst->skew = maxSkewEst;
}
aecInst->data_dumper->DumpRaw("aec_skew", 1, &aecInst->skew);
}
}
nBlocks10ms = num_samples / (FRAME_LEN * aecInst->rate_factor);
if (aecInst->startup_phase) {
for (i = 0; i < num_bands; ++i) {
// Only needed if they don't already point to the same place.
if (nearend[i] != out[i]) {
memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * num_samples);
}
}
// The AEC is in the start up mode
// AEC is disabled until the system delay is OK
// Mechanism to ensure that the system delay is reasonably stable.
if (aecInst->checkBuffSize) {
aecInst->checkBufSizeCtr++;
// Before we fill up the far-end buffer we require the system delay
// to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 6 consecutive 10 ms
// blocks. If it seems to be stable then we start to fill up the
// far-end buffer.
if (aecInst->counter == 0) {
aecInst->firstVal = aecInst->msInSndCardBuf;
aecInst->sum = 0;
}
if (abs(aecInst->firstVal - aecInst->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecInst->msInSndCardBuf, sampMsNb)) {
aecInst->sum += aecInst->msInSndCardBuf;
aecInst->counter++;
} else {
aecInst->counter = 0;
}
if (aecInst->counter * nBlocks10ms >= 6) {
// The far-end buffer size is determined in partitions of
// PART_LEN samples. Use 75% of the average value of the system
// delay as buffer size to start with.
aecInst->bufSizeStart =
WEBRTC_SPL_MIN((3 * aecInst->sum * aecInst->rate_factor * 8) /
(4 * aecInst->counter * PART_LEN),
kMaxBufSizeStart);
// Buffer size has now been determined.
aecInst->checkBuffSize = 0;
}
if (aecInst->checkBufSizeCtr * nBlocks10ms > 50) {
// For really bad systems, don't disable the echo canceller for
// more than 0.5 sec.
aecInst->bufSizeStart = WEBRTC_SPL_MIN(
(aecInst->msInSndCardBuf * aecInst->rate_factor * 3) / 40,
kMaxBufSizeStart);
aecInst->checkBuffSize = 0;
}
}
// If |checkBuffSize| changed in the if-statement above.
if (!aecInst->checkBuffSize) {
// The system delay is now reasonably stable (or has been unstable
// for too long). When the far-end buffer is filled with
// approximately the same amount of data as reported by the system
// we end the startup phase.
int overhead_elements = WebRtcAec_system_delay(aecInst->aec) / PART_LEN -
aecInst->bufSizeStart;
if (overhead_elements == 0) {
// Enable the AEC
aecInst->startup_phase = 0;
} else if (overhead_elements > 0) {
// TODO(bjornv): Do we need a check on how much we actually
// moved the read pointer? It should always be possible to move
// the pointer |overhead_elements| since we have only added data
// to the buffer and no delay compensation nor AEC processing
// has been done.
WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec,
overhead_elements);
// Enable the AEC
aecInst->startup_phase = 0;
}
}
} else {
// AEC is enabled.
EstBufDelayNormal(aecInst);
// Call the AEC.
// TODO(bjornv): Re-structure such that we don't have to pass
// |aecInst->knownDelay| as input. Change name to something like
// |system_buffer_diff|.
WebRtcAec_ProcessFrames(aecInst->aec, nearend, num_bands, num_samples,
aecInst->knownDelay, out);
}
return retVal;
}
static void ProcessExtended(Aec* self,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t num_samples,
int16_t reported_delay_ms,
int32_t skew) {
size_t i;
const int delay_diff_offset = kDelayDiffOffsetSamples;
RTC_DCHECK(num_samples == 80 || num_samples == 160);
#if defined(WEBRTC_UNTRUSTED_DELAY)
reported_delay_ms = kFixedDelayMs;
#else
// This is the usual mode where we trust the reported system delay values.
// Due to the longer filter, we no longer add 10 ms to the reported delay
// to reduce chance of non-causality. Instead we apply a minimum here to avoid
// issues with the read pointer jumping around needlessly.
reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs
? kMinTrustedDelayMs
: reported_delay_ms;
// If the reported delay appears to be bogus, we attempt to recover by using
// the measured fixed delay values. We use >= here because higher layers
// may already clamp to this maximum value, and we would otherwise not
// detect it here.
reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs
? kFixedDelayMs
: reported_delay_ms;
#endif
self->msInSndCardBuf = reported_delay_ms;
if (!self->farend_started) {
for (i = 0; i < num_bands; ++i) {
// Only needed if they don't already point to the same place.
if (nearend[i] != out[i]) {
memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * num_samples);
}
}
return;
}
if (self->startup_phase) {
// In the extended mode, there isn't a startup "phase", just a special
// action on the first frame. In the trusted delay case, we'll take the
// current reported delay, unless it's less then our conservative
// measurement.
int startup_size_ms =
reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms;
#if defined(WEBRTC_ANDROID)
int target_delay = startup_size_ms * self->rate_factor * 8;
#else
// To avoid putting the AEC in a non-causal state we're being slightly
// conservative and scale by 2. On Android we use a fixed delay and
// therefore there is no need to scale the target_delay.
int target_delay = startup_size_ms * self->rate_factor * 8 / 2;
#endif
int overhead_elements =
(WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN;
WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(self->aec,
overhead_elements);
self->startup_phase = 0;
}
EstBufDelayExtended(self);
{
// |delay_diff_offset| gives us the option to manually rewind the delay on
// very low delay platforms which can't be expressed purely through
// |reported_delay_ms|.
const int adjusted_known_delay =
WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset);
WebRtcAec_ProcessFrames(self->aec, nearend, num_bands, num_samples,
adjusted_known_delay, out);
}
}
static void EstBufDelayNormal(Aec* aecInst) {
int nSampSndCard = aecInst->msInSndCardBuf * sampMsNb * aecInst->rate_factor;
int current_delay = nSampSndCard - WebRtcAec_system_delay(aecInst->aec);
int delay_difference = 0;
// Before we proceed with the delay estimate filtering we:
// 1) Compensate for the frame that will be read.
// 2) Compensate for drift resampling.
// 3) Compensate for non-causality if needed, since the estimated delay can't
// be negative.
// 1) Compensating for the frame(s) that will be read/processed.
current_delay += FRAME_LEN * aecInst->rate_factor;
// 2) Account for resampling frame delay.
if (aecInst->skewMode == kAecTrue && aecInst->resample == kAecTrue) {
current_delay -= kResamplingDelay;
}
// 3) Compensate for non-causality, if needed, by flushing one block.
if (current_delay < PART_LEN) {
current_delay +=
WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec, 1) *
PART_LEN;
}
// We use -1 to signal an initialized state in the "extended" implementation;
// compensate for that.
aecInst->filtDelay = aecInst->filtDelay < 0 ? 0 : aecInst->filtDelay;
aecInst->filtDelay = WEBRTC_SPL_MAX(
0, static_cast<int16_t>(0.8 * aecInst->filtDelay + 0.2 * current_delay));
delay_difference = aecInst->filtDelay - aecInst->knownDelay;
if (delay_difference > 224) {
if (aecInst->lastDelayDiff < 96) {
aecInst->timeForDelayChange = 0;
} else {
aecInst->timeForDelayChange++;
}
} else if (delay_difference < 96 && aecInst->knownDelay > 0) {
if (aecInst->lastDelayDiff > 224) {
aecInst->timeForDelayChange = 0;
} else {
aecInst->timeForDelayChange++;
}
} else {
aecInst->timeForDelayChange = 0;
}
aecInst->lastDelayDiff = delay_difference;
if (aecInst->timeForDelayChange > 25) {
aecInst->knownDelay = WEBRTC_SPL_MAX((int)aecInst->filtDelay - 160, 0);
}
}
static void EstBufDelayExtended(Aec* aecInst) {
int reported_delay =
aecInst->msInSndCardBuf * sampMsNb * aecInst->rate_factor;
int current_delay = reported_delay - WebRtcAec_system_delay(aecInst->aec);
int delay_difference = 0;
// Before we proceed with the delay estimate filtering we:
// 1) Compensate for the frame that will be read.
// 2) Compensate for drift resampling.
// 3) Compensate for non-causality if needed, since the estimated delay can't
// be negative.
// 1) Compensating for the frame(s) that will be read/processed.
current_delay += FRAME_LEN * aecInst->rate_factor;
// 2) Account for resampling frame delay.
if (aecInst->skewMode == kAecTrue && aecInst->resample == kAecTrue) {
current_delay -= kResamplingDelay;
}
// 3) Compensate for non-causality, if needed, by flushing two blocks.
if (current_delay < PART_LEN) {
current_delay +=
WebRtcAec_AdjustFarendBufferSizeAndSystemDelay(aecInst->aec, 2) *
PART_LEN;
}
if (aecInst->filtDelay == -1) {
aecInst->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay);
} else {
aecInst->filtDelay = WEBRTC_SPL_MAX(
0,
static_cast<int16_t>(0.95 * aecInst->filtDelay + 0.05 * current_delay));
}
delay_difference = aecInst->filtDelay - aecInst->knownDelay;
if (delay_difference > 384) {
if (aecInst->lastDelayDiff < 128) {
aecInst->timeForDelayChange = 0;
} else {
aecInst->timeForDelayChange++;
}
} else if (delay_difference < 128 && aecInst->knownDelay > 0) {
if (aecInst->lastDelayDiff > 384) {
aecInst->timeForDelayChange = 0;
} else {
aecInst->timeForDelayChange++;
}
} else {
aecInst->timeForDelayChange = 0;
}
aecInst->lastDelayDiff = delay_difference;
if (aecInst->timeForDelayChange > 25) {
aecInst->knownDelay = WEBRTC_SPL_MAX((int)aecInst->filtDelay - 256, 0);
}
}
} // namespace webrtc

View File

@ -1,298 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_AEC_ECHO_CANCELLATION_H_
#define MODULES_AUDIO_PROCESSING_AEC_ECHO_CANCELLATION_H_
#include <stddef.h>
#include <memory>
extern "C" {
#include "common_audio/ring_buffer.h"
}
#include "modules/audio_processing/aec/aec_core.h"
namespace webrtc {
// Errors
#define AEC_UNSPECIFIED_ERROR 12000
#define AEC_UNSUPPORTED_FUNCTION_ERROR 12001
#define AEC_UNINITIALIZED_ERROR 12002
#define AEC_NULL_POINTER_ERROR 12003
#define AEC_BAD_PARAMETER_ERROR 12004
// Warnings
#define AEC_BAD_PARAMETER_WARNING 12050
enum { kAecNlpConservative = 0, kAecNlpModerate, kAecNlpAggressive };
enum { kAecFalse = 0, kAecTrue };
typedef struct {
int16_t nlpMode; // default kAecNlpModerate
int16_t skewMode; // default kAecFalse
int16_t metricsMode; // default kAecFalse
int delay_logging; // default kAecFalse
// float realSkew;
} AecConfig;
typedef struct {
int instant;
int average;
int max;
int min;
} AecLevel;
typedef struct {
AecLevel rerl;
AecLevel erl;
AecLevel erle;
AecLevel aNlp;
float divergent_filter_fraction;
} AecMetrics;
struct AecCore;
class ApmDataDumper;
typedef struct Aec {
Aec();
~Aec();
std::unique_ptr<ApmDataDumper> data_dumper;
int delayCtr;
int sampFreq;
int splitSampFreq;
int scSampFreq;
float sampFactor; // scSampRate / sampFreq
short skewMode;
int bufSizeStart;
int knownDelay;
int rate_factor;
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
int sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay; // Filtered delay estimate.
int timeForDelayChange;
int startup_phase;
int checkBuffSize;
short lastDelayDiff;
// Structures
void* resampler;
int skewFrCtr;
int resample; // if the skew is small enough we don't resample
int highSkewCtr;
float skew;
RingBuffer* far_pre_buf; // Time domain far-end pre-buffer.
int farend_started;
// Aec instance counter.
static int instance_count;
AecCore* aec;
} Aec;
/*
* Allocates the memory needed by the AEC. The memory needs to be initialized
* separately using the WebRtcAec_Init() function. Returns a pointer to the
* object or NULL on error.
*/
void* WebRtcAec_Create();
/*
* This function releases the memory allocated by WebRtcAec_Create().
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecInst Pointer to the AEC instance
*/
void WebRtcAec_Free(void* aecInst);
/*
* Initializes an AEC instance.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecInst Pointer to the AEC instance
* int32_t sampFreq Sampling frequency of data
* int32_t scSampFreq Soundcard sampling frequency
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* -1: error
*/
int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq);
/*
* Inserts an 80 or 160 sample block of data into the farend buffer.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecInst Pointer to the AEC instance
* const float* farend In buffer containing one frame of
* farend signal for L band
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 12000-12050: error code
*/
int32_t WebRtcAec_BufferFarend(void* aecInst,
const float* farend,
size_t nrOfSamples);
/*
* Reports any errors that would arise if buffering a farend buffer
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecInst Pointer to the AEC instance
* const float* farend In buffer containing one frame of
* farend signal for L band
* int16_t nrOfSamples Number of samples in farend buffer
*
* Outputs Description
* -------------------------------------------------------------------
* int32_t return 0: OK
* 12000-12050: error code
*/
int32_t WebRtcAec_GetBufferFarendError(void* aecInst,
const float* farend,
size_t nrOfSamples);
/*
* Runs the echo canceller on an 80 or 160 sample blocks of data.
*
* Inputs Description
* -------------------------------------------------------------------
* void* aecInst Pointer to the AEC instance
* float* const* nearend In buffer containing one frame of
* nearend+echo signal for each band
* int num_bands Number of bands in nearend buffer
* int16_t nrOfSamples Number of samples in nearend buffer
* int16_t msInSndCardBuf Delay estimate for sound card and
* system buffers
* int16_t skew Difference between number of samples played
* and recorded at the soundcard (for clock skew
* compensation)
*
* Outputs Description
* -------------------------------------------------------------------
* float* const* out Out buffer, one frame of processed nearend
* for each band
* int32_t return 0: OK
* 12000-12050: error code
*/
int32_t WebRtcAec_Process(void* aecInst,
const float* const* nearend,
size_t num_bands,
float* const* out,
size_t nrOfSamples,
int16_t msInSndCardBuf,
int32_t skew);
/*
* This function enables the user to set certain parameters on-the-fly.
*
* Inputs Description
* -------------------------------------------------------------------
* void* handle Pointer to the AEC instance
* AecConfig config Config instance that contains all
* properties to be set
*
* Outputs Description
* -------------------------------------------------------------------
* int return 0: OK
* 12000-12050: error code
*/
int WebRtcAec_set_config(void* handle, AecConfig config);
/*
* Gets the current echo status of the nearend signal.
*
* Inputs Description
* -------------------------------------------------------------------
* void* handle Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* int* status 0: Almost certainly nearend single-talk
* 1: Might not be neared single-talk
* int return 0: OK
* 12000-12050: error code
*/
int WebRtcAec_get_echo_status(void* handle, int* status);
/*
* Gets the current echo metrics for the session.
*
* Inputs Description
* -------------------------------------------------------------------
* void* handle Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* AecMetrics* metrics Struct which will be filled out with the
* current echo metrics.
* int return 0: OK
* 12000-12050: error code
*/
int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics);
/*
* Gets the current delay metrics for the session.
*
* Inputs Description
* -------------------------------------------------------------------
* void* handle Pointer to the AEC instance
*
* Outputs Description
* -------------------------------------------------------------------
* int* median Delay median value.
* int* std Delay standard deviation.
* float* fraction_poor_delays Fraction of the delay estimates that may
* cause the AEC to perform poorly.
*
* int return 0: OK
* 12000-12050: error code
*/
int WebRtcAec_GetDelayMetrics(void* handle,
int* median,
int* std,
float* fraction_poor_delays);
// Returns a pointer to the low level AEC handle.
//
// Input:
// - handle : Pointer to the AEC instance.
//
// Return value:
// - AecCore pointer : NULL for error.
//
struct AecCore* WebRtcAec_aec_core(void* handle);
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_AEC_ECHO_CANCELLATION_H_

View File

@ -1,45 +0,0 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// TODO(bjornv): Make this a comprehensive test.
#include "modules/audio_processing/aec/echo_cancellation.h"
#include <stdlib.h>
#include <time.h>
#include "modules/audio_processing/aec/aec_core.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"
namespace webrtc {
TEST(EchoCancellationTest, CreateAndFreeHasExpectedBehavior) {
void* handle = WebRtcAec_Create();
ASSERT_TRUE(handle);
WebRtcAec_Free(nullptr);
WebRtcAec_Free(handle);
}
TEST(EchoCancellationTest, ApplyAecCoreHandle) {
void* handle = WebRtcAec_Create();
ASSERT_TRUE(handle);
EXPECT_TRUE(WebRtcAec_aec_core(NULL) == NULL);
AecCore* aec_core = WebRtcAec_aec_core(handle);
EXPECT_TRUE(aec_core != NULL);
// A simple test to verify that we can set and get a value from the lower
// level |aec_core| handle.
int delay = 111;
WebRtcAec_SetSystemDelay(aec_core, delay);
EXPECT_EQ(delay, WebRtcAec_system_delay(aec_core));
WebRtcAec_Free(handle);
}
} // namespace webrtc

View File

@ -1,587 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec/aec_core.h"
#include "modules/audio_processing/aec/echo_cancellation.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
class SystemDelayTest : public ::testing::Test {
protected:
SystemDelayTest();
void SetUp() override;
void TearDown() override;
// Initialization of AEC handle with respect to |sample_rate_hz|. Since the
// device sample rate is unimportant we set that value to 48000 Hz.
void Init(int sample_rate_hz);
// Makes one render call and one capture call in that specific order.
void RenderAndCapture(int device_buffer_ms);
// Fills up the far-end buffer with respect to the default device buffer size.
size_t BufferFillUp();
// Runs and verifies the behavior in a stable startup procedure.
void RunStableStartup();
// Maps buffer size in ms into samples, taking the unprocessed frame into
// account.
int MapBufferSizeToSamples(int size_in_ms, bool extended_filter);
void* handle_;
Aec* self_;
size_t samples_per_frame_;
// Dummy input/output speech data.
static const int kSamplesPerChunk = 160;
float far_[kSamplesPerChunk];
float near_[kSamplesPerChunk];
float out_[kSamplesPerChunk];
const float* near_ptr_;
float* out_ptr_;
};
SystemDelayTest::SystemDelayTest()
: handle_(NULL), self_(NULL), samples_per_frame_(0) {
// Dummy input data are set with more or less arbitrary non-zero values.
for (int i = 0; i < kSamplesPerChunk; i++) {
far_[i] = 257.0;
near_[i] = 514.0;
}
memset(out_, 0, sizeof(out_));
near_ptr_ = near_;
out_ptr_ = out_;
}
void SystemDelayTest::SetUp() {
handle_ = WebRtcAec_Create();
ASSERT_TRUE(handle_);
self_ = reinterpret_cast<Aec*>(handle_);
}
void SystemDelayTest::TearDown() {
// Free AEC
WebRtcAec_Free(handle_);
handle_ = NULL;
}
// In SWB mode nothing is added to the buffer handling with respect to
// functionality compared to WB. We therefore only verify behavior in NB and WB.
static const int kSampleRateHz[] = {8000, 16000};
static const size_t kNumSampleRates =
sizeof(kSampleRateHz) / sizeof(*kSampleRateHz);
// Default audio device buffer size used.
static const int kDeviceBufMs = 100;
// Requirement for a stable device convergence time in ms. Should converge in
// less than |kStableConvergenceMs|.
static const int kStableConvergenceMs = 100;
// Maximum convergence time in ms. This means that we should leave the startup
// phase after |kMaxConvergenceMs| independent of device buffer stability
// conditions.
static const int kMaxConvergenceMs = 500;
void SystemDelayTest::Init(int sample_rate_hz) {
// Initialize AEC
EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000));
EXPECT_EQ(0, WebRtcAec_system_delay(self_->aec));
// One frame equals 10 ms of data.
samples_per_frame_ = static_cast<size_t>(sample_rate_hz / 100);
}
void SystemDelayTest::RenderAndCapture(int device_buffer_ms) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_,
samples_per_frame_, device_buffer_ms, 0));
}
size_t SystemDelayTest::BufferFillUp() {
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in through
// Process().
size_t buffer_size = 0;
for (int i = 0; i < kDeviceBufMs / 10; i++) {
EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
buffer_size += samples_per_frame_;
EXPECT_EQ(static_cast<int>(buffer_size),
WebRtcAec_system_delay(self_->aec));
}
return buffer_size;
}
void SystemDelayTest::RunStableStartup() {
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in through
// Process().
size_t buffer_size = BufferFillUp();
if (WebRtcAec_delay_agnostic_enabled(self_->aec) == 1) {
// In extended_filter mode we set the buffer size after the first processed
// 10 ms chunk. Hence, we don't need to wait for the reported system delay
// values to become stable.
RenderAndCapture(kDeviceBufMs);
buffer_size += samples_per_frame_;
EXPECT_EQ(0, self_->startup_phase);
} else {
// A stable device should be accepted and put in a regular process mode
// within |kStableConvergenceMs|.
int process_time_ms = 0;
for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
RenderAndCapture(kDeviceBufMs);
buffer_size += samples_per_frame_;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GT(kStableConvergenceMs, process_time_ms);
}
// Verify that the buffer has been flushed.
EXPECT_GE(static_cast<int>(buffer_size), WebRtcAec_system_delay(self_->aec));
}
int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms,
bool extended_filter) {
// If extended_filter is disabled we add an extra 10 ms for the unprocessed
// frame. That is simply how the algorithm is constructed.
return static_cast<int>((size_in_ms + (extended_filter ? 0 : 10)) *
samples_per_frame_ / 10);
}
// The tests should meet basic requirements and not be adjusted to what is
// actually implemented. If we don't get good code coverage this way we either
// lack in tests or have unnecessary code.
// General requirements:
// 1) If we add far-end data the system delay should be increased with the same
// amount we add.
// 2) If the far-end buffer is full we should flush the oldest data to make room
// for the new. In this case the system delay is unaffected.
// 3) There should exist a startup phase in which the buffer size is to be
// determined. In this phase no cancellation should be performed.
// 4) Under stable conditions (small variations in device buffer sizes) the AEC
// should determine an appropriate local buffer size within
// |kStableConvergenceMs| ms.
// 5) Under unstable conditions the AEC should make a decision within
// |kMaxConvergenceMs| ms.
// 6) If the local buffer runs out of data we should stuff the buffer with older
// frames.
// 7) The system delay should within |kMaxConvergenceMs| ms heal from
// disturbances like drift, data glitches, toggling events and outliers.
// 8) The system delay should never become negative.
TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) {
// When we add data to the AEC buffer the internal system delay should be
// incremented with the same amount as the size of data.
// This process should be independent of DA-AEC and extended_filter mode.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// Loop through a couple of calls to make sure the system delay
// increments correctly.
for (int j = 1; j <= 5; j++) {
EXPECT_EQ(0,
WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
EXPECT_EQ(static_cast<int>(j * samples_per_frame_),
WebRtcAec_system_delay(self_->aec));
}
}
}
}
}
// TODO(bjornv): Add a test to verify behavior if the far-end buffer is full
// when adding new data.
TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) {
// We run the system in a stable startup. After that we verify that the system
// delay meets the requirements.
// This process should be independent of DA-AEC and extended_filter mode.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// Verify system delay with respect to requirements, i.e., the
// |system_delay| is in the interval [75%, 100%] of what's reported on
// the average.
// In extended_filter mode we target 50% and measure after one processed
// 10 ms chunk.
int average_reported_delay =
static_cast<int>(kDeviceBufMs * samples_per_frame_ / 10);
EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec));
int lower_bound = WebRtcAec_extended_filter_enabled(self_->aec)
? (average_reported_delay / 2 -
rtc::checked_cast<int>(samples_per_frame_))
: average_reported_delay * 3 / 4;
EXPECT_LE(lower_bound, WebRtcAec_system_delay(self_->aec));
}
}
}
}
TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) {
// This test does not apply in extended_filter mode, since we only use the
// the first 10 ms chunk to determine a reasonable buffer size. Neither does
// it apply if DA-AEC is on because that overrides the startup procedure.
WebRtcAec_enable_extended_filter(self_->aec, 0);
EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
WebRtcAec_enable_delay_agnostic(self_->aec, 0);
EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
// In an unstable system we would start processing after |kMaxConvergenceMs|.
// On the last frame the AEC buffer is adjusted to 60% of the last reported
// device buffer size.
// We construct an unstable system by altering the device buffer size between
// two values |kDeviceBufMs| +- 25 ms.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// To make sure we have a full buffer when we verify stability we first fill
// up the far-end buffer with the same amount as we will report in on the
// average through Process().
size_t buffer_size = BufferFillUp();
int buffer_offset_ms = 25;
int reported_delay_ms = 0;
int process_time_ms = 0;
for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
reported_delay_ms = kDeviceBufMs + buffer_offset_ms;
RenderAndCapture(reported_delay_ms);
buffer_size += samples_per_frame_;
buffer_offset_ms = -buffer_offset_ms;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GE(kMaxConvergenceMs, process_time_ms);
// Verify that the buffer has been flushed.
EXPECT_GE(static_cast<int>(buffer_size),
WebRtcAec_system_delay(self_->aec));
// Verify system delay with respect to requirements, i.e., the
// |system_delay| is in the interval [60%, 100%] of what's last reported.
EXPECT_GE(static_cast<int>(reported_delay_ms * samples_per_frame_ / 10),
WebRtcAec_system_delay(self_->aec));
EXPECT_LE(
static_cast<int>(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5),
WebRtcAec_system_delay(self_->aec));
}
}
TEST_F(SystemDelayTest, CorrectDelayAfterStableBufferBuildUp) {
// This test does not apply in extended_filter mode, since we only use the
// the first 10 ms chunk to determine a reasonable buffer size. Neither does
// it apply if DA-AEC is on because that overrides the startup procedure.
WebRtcAec_enable_extended_filter(self_->aec, 0);
EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
WebRtcAec_enable_delay_agnostic(self_->aec, 0);
EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
// In this test we start by establishing the device buffer size during stable
// conditions, but with an empty internal far-end buffer. Once that is done we
// verify that the system delay is increased correctly until we have reach an
// internal buffer size of 75% of what's been reported.
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
// We assume that running |kStableConvergenceMs| calls will put the
// algorithm in a state where the device buffer size has been determined. We
// can make that assumption since we have a separate stability test.
int process_time_ms = 0;
for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_,
samples_per_frame_, kDeviceBufMs, 0));
}
// Verify that a buffer size has been established.
EXPECT_EQ(0, self_->checkBuffSize);
// We now have established the required buffer size. Let us verify that we
// fill up before leaving the startup phase for normal processing.
size_t buffer_size = 0;
size_t target_buffer_size = kDeviceBufMs * samples_per_frame_ / 10 * 3 / 4;
process_time_ms = 0;
for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
RenderAndCapture(kDeviceBufMs);
buffer_size += samples_per_frame_;
if (self_->startup_phase == 0) {
// We have left the startup phase.
break;
}
}
// Verify convergence time.
EXPECT_GT(kMaxConvergenceMs, process_time_ms);
// Verify that the buffer has reached the desired size.
EXPECT_LE(static_cast<int>(target_buffer_size),
WebRtcAec_system_delay(self_->aec));
// Verify normal behavior (system delay is kept constant) after startup by
// running a couple of calls to BufferFarend() and Process().
for (int j = 0; j < 6; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
RenderAndCapture(kDeviceBufMs);
EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
}
}
}
TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) {
// Here we test a buffer under run scenario. If we keep on calling
// WebRtcAec_Process() we will finally run out of data, but should
// automatically stuff the buffer. We verify this behavior by checking if the
// system delay goes negative.
// This process should be independent of DA-AEC and extended_filter mode.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// The AEC has now left the Startup phase. We now have at most
// |kStableConvergenceMs| in the buffer. Keep on calling Process() until
// we run out of data and verify that the system delay is non-negative.
for (int j = 0; j <= kStableConvergenceMs; j += 10) {
EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_,
samples_per_frame_, kDeviceBufMs, 0));
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
}
}
TEST_F(SystemDelayTest, CorrectDelayDuringDrift) {
// This drift test should verify that the system delay is never exceeding the
// device buffer. The drift is simulated by decreasing the reported device
// buffer size by 1 ms every 100 ms. If the device buffer size goes below 30
// ms we jump (add) 10 ms to give a repeated pattern.
// This process should be independent of DA-AEC and extended_filter mode.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
// We have left the startup phase and proceed with normal processing.
int jump = 0;
for (int j = 0; j < 1000; j++) {
// Drift = -1 ms per 100 ms of data.
int device_buf_ms = kDeviceBufMs - (j / 10) + jump;
int device_buf =
MapBufferSizeToSamples(device_buf_ms, extended_filter == 1);
if (device_buf_ms < 30) {
// Add 10 ms data, taking affect next frame.
jump += 10;
}
RenderAndCapture(device_buf_ms);
// Verify that the system delay does not exceed the device buffer.
EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
}
}
TEST_F(SystemDelayTest, ShouldRecoverAfterGlitch) {
// This glitch test should verify that the system delay recovers if there is
// a glitch in data. The data glitch is constructed as 200 ms of buffering
// after which the stable procedure continues. The glitch is never reported by
// the device.
// The system is said to be in a non-causal state if the difference between
// the device buffer and system delay is less than a block (64 samples).
// This process should be independent of DA-AEC and extended_filter mode.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
int device_buf =
MapBufferSizeToSamples(kDeviceBufMs, extended_filter == 1);
// Glitch state.
for (int j = 0; j < 20; j++) {
EXPECT_EQ(0,
WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
// No need to verify system delay, since that is done in a separate
// test.
}
// Verify that we are in a non-causal state, i.e.,
// |system_delay| > |device_buf|.
EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec));
// Recover state. Should recover at least 4 ms of data per 10 ms, hence
// a glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover
// from.
bool non_causal = true; // We are currently in a non-causal state.
for (int j = 0; j < 50; j++) {
int system_delay_before = WebRtcAec_system_delay(self_->aec);
RenderAndCapture(kDeviceBufMs);
int system_delay_after = WebRtcAec_system_delay(self_->aec);
// We have recovered if
// |device_buf| - |system_delay_after| >= PART_LEN (1 block).
// During recovery, |system_delay_after| < |system_delay_before|,
// otherwise they are equal.
if (non_causal) {
EXPECT_LT(system_delay_after, system_delay_before);
if (device_buf - system_delay_after >= PART_LEN) {
non_causal = false;
}
} else {
EXPECT_EQ(system_delay_before, system_delay_after);
}
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
// Check that we have recovered.
EXPECT_FALSE(non_causal);
}
}
}
}
TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) {
// This test does not apply in extended_filter mode, since we only use the
// the first 10 ms chunk to determine a reasonable buffer size.
const int extended_filter = 0;
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
// Should be DA-AEC independent.
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
// This spurious device buffer data test aims at verifying that the system
// delay is unaffected by large outliers.
// The system is said to be in a non-causal state if the difference between
// the device buffer and system delay is less than a block (64 samples).
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
int device_buf =
MapBufferSizeToSamples(kDeviceBufMs, extended_filter == 1);
// Normal state. We are currently not in a non-causal state.
bool non_causal = false;
// Run 1 s and replace device buffer size with 500 ms every 100 ms.
for (int j = 0; j < 100; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
int device_buf_ms = j % 10 == 0 ? 500 : kDeviceBufMs;
RenderAndCapture(device_buf_ms);
// Check for non-causality.
if (device_buf - WebRtcAec_system_delay(self_->aec) < PART_LEN) {
non_causal = true;
}
EXPECT_FALSE(non_causal);
EXPECT_EQ(system_delay_before_calls,
WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
}
}
}
TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) {
// This test aims at verifying that the system delay is "unaffected" by
// toggling values reported by the device.
// The test is constructed such that every other device buffer value is zero
// and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The
// zero values will force us into a non-causal state and thereby lowering the
// system delay until we basically run out of data. Once that happens the
// buffer will be stuffed.
// TODO(bjornv): This test will have a better impact if we verified that the
// delay estimate goes up when the system delay goes down to meet the average
// device buffer size.
// This test does not apply if DA-AEC is enabled and extended_filter mode
// disabled.
for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
for (int da_aec = 0; da_aec <= 1; ++da_aec) {
WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
if (extended_filter == 0 && da_aec == 1) {
continue;
}
for (size_t i = 0; i < kNumSampleRates; i++) {
Init(kSampleRateHz[i]);
RunStableStartup();
const int device_buf =
MapBufferSizeToSamples(kDeviceBufMs, extended_filter == 1);
// Normal state. We are currently not in a non-causal state.
bool non_causal = false;
// Loop through 100 frames (both render and capture), which equals 1 s
// of data. Every odd frame we set the device buffer size to
// 2 * |kDeviceBufMs| and even frames we set the device buffer size to
// zero.
for (int j = 0; j < 100; j++) {
int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
int device_buf_ms = 2 * (j % 2) * kDeviceBufMs;
RenderAndCapture(device_buf_ms);
// Check for non-causality, compared with the average device buffer
// size.
non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64);
EXPECT_GE(system_delay_before_calls,
WebRtcAec_system_delay(self_->aec));
// Verify that the system delay is non-negative.
EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
}
// Verify we are not in a non-causal state.
EXPECT_FALSE(non_causal);
}
}
}
}
} // namespace
} // namespace webrtc

View File

@ -155,7 +155,6 @@ AudioProcessingImpl::SubmoduleStates::SubmoduleStates(
bool AudioProcessingImpl::SubmoduleStates::Update(
bool high_pass_filter_enabled,
bool echo_canceller_enabled,
bool mobile_echo_controller_enabled,
bool residual_echo_detector_enabled,
bool noise_suppressor_enabled,
@ -167,7 +166,6 @@ bool AudioProcessingImpl::SubmoduleStates::Update(
bool transient_suppressor_enabled) {
bool changed = false;
changed |= (high_pass_filter_enabled != high_pass_filter_enabled_);
changed |= (echo_canceller_enabled != echo_canceller_enabled_);
changed |=
(mobile_echo_controller_enabled != mobile_echo_controller_enabled_);
changed |=
@ -182,7 +180,6 @@ bool AudioProcessingImpl::SubmoduleStates::Update(
changed |= (transient_suppressor_enabled != transient_suppressor_enabled_);
if (changed) {
high_pass_filter_enabled_ = high_pass_filter_enabled;
echo_canceller_enabled_ = echo_canceller_enabled;
mobile_echo_controller_enabled_ = mobile_echo_controller_enabled;
residual_echo_detector_enabled_ = residual_echo_detector_enabled;
noise_suppressor_enabled_ = noise_suppressor_enabled;
@ -212,9 +209,8 @@ bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingPresent()
bool AudioProcessingImpl::SubmoduleStates::CaptureMultiBandProcessingActive(
bool ec_processing_active) const {
return high_pass_filter_enabled_ || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || noise_suppressor_enabled_ ||
adaptive_gain_controller_enabled_ ||
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
noise_suppressor_enabled_ || adaptive_gain_controller_enabled_ ||
(echo_controller_enabled_ && ec_processing_active);
}
@ -230,9 +226,8 @@ bool AudioProcessingImpl::SubmoduleStates::CaptureAnalyzerActive() const {
bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandSubModulesActive()
const {
return RenderMultiBandProcessingActive() || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || adaptive_gain_controller_enabled_ ||
echo_controller_enabled_;
return RenderMultiBandProcessingActive() || mobile_echo_controller_enabled_ ||
adaptive_gain_controller_enabled_ || echo_controller_enabled_;
}
bool AudioProcessingImpl::SubmoduleStates::RenderFullBandProcessingActive()
@ -246,8 +241,8 @@ bool AudioProcessingImpl::SubmoduleStates::RenderMultiBandProcessingActive()
}
bool AudioProcessingImpl::SubmoduleStates::HighPassFilteringRequired() const {
return high_pass_filter_enabled_ || echo_canceller_enabled_ ||
mobile_echo_controller_enabled_ || noise_suppressor_enabled_;
return high_pass_filter_enabled_ || mobile_echo_controller_enabled_ ||
noise_suppressor_enabled_;
}
AudioProcessingBuilder::AudioProcessingBuilder() = default;
@ -638,12 +633,7 @@ void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
const bool aec_config_changed =
config_.echo_canceller.enabled != config.echo_canceller.enabled ||
config_.echo_canceller.use_legacy_aec !=
config.echo_canceller.use_legacy_aec ||
config_.echo_canceller.mobile_mode != config.echo_canceller.mobile_mode ||
(config_.echo_canceller.enabled && config.echo_canceller.use_legacy_aec &&
config_.echo_canceller.legacy_moderate_suppression_level !=
config.echo_canceller.legacy_moderate_suppression_level);
config_.echo_canceller.mobile_mode != config.echo_canceller.mobile_mode;
const bool agc1_config_changed =
config_.gain_controller1.enabled != config.gain_controller1.enabled ||
@ -668,6 +658,9 @@ void AudioProcessingImpl::ApplyConfig(const AudioProcessing::Config& config) {
config_ = config;
// Ensure that this deprecated setting is not used by mistake.
RTC_DCHECK(!config_.echo_canceller.use_legacy_aec);
if (aec_config_changed) {
InitializeEchoController();
}
@ -737,13 +730,6 @@ void AudioProcessingImpl::SetExtraOptions(const webrtc::Config& config) {
rtc::CritScope cs_render(&crit_render_);
rtc::CritScope cs_capture(&crit_capture_);
capture_nonlocked_.use_aec2_extended_filter =
config.Get<ExtendedFilter>().enabled;
capture_nonlocked_.use_aec2_delay_agnostic =
config.Get<DelayAgnostic>().enabled;
capture_nonlocked_.use_aec2_refined_adaptive_filter =
config.Get<RefinedAdaptiveFilter>().enabled;
if (capture_.transient_suppressor_enabled !=
config.Get<ExperimentalNs>().enabled) {
capture_.transient_suppressor_enabled =
@ -997,23 +983,6 @@ void AudioProcessingImpl::HandleRenderRuntimeSettings() {
void AudioProcessingImpl::QueueBandedRenderAudio(AudioBuffer* audio) {
RTC_DCHECK_GE(160, audio->num_frames_per_band());
// Insert the samples into the queue.
if (submodules_.echo_cancellation) {
RTC_DCHECK(aec_render_signal_queue_);
EchoCancellationImpl::PackRenderAudioBuffer(audio, num_output_channels(),
num_reverse_channels(),
&aec_render_queue_buffer_);
if (!aec_render_signal_queue_->Insert(&aec_render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
EmptyQueuedRenderAudio();
// Retry the insert (should always work).
bool result = aec_render_signal_queue_->Insert(&aec_render_queue_buffer_);
RTC_DCHECK(result);
}
}
if (submodules_.echo_control_mobile) {
EchoControlMobileImpl::PackRenderAudioBuffer(audio, num_output_channels(),
num_reverse_channels(),
@ -1110,14 +1079,6 @@ void AudioProcessingImpl::AllocateRenderQueue() {
void AudioProcessingImpl::EmptyQueuedRenderAudio() {
rtc::CritScope cs_capture(&crit_capture_);
if (submodules_.echo_cancellation) {
RTC_DCHECK(aec_render_signal_queue_);
while (aec_render_signal_queue_->Remove(&aec_capture_queue_buffer_)) {
submodules_.echo_cancellation->ProcessRenderAudio(
aec_capture_queue_buffer_);
}
}
if (submodules_.echo_control_mobile) {
RTC_DCHECK(aecm_render_signal_queue_);
while (aecm_render_signal_queue_->Remove(&aecm_capture_queue_buffer_)) {
@ -1236,7 +1197,6 @@ int AudioProcessingImpl::ProcessCaptureStreamLocked() {
// TODO(peah): Simplify once the public API Enable functions for these
// are moved to APM.
RTC_DCHECK_LE(!!submodules_.echo_controller +
!!submodules_.echo_cancellation +
!!submodules_.echo_control_mobile,
1);
@ -1350,15 +1310,6 @@ int AudioProcessingImpl::ProcessCaptureStreamLocked() {
AudioBuffer* linear_aec_buffer = capture_.linear_aec_output.get();
submodules_.echo_controller->ProcessCapture(
capture_buffer, linear_aec_buffer, capture_.echo_path_gain_change);
} else if (submodules_.echo_cancellation) {
// Ensure that the stream delay was set before the call to the
// AEC ProcessCaptureAudio function.
if (!was_stream_delay_set()) {
return AudioProcessing::kStreamParameterNotSetError;
}
RETURN_ON_ERR(submodules_.echo_cancellation->ProcessCaptureAudio(
capture_buffer, stream_delay_ms()));
}
if (submodules_.noise_suppressor) {
@ -1387,8 +1338,7 @@ int AudioProcessingImpl::ProcessCaptureStreamLocked() {
}
// TODO(peah): Add reporting from AEC3 whether there is echo.
RETURN_ON_ERR(submodules_.gain_control->ProcessCaptureAudio(
capture_buffer, submodules_.echo_cancellation &&
submodules_.echo_cancellation->stream_has_echo()));
capture_buffer, /*stream_has_echo*/ false));
if (submodule_states_.CaptureMultiBandProcessingPresent() &&
SampleRateSupportsMultiBand(
@ -1754,7 +1704,6 @@ AudioProcessingStats AudioProcessingImpl::GetStatistics(
return capture_.stats;
}
AudioProcessingStats stats = capture_.stats;
EchoCancellationImpl::Metrics metrics;
if (submodules_.echo_controller) {
auto ec_metrics = submodules_.echo_controller->GetMetrics();
stats.echo_return_loss = ec_metrics.echo_return_loss;
@ -1788,8 +1737,8 @@ AudioProcessing::Config AudioProcessingImpl::GetConfig() const {
bool AudioProcessingImpl::UpdateActiveSubmoduleStates() {
return submodule_states_.Update(
config_.high_pass_filter.enabled, !!submodules_.echo_cancellation,
!!submodules_.echo_control_mobile, config_.residual_echo_detector.enabled,
config_.high_pass_filter.enabled, !!submodules_.echo_control_mobile,
config_.residual_echo_detector.enabled,
!!submodules_.legacy_noise_suppressor || !!submodules_.noise_suppressor,
submodules_.gain_control->is_enabled(), config_.gain_controller2.enabled,
config_.pre_amplifier.enabled, capture_nonlocked_.echo_controller_enabled,
@ -1831,8 +1780,7 @@ void AudioProcessingImpl::InitializeVoiceDetector() {
void AudioProcessingImpl::InitializeEchoController() {
bool use_echo_controller =
echo_control_factory_ ||
(config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode &&
!config_.echo_canceller.use_legacy_aec);
(config_.echo_canceller.enabled && !config_.echo_canceller.mobile_mode);
if (use_echo_controller) {
// Create and activate the echo controller.
@ -1863,8 +1811,6 @@ void AudioProcessingImpl::InitializeEchoController() {
capture_nonlocked_.echo_controller_enabled = true;
submodules_.echo_cancellation.reset();
aec_render_signal_queue_.reset();
submodules_.echo_control_mobile.reset();
aecm_render_signal_queue_.reset();
return;
@ -1875,8 +1821,6 @@ void AudioProcessingImpl::InitializeEchoController() {
capture_.linear_aec_output.reset();
if (!config_.echo_canceller.enabled) {
submodules_.echo_cancellation.reset();
aec_render_signal_queue_.reset();
submodules_.echo_control_mobile.reset();
aecm_render_signal_queue_.reset();
return;
@ -1905,46 +1849,11 @@ void AudioProcessingImpl::InitializeEchoController() {
submodules_.echo_control_mobile->Initialize(proc_split_sample_rate_hz(),
num_reverse_channels(),
num_output_channels());
submodules_.echo_cancellation.reset();
aec_render_signal_queue_.reset();
return;
}
submodules_.echo_control_mobile.reset();
aecm_render_signal_queue_.reset();
// Create and activate AEC2.
submodules_.echo_cancellation.reset(new EchoCancellationImpl());
submodules_.echo_cancellation->SetExtraOptions(
capture_nonlocked_.use_aec2_extended_filter,
capture_nonlocked_.use_aec2_delay_agnostic,
capture_nonlocked_.use_aec2_refined_adaptive_filter);
size_t element_max_size =
std::max(static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerBand *
EchoCancellationImpl::NumCancellersRequired(
num_output_channels(), num_reverse_channels()));
std::vector<float> template_queue_element(element_max_size);
aec_render_signal_queue_.reset(
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<float>(element_max_size)));
aec_render_queue_buffer_.resize(element_max_size);
aec_capture_queue_buffer_.resize(element_max_size);
submodules_.echo_cancellation->Initialize(
proc_sample_rate_hz(), num_reverse_channels(), num_output_channels(),
num_proc_channels());
submodules_.echo_cancellation->set_suppression_level(
config_.echo_canceller.legacy_moderate_suppression_level
? EchoCancellationImpl::SuppressionLevel::kModerateSuppression
: EchoCancellationImpl::SuppressionLevel::kHighSuppression);
}
void AudioProcessingImpl::InitializeGainController2() {
@ -2039,10 +1948,6 @@ void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
}
std::string experiments_description = "";
if (submodules_.echo_cancellation) {
experiments_description +=
submodules_.echo_cancellation->GetExperimentsDescription();
}
// TODO(peah): Add semicolon-separated concatenations of experiment
// descriptions for other submodules.
if (constants_.agc_clipped_level_min != kClippedLevelMin) {
@ -2058,19 +1963,9 @@ void AudioProcessingImpl::WriteAecDumpConfigMessage(bool forced) {
InternalAPMConfig apm_config;
apm_config.aec_enabled = config_.echo_canceller.enabled;
apm_config.aec_delay_agnostic_enabled =
submodules_.echo_cancellation &&
submodules_.echo_cancellation->is_delay_agnostic_enabled();
apm_config.aec_drift_compensation_enabled =
submodules_.echo_cancellation &&
submodules_.echo_cancellation->is_drift_compensation_enabled();
apm_config.aec_extended_filter_enabled =
submodules_.echo_cancellation &&
submodules_.echo_cancellation->is_extended_filter_enabled();
apm_config.aec_suppression_level =
submodules_.echo_cancellation
? static_cast<int>(submodules_.echo_cancellation->suppression_level())
: 0;
apm_config.aec_delay_agnostic_enabled = false;
apm_config.aec_extended_filter_enabled = false;
apm_config.aec_suppression_level = 0;
apm_config.aecm_enabled = !!submodules_.echo_control_mobile;
apm_config.aecm_comfort_noise_enabled =
@ -2151,10 +2046,7 @@ void AudioProcessingImpl::RecordAudioProcessingState() {
RTC_DCHECK(aec_dump_);
AecDump::AudioProcessingState audio_proc_state;
audio_proc_state.delay = capture_nonlocked_.stream_delay_ms;
audio_proc_state.drift =
submodules_.echo_cancellation
? submodules_.echo_cancellation->stream_drift_samples()
: 0;
audio_proc_state.drift = 0;
audio_proc_state.level = recommended_stream_analog_level();
audio_proc_state.keypress = capture_.key_pressed;
aec_dump_->AddAudioProcessingState(audio_proc_state);

View File

@ -20,7 +20,6 @@
#include "modules/audio_processing/agc/agc_manager_direct.h"
#include "modules/audio_processing/agc/gain_control.h"
#include "modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/gain_control_impl.h"
#include "modules/audio_processing/gain_controller2.h"
@ -171,7 +170,6 @@ class AudioProcessingImpl : public AudioProcessing {
bool capture_analyzer_enabled);
// Updates the submodule state and returns true if it has changed.
bool Update(bool high_pass_filter_enabled,
bool echo_canceller_enabled,
bool mobile_echo_controller_enabled,
bool residual_echo_detector_enabled,
bool noise_suppressor_enabled,
@ -196,7 +194,6 @@ class AudioProcessingImpl : public AudioProcessing {
const bool render_pre_processor_enabled_ = false;
const bool capture_analyzer_enabled_ = false;
bool high_pass_filter_enabled_ = false;
bool echo_canceller_enabled_ = false;
bool mobile_echo_controller_enabled_ = false;
bool residual_echo_detector_enabled_ = false;
bool noise_suppressor_enabled_ = false;
@ -337,7 +334,6 @@ class AudioProcessingImpl : public AudioProcessing {
std::unique_ptr<GainController2> gain_controller2;
std::unique_ptr<HighPassFilter> high_pass_filter;
rtc::scoped_refptr<EchoDetector> echo_detector;
std::unique_ptr<EchoCancellationImpl> echo_cancellation;
std::unique_ptr<EchoControl> echo_controller;
std::unique_ptr<EchoControlMobileImpl> echo_control_mobile;
std::unique_ptr<NoiseSuppression> legacy_noise_suppressor;
@ -436,9 +432,6 @@ class AudioProcessingImpl : public AudioProcessing {
int split_rate;
int stream_delay_ms;
bool echo_controller_enabled = false;
bool use_aec2_extended_filter = false;
bool use_aec2_delay_agnostic = false;
bool use_aec2_refined_adaptive_filter = false;
} capture_nonlocked_;
struct ApmRenderState {
@ -469,8 +462,6 @@ class AudioProcessingImpl : public AudioProcessing {
int capture_rms_interval_counter_ RTC_GUARDED_BY(crit_capture_) = 0;
// Lock protection not needed.
std::unique_ptr<SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>>
aec_render_signal_queue_;
std::unique_ptr<
SwapQueue<std::vector<int16_t>, RenderQueueItemVerifier<int16_t>>>
aecm_render_signal_queue_;

View File

@ -551,17 +551,6 @@ void AudioProcessingImplLockTest::SetUp() {
apm_config.voice_detection.enabled = true;
apm_config.level_estimation.enabled = true;
apm_->ApplyConfig(apm_config);
Config config;
config.Set<ExtendedFilter>(
new ExtendedFilter(test_config_.aec_type ==
AecType::BasicWebRtcAecSettingsWithExtentedFilter));
config.Set<DelayAgnostic>(
new DelayAgnostic(test_config_.aec_type ==
AecType::BasicWebRtcAecSettingsWithDelayAgnosticAec));
apm_->SetExtraOptions(config);
}
void AudioProcessingImplLockTest::TearDown() {

View File

@ -483,12 +483,6 @@ class CallSimulator : public ::testing::TestWithParam<SimulationConfig> {
apm->ApplyConfig(apm_config);
};
// Lambda function for adding default desktop APM settings to a config.
auto add_default_desktop_config = [](Config* config) {
config->Set<ExtendedFilter>(new ExtendedFilter(true));
config->Set<DelayAgnostic>(new DelayAgnostic(true));
};
int num_capture_channels = 1;
switch (simulation_config_.simulation_settings) {
case SettingsType::kDefaultApmMobile: {
@ -499,7 +493,6 @@ class CallSimulator : public ::testing::TestWithParam<SimulationConfig> {
}
case SettingsType::kDefaultApmDesktop: {
Config config;
add_default_desktop_config(&config);
apm_.reset(AudioProcessingBuilder().Create(config));
ASSERT_TRUE(!!apm_);
set_default_desktop_apm_runtime_settings(apm_.get());
@ -514,8 +507,6 @@ class CallSimulator : public ::testing::TestWithParam<SimulationConfig> {
}
case SettingsType::kDefaultApmDesktopWithoutDelayAgnostic: {
Config config;
config.Set<ExtendedFilter>(new ExtendedFilter(true));
config.Set<DelayAgnostic>(new DelayAgnostic(false));
apm_.reset(AudioProcessingBuilder().Create(config));
ASSERT_TRUE(!!apm_);
set_default_desktop_apm_runtime_settings(apm_.get());
@ -524,8 +515,6 @@ class CallSimulator : public ::testing::TestWithParam<SimulationConfig> {
}
case SettingsType::kDefaultApmDesktopWithoutExtendedFilter: {
Config config;
config.Set<ExtendedFilter>(new ExtendedFilter(false));
config.Set<DelayAgnostic>(new DelayAgnostic(true));
apm_.reset(AudioProcessingBuilder().Create(config));
ASSERT_TRUE(!!apm_);
set_default_desktop_apm_runtime_settings(apm_.get());

View File

@ -1536,8 +1536,6 @@ TEST_F(ApmTest, Process) {
Config config;
config.Set<ExperimentalAgc>(new ExperimentalAgc(false));
config.Set<ExtendedFilter>(
new ExtendedFilter(test->use_aec_extended_filter()));
apm_.reset(AudioProcessingBuilder().Create(config));
EnableAllComponents();

View File

@ -1,353 +0,0 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/test/audio_buffer_tools.h"
#include "modules/audio_processing/test/bitexactness_tools.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const int kNumFramesToProcess = 100;
void SetupComponent(int sample_rate_hz,
EchoCancellationImpl::SuppressionLevel suppression_level,
bool drift_compensation_enabled,
EchoCancellationImpl* echo_canceller) {
echo_canceller->Initialize(sample_rate_hz, 1, 1, 1);
echo_canceller->set_suppression_level(suppression_level);
echo_canceller->enable_drift_compensation(drift_compensation_enabled);
Config config;
config.Set<DelayAgnostic>(new DelayAgnostic(true));
config.Set<ExtendedFilter>(new ExtendedFilter(true));
echo_canceller->SetExtraOptions(true, true, false);
}
void ProcessOneFrame(int sample_rate_hz,
int stream_delay_ms,
bool drift_compensation_enabled,
int stream_drift_samples,
AudioBuffer* render_audio_buffer,
AudioBuffer* capture_audio_buffer,
EchoCancellationImpl* echo_canceller) {
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
render_audio_buffer->SplitIntoFrequencyBands();
capture_audio_buffer->SplitIntoFrequencyBands();
}
std::vector<float> render_audio;
EchoCancellationImpl::PackRenderAudioBuffer(
render_audio_buffer, 1, render_audio_buffer->num_channels(),
&render_audio);
echo_canceller->ProcessRenderAudio(render_audio);
if (drift_compensation_enabled) {
echo_canceller->set_stream_drift_samples(stream_drift_samples);
}
echo_canceller->ProcessCaptureAudio(capture_audio_buffer, stream_delay_ms);
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
capture_audio_buffer->MergeFrequencyBands();
}
}
void RunBitexactnessTest(
int sample_rate_hz,
size_t num_channels,
int stream_delay_ms,
bool drift_compensation_enabled,
int stream_drift_samples,
EchoCancellationImpl::SuppressionLevel suppression_level,
bool stream_has_echo_reference,
const rtc::ArrayView<const float>& output_reference) {
EchoCancellationImpl echo_canceller;
SetupComponent(sample_rate_hz, suppression_level, drift_compensation_enabled,
&echo_canceller);
const int samples_per_channel = rtc::CheckedDivExact(sample_rate_hz, 100);
const StreamConfig render_config(sample_rate_hz, num_channels, false);
AudioBuffer render_buffer(
render_config.sample_rate_hz(), render_config.num_channels(),
render_config.sample_rate_hz(), 1, render_config.sample_rate_hz(), 1);
test::InputAudioFile render_file(
test::GetApmRenderTestVectorFileName(sample_rate_hz));
std::vector<float> render_input(samples_per_channel * num_channels);
const StreamConfig capture_config(sample_rate_hz, num_channels, false);
AudioBuffer capture_buffer(
capture_config.sample_rate_hz(), capture_config.num_channels(),
capture_config.sample_rate_hz(), 1, capture_config.sample_rate_hz(), 1);
test::InputAudioFile capture_file(
test::GetApmCaptureTestVectorFileName(sample_rate_hz));
std::vector<float> capture_input(samples_per_channel * num_channels);
for (int frame_no = 0; frame_no < kNumFramesToProcess; ++frame_no) {
ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
&render_file, render_input);
ReadFloatSamplesFromStereoFile(samples_per_channel, num_channels,
&capture_file, capture_input);
test::CopyVectorToAudioBuffer(render_config, render_input, &render_buffer);
test::CopyVectorToAudioBuffer(capture_config, capture_input,
&capture_buffer);
ProcessOneFrame(sample_rate_hz, stream_delay_ms, drift_compensation_enabled,
stream_drift_samples, &render_buffer, &capture_buffer,
&echo_canceller);
}
// Extract and verify the test results.
std::vector<float> capture_output;
test::ExtractVectorFromAudioBuffer(capture_config, &capture_buffer,
&capture_output);
EXPECT_EQ(stream_has_echo_reference, echo_canceller.stream_has_echo());
// Compare the output with the reference. Only the first values of the output
// from last frame processed are compared in order not having to specify all
// preceeding frames as testvectors. As the algorithm being tested has a
// memory, testing only the last frame implicitly also tests the preceeding
// frames.
const float kElementErrorBound = 1.0f / 32768.0f;
EXPECT_TRUE(test::VerifyDeinterleavedArray(
capture_config.num_frames(), capture_config.num_channels(),
output_reference, capture_output, kElementErrorBound));
}
const bool kStreamHasEchoReference = true;
} // namespace
// TODO(peah): Activate all these tests for ARM and ARM64 once the issue on the
// Chromium ARM and ARM64 boths have been identified. This is tracked in the
// issue https://bugs.chromium.org/p/webrtc/issues/detail?id=5711.
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono8kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono8kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {-0.000646f, -0.001525f, 0.002688f};
RunBitexactnessTest(8000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(16000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono32kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono32kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {-0.000671f, 0.000061f, -0.000031f};
RunBitexactnessTest(32000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono48kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono48kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {-0.001403f, -0.001411f, -0.000755f};
RunBitexactnessTest(48000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_LowLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_LowLevel_NoDrift_StreamDelay0) {
#endif
#if defined(WEBRTC_MAC)
const float kOutputReference[] = {-0.000145f, 0.000179f, 0.000917f};
#else
const float kOutputReference[] = {-0.000009f, 0.000363f, 0.001094f};
#endif
RunBitexactnessTest(16000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kLowSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_ModerateLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_ModerateLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(
16000, 1, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kModerateSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_HighLevel_NoDrift_StreamDelay10) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_HighLevel_NoDrift_StreamDelay10) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(16000, 1, 10, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_HighLevel_NoDrift_StreamDelay20) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_HighLevel_NoDrift_StreamDelay20) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(16000, 1, 20, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_HighLevel_Drift0_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_HighLevel_Drift0_StreamDelay0) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(16000, 1, 0, true, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Mono16kHz_HighLevel_Drift5_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Mono16kHz_HighLevel_Drift5_StreamDelay0) {
#endif
const float kOutputReference[] = {0.000055f, 0.000421f, 0.001149f};
RunBitexactnessTest(16000, 1, 0, true, 5,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Stereo8kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Stereo8kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
#if defined(WEBRTC_MAC)
const float kOutputReference[] = {-0.000392f, -0.001449f, 0.003004f,
-0.000392f, -0.001449f, 0.003004f};
#else
const float kOutputReference[] = {-0.000464f, -0.001525f, 0.002933f,
-0.000464f, -0.001525f, 0.002933f};
#endif
RunBitexactnessTest(8000, 2, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Stereo16kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Stereo16kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {0.000166f, 0.000735f, 0.000841f,
0.000166f, 0.000735f, 0.000841f};
RunBitexactnessTest(16000, 2, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Stereo32kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Stereo32kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
#if defined(WEBRTC_MAC)
const float kOutputReference[] = {-0.000458f, 0.000214f, 0.000122f,
-0.000458f, 0.000214f, 0.000122f};
#else
const float kOutputReference[] = {-0.000427f, 0.000183f, 0.000183f,
-0.000427f, 0.000183f, 0.000183f};
#endif
RunBitexactnessTest(32000, 2, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
#if !(defined(WEBRTC_ARCH_ARM64) || defined(WEBRTC_ARCH_ARM) || \
defined(WEBRTC_ANDROID))
TEST(EchoCancellationBitExactnessTest,
Stereo48kHz_HighLevel_NoDrift_StreamDelay0) {
#else
TEST(EchoCancellationBitExactnessTest,
DISABLED_Stereo48kHz_HighLevel_NoDrift_StreamDelay0) {
#endif
const float kOutputReference[] = {-0.001101f, -0.001101f, -0.000449f,
-0.001101f, -0.001101f, -0.000449f};
RunBitexactnessTest(48000, 2, 0, false, 0,
EchoCancellationImpl::SuppressionLevel::kHighSuppression,
kStreamHasEchoReference, kOutputReference);
}
} // namespace webrtc

View File

@ -1,432 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/echo_cancellation_impl.h"
#include <stdint.h>
#include <string.h>
#include "modules/audio_processing/aec/aec_core.h"
#include "modules/audio_processing/aec/echo_cancellation.h"
#include "modules/audio_processing/audio_buffer.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
int16_t MapSetting(EchoCancellationImpl::SuppressionLevel level) {
switch (level) {
case EchoCancellationImpl::kLowSuppression:
return kAecNlpConservative;
case EchoCancellationImpl::kModerateSuppression:
return kAecNlpModerate;
case EchoCancellationImpl::kHighSuppression:
return kAecNlpAggressive;
}
RTC_NOTREACHED();
return -1;
}
AudioProcessing::Error MapError(int err) {
switch (err) {
case AEC_UNSUPPORTED_FUNCTION_ERROR:
return AudioProcessing::kUnsupportedFunctionError;
case AEC_BAD_PARAMETER_ERROR:
return AudioProcessing::kBadParameterError;
case AEC_BAD_PARAMETER_WARNING:
return AudioProcessing::kBadStreamParameterWarning;
default:
// AEC_UNSPECIFIED_ERROR
// AEC_UNINITIALIZED_ERROR
// AEC_NULL_POINTER_ERROR
return AudioProcessing::kUnspecifiedError;
}
}
bool EnforceZeroStreamDelay() {
#if defined(CHROMEOS)
return !field_trial::IsEnabled("WebRTC-Aec2ZeroStreamDelayKillSwitch");
#else
return false;
#endif
}
} // namespace
struct EchoCancellationImpl::StreamProperties {
StreamProperties() = delete;
StreamProperties(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels)
: sample_rate_hz(sample_rate_hz),
num_reverse_channels(num_reverse_channels),
num_output_channels(num_output_channels),
num_proc_channels(num_proc_channels) {}
const int sample_rate_hz;
const size_t num_reverse_channels;
const size_t num_output_channels;
const size_t num_proc_channels;
};
class EchoCancellationImpl::Canceller {
public:
Canceller() {
state_ = WebRtcAec_Create();
RTC_DCHECK(state_);
}
~Canceller() {
RTC_CHECK(state_);
WebRtcAec_Free(state_);
}
void* state() { return state_; }
void Initialize(int sample_rate_hz) {
// TODO(ajm): Drift compensation is disabled in practice. If restored, it
// should be managed internally and not depend on the hardware sample rate.
// For now, just hardcode a 48 kHz value.
const int error = WebRtcAec_Init(state_, sample_rate_hz, 48000);
RTC_DCHECK_EQ(0, error);
}
private:
void* state_;
};
EchoCancellationImpl::EchoCancellationImpl()
: drift_compensation_enabled_(false),
metrics_enabled_(true),
suppression_level_(kHighSuppression),
stream_drift_samples_(0),
was_stream_drift_set_(false),
stream_has_echo_(false),
delay_logging_enabled_(true),
extended_filter_enabled_(false),
delay_agnostic_enabled_(false),
enforce_zero_stream_delay_(EnforceZeroStreamDelay()) {}
EchoCancellationImpl::~EchoCancellationImpl() = default;
void EchoCancellationImpl::ProcessRenderAudio(
rtc::ArrayView<const float> packed_render_audio) {
RTC_DCHECK(stream_properties_);
size_t handle_index = 0;
size_t buffer_index = 0;
const size_t num_frames_per_band =
packed_render_audio.size() / (stream_properties_->num_output_channels *
stream_properties_->num_reverse_channels);
for (size_t i = 0; i < stream_properties_->num_output_channels; i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
WebRtcAec_BufferFarend(cancellers_[handle_index++]->state(),
&packed_render_audio[buffer_index],
num_frames_per_band);
buffer_index += num_frames_per_band;
}
}
}
int EchoCancellationImpl::ProcessCaptureAudio(AudioBuffer* audio,
int stream_delay_ms) {
const int stream_delay_ms_use =
enforce_zero_stream_delay_ ? 0 : stream_delay_ms;
if (drift_compensation_enabled_ && !was_stream_drift_set_) {
return AudioProcessing::kStreamParameterNotSetError;
}
RTC_DCHECK(stream_properties_);
RTC_DCHECK_GE(160, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(), stream_properties_->num_proc_channels);
int err = AudioProcessing::kNoError;
// The ordering convention must be followed to pass to the correct AEC.
size_t handle_index = 0;
stream_has_echo_ = false;
for (size_t i = 0; i < audio->num_channels(); i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
err =
WebRtcAec_Process(cancellers_[handle_index]->state(),
audio->split_bands_const(i), audio->num_bands(),
audio->split_bands(i), audio->num_frames_per_band(),
stream_delay_ms_use, stream_drift_samples_);
if (err != AudioProcessing::kNoError) {
err = MapError(err);
// TODO(ajm): Figure out how to return warnings properly.
if (err != AudioProcessing::kBadStreamParameterWarning) {
return err;
}
}
int status = 0;
err = WebRtcAec_get_echo_status(cancellers_[handle_index]->state(),
&status);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
if (status == 1) {
stream_has_echo_ = true;
}
handle_index++;
}
}
was_stream_drift_set_ = false;
return AudioProcessing::kNoError;
}
int EchoCancellationImpl::set_suppression_level(SuppressionLevel level) {
if (MapSetting(level) == -1) {
return AudioProcessing::kBadParameterError;
}
suppression_level_ = level;
return Configure();
}
EchoCancellationImpl::SuppressionLevel EchoCancellationImpl::suppression_level()
const {
return suppression_level_;
}
int EchoCancellationImpl::enable_drift_compensation(bool enable) {
drift_compensation_enabled_ = enable;
return Configure();
}
bool EchoCancellationImpl::is_drift_compensation_enabled() const {
return drift_compensation_enabled_;
}
void EchoCancellationImpl::set_stream_drift_samples(int drift) {
was_stream_drift_set_ = true;
stream_drift_samples_ = drift;
}
int EchoCancellationImpl::stream_drift_samples() const {
return stream_drift_samples_;
}
int EchoCancellationImpl::enable_metrics(bool enable) {
metrics_enabled_ = enable;
return Configure();
}
bool EchoCancellationImpl::are_metrics_enabled() const {
return metrics_enabled_;
}
// TODO(ajm): we currently just use the metrics from the first AEC. Think more
// aboue the best way to extend this to multi-channel.
int EchoCancellationImpl::GetMetrics(Metrics* metrics) {
if (metrics == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!metrics_enabled_) {
return AudioProcessing::kNotEnabledError;
}
AecMetrics my_metrics;
memset(&my_metrics, 0, sizeof(my_metrics));
memset(metrics, 0, sizeof(Metrics));
const int err = WebRtcAec_GetMetrics(cancellers_[0]->state(), &my_metrics);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
metrics->residual_echo_return_loss.instant = my_metrics.rerl.instant;
metrics->residual_echo_return_loss.average = my_metrics.rerl.average;
metrics->residual_echo_return_loss.maximum = my_metrics.rerl.max;
metrics->residual_echo_return_loss.minimum = my_metrics.rerl.min;
metrics->echo_return_loss.instant = my_metrics.erl.instant;
metrics->echo_return_loss.average = my_metrics.erl.average;
metrics->echo_return_loss.maximum = my_metrics.erl.max;
metrics->echo_return_loss.minimum = my_metrics.erl.min;
metrics->echo_return_loss_enhancement.instant = my_metrics.erle.instant;
metrics->echo_return_loss_enhancement.average = my_metrics.erle.average;
metrics->echo_return_loss_enhancement.maximum = my_metrics.erle.max;
metrics->echo_return_loss_enhancement.minimum = my_metrics.erle.min;
metrics->a_nlp.instant = my_metrics.aNlp.instant;
metrics->a_nlp.average = my_metrics.aNlp.average;
metrics->a_nlp.maximum = my_metrics.aNlp.max;
metrics->a_nlp.minimum = my_metrics.aNlp.min;
metrics->divergent_filter_fraction = my_metrics.divergent_filter_fraction;
return AudioProcessing::kNoError;
}
bool EchoCancellationImpl::stream_has_echo() const {
return stream_has_echo_;
}
int EchoCancellationImpl::enable_delay_logging(bool enable) {
delay_logging_enabled_ = enable;
return Configure();
}
bool EchoCancellationImpl::is_delay_logging_enabled() const {
return delay_logging_enabled_;
}
bool EchoCancellationImpl::is_delay_agnostic_enabled() const {
return delay_agnostic_enabled_;
}
std::string EchoCancellationImpl::GetExperimentsDescription() {
return refined_adaptive_filter_enabled_ ? "Legacy AEC;RefinedAdaptiveFilter;"
: "Legacy AEC;";
}
bool EchoCancellationImpl::is_refined_adaptive_filter_enabled() const {
return refined_adaptive_filter_enabled_;
}
bool EchoCancellationImpl::is_extended_filter_enabled() const {
return extended_filter_enabled_;
}
// TODO(bjornv): How should we handle the multi-channel case?
int EchoCancellationImpl::GetDelayMetrics(int* median, int* std) {
float fraction_poor_delays = 0;
return GetDelayMetrics(median, std, &fraction_poor_delays);
}
int EchoCancellationImpl::GetDelayMetrics(int* median,
int* std,
float* fraction_poor_delays) {
if (median == NULL) {
return AudioProcessing::kNullPointerError;
}
if (std == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!delay_logging_enabled_) {
return AudioProcessing::kNotEnabledError;
}
const int err = WebRtcAec_GetDelayMetrics(cancellers_[0]->state(), median,
std, fraction_poor_delays);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
return AudioProcessing::kNoError;
}
struct AecCore* EchoCancellationImpl::aec_core() const {
return WebRtcAec_aec_core(cancellers_[0]->state());
}
void EchoCancellationImpl::Initialize(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels) {
stream_properties_.reset(
new StreamProperties(sample_rate_hz, num_reverse_channels,
num_output_channels, num_proc_channels));
const size_t num_cancellers_required =
NumCancellersRequired(stream_properties_->num_output_channels,
stream_properties_->num_reverse_channels);
if (num_cancellers_required > cancellers_.size()) {
const size_t cancellers_old_size = cancellers_.size();
cancellers_.resize(num_cancellers_required);
for (size_t i = cancellers_old_size; i < cancellers_.size(); ++i) {
cancellers_[i].reset(new Canceller());
}
}
for (auto& canceller : cancellers_) {
canceller->Initialize(sample_rate_hz);
}
Configure();
}
int EchoCancellationImpl::GetSystemDelayInSamples() const {
// Report the delay for the first AEC component.
return WebRtcAec_system_delay(WebRtcAec_aec_core(cancellers_[0]->state()));
}
void EchoCancellationImpl::PackRenderAudioBuffer(
const AudioBuffer* audio,
size_t num_output_channels,
size_t num_channels,
std::vector<float>* packed_buffer) {
RTC_DCHECK_GE(160, audio->num_frames_per_band());
RTC_DCHECK_EQ(num_channels, audio->num_channels());
packed_buffer->clear();
// The ordering convention must be followed to pass the correct data.
for (size_t i = 0; i < num_output_channels; i++) {
for (size_t j = 0; j < audio->num_channels(); j++) {
// Buffer the samples in the render queue.
packed_buffer->insert(packed_buffer->end(),
audio->split_bands_const(j)[kBand0To8kHz],
(audio->split_bands_const(j)[kBand0To8kHz] +
audio->num_frames_per_band()));
}
}
}
void EchoCancellationImpl::SetExtraOptions(bool use_extended_filter,
bool use_delay_agnostic,
bool use_refined_adaptive_filter) {
extended_filter_enabled_ = use_extended_filter;
delay_agnostic_enabled_ = use_delay_agnostic;
refined_adaptive_filter_enabled_ = use_refined_adaptive_filter;
Configure();
}
int EchoCancellationImpl::Configure() {
AecConfig config;
config.metricsMode = metrics_enabled_;
config.nlpMode = MapSetting(suppression_level_);
config.skewMode = drift_compensation_enabled_;
config.delay_logging = delay_logging_enabled_;
int error = AudioProcessing::kNoError;
for (auto& canceller : cancellers_) {
WebRtcAec_enable_extended_filter(WebRtcAec_aec_core(canceller->state()),
extended_filter_enabled_ ? 1 : 0);
WebRtcAec_enable_delay_agnostic(WebRtcAec_aec_core(canceller->state()),
delay_agnostic_enabled_ ? 1 : 0);
WebRtcAec_enable_refined_adaptive_filter(
WebRtcAec_aec_core(canceller->state()),
refined_adaptive_filter_enabled_);
const int handle_error = WebRtcAec_set_config(canceller->state(), config);
if (handle_error != AudioProcessing::kNoError) {
error = AudioProcessing::kNoError;
}
}
return error;
}
size_t EchoCancellationImpl::NumCancellersRequired(
size_t num_output_channels,
size_t num_reverse_channels) {
return num_output_channels * num_reverse_channels;
}
} // namespace webrtc

View File

@ -1,179 +0,0 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_ECHO_CANCELLATION_IMPL_H_
#define MODULES_AUDIO_PROCESSING_ECHO_CANCELLATION_IMPL_H_
#include <stddef.h>
#include <memory>
#include <string>
#include <vector>
#include "api/array_view.h"
#include "rtc_base/constructor_magic.h"
namespace webrtc {
class AudioBuffer;
// The acoustic echo cancellation (AEC) component provides better performance
// than AECM but also requires more processing power and is dependent on delay
// stability and reporting accuracy. As such it is well-suited and recommended
// for PC and IP phone applications.
class EchoCancellationImpl {
public:
explicit EchoCancellationImpl();
~EchoCancellationImpl();
void ProcessRenderAudio(rtc::ArrayView<const float> packed_render_audio);
int ProcessCaptureAudio(AudioBuffer* audio, int stream_delay_ms);
// Differences in clock speed on the primary and reverse streams can impact
// the AEC performance. On the client-side, this could be seen when different
// render and capture devices are used, particularly with webcams.
//
// This enables a compensation mechanism, and requires that
// set_stream_drift_samples() be called.
int enable_drift_compensation(bool enable);
bool is_drift_compensation_enabled() const;
// Sets the difference between the number of samples rendered and captured by
// the audio devices since the last call to |ProcessStream()|. Must be called
// if drift compensation is enabled, prior to |ProcessStream()|.
void set_stream_drift_samples(int drift);
int stream_drift_samples() const;
enum SuppressionLevel {
kLowSuppression,
kModerateSuppression,
kHighSuppression
};
// Sets the aggressiveness of the suppressor. A higher level trades off
// double-talk performance for increased echo suppression.
int set_suppression_level(SuppressionLevel level);
SuppressionLevel suppression_level() const;
// Returns false if the current frame almost certainly contains no echo
// and true if it _might_ contain echo.
bool stream_has_echo() const;
// Enables the computation of various echo metrics. These are obtained
// through |GetMetrics()|.
int enable_metrics(bool enable);
bool are_metrics_enabled() const;
// Each statistic is reported in dB.
// P_far: Far-end (render) signal power.
// P_echo: Near-end (capture) echo signal power.
// P_out: Signal power at the output of the AEC.
// P_a: Internal signal power at the point before the AEC's non-linear
// processor.
struct Metrics {
struct Statistic {
int instant = 0; // Instantaneous value.
int average = 0; // Long-term average.
int maximum = 0; // Long-term maximum.
int minimum = 0; // Long-term minimum.
};
// RERL = ERL + ERLE
Statistic residual_echo_return_loss;
// ERL = 10log_10(P_far / P_echo)
Statistic echo_return_loss;
// ERLE = 10log_10(P_echo / P_out)
Statistic echo_return_loss_enhancement;
// (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
Statistic a_nlp;
// Fraction of time that the AEC linear filter is divergent, in a 1-second
// non-overlapped aggregation window.
float divergent_filter_fraction;
};
// Provides various statistics about the AEC.
int GetMetrics(Metrics* metrics);
// Enables computation and logging of delay values. Statistics are obtained
// through |GetDelayMetrics()|.
int enable_delay_logging(bool enable);
bool is_delay_logging_enabled() const;
// Provides delay metrics.
// The delay metrics consists of the delay |median| and the delay standard
// deviation |std|. It also consists of the fraction of delay estimates
// |fraction_poor_delays| that can make the echo cancellation perform poorly.
// The values are aggregated until the first call to |GetDelayMetrics()| and
// afterwards aggregated and updated every second.
// Note that if there are several clients pulling metrics from
// |GetDelayMetrics()| during a session the first call from any of them will
// change to one second aggregation window for all.
int GetDelayMetrics(int* median, int* std);
int GetDelayMetrics(int* median, int* std, float* fraction_poor_delays);
// Returns a pointer to the low level AEC component. In case of multiple
// channels, the pointer to the first one is returned. A NULL pointer is
// returned when the AEC component is disabled or has not been initialized
// successfully.
struct AecCore* aec_core() const;
void Initialize(int sample_rate_hz,
size_t num_reverse_channels_,
size_t num_output_channels_,
size_t num_proc_channels_);
void SetExtraOptions(bool use_extended_filter,
bool use_delay_agnostic,
bool use_refined_adaptive_filter);
bool is_delay_agnostic_enabled() const;
bool is_extended_filter_enabled() const;
std::string GetExperimentsDescription();
bool is_refined_adaptive_filter_enabled() const;
// Returns the system delay of the first AEC component.
int GetSystemDelayInSamples() const;
static void PackRenderAudioBuffer(const AudioBuffer* audio,
size_t num_output_channels,
size_t num_channels,
std::vector<float>* packed_buffer);
static size_t NumCancellersRequired(size_t num_output_channels,
size_t num_reverse_channels);
private:
class Canceller;
struct StreamProperties;
void AllocateRenderQueue();
int Configure();
bool drift_compensation_enabled_;
bool metrics_enabled_;
SuppressionLevel suppression_level_;
int stream_drift_samples_;
bool was_stream_drift_set_;
bool stream_has_echo_;
bool delay_logging_enabled_;
bool extended_filter_enabled_;
bool delay_agnostic_enabled_;
bool refined_adaptive_filter_enabled_ = false;
// Only active on Chrome OS devices.
const bool enforce_zero_stream_delay_;
std::vector<std::unique_ptr<Canceller>> cancellers_;
std::unique_ptr<StreamProperties> stream_properties_;
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_ECHO_CANCELLATION_IMPL_H_

View File

@ -1,111 +0,0 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/echo_cancellation_impl.h"
#include <memory>
#include "modules/audio_processing/aec/aec_core.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "rtc_base/critical_section.h"
#include "test/gtest.h"
namespace webrtc {
TEST(EchoCancellationInternalTest, ExtendedFilter) {
EchoCancellationImpl echo_canceller;
echo_canceller.Initialize(AudioProcessing::kSampleRate32kHz, 2, 2, 2);
AecCore* aec_core = echo_canceller.aec_core();
ASSERT_TRUE(aec_core != NULL);
// Disabled by default.
EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(aec_core));
Config config;
echo_canceller.SetExtraOptions(true, false, false);
EXPECT_EQ(1, WebRtcAec_extended_filter_enabled(aec_core));
// Retains setting after initialization.
echo_canceller.Initialize(AudioProcessing::kSampleRate16kHz, 2, 2, 2);
EXPECT_EQ(1, WebRtcAec_extended_filter_enabled(aec_core));
echo_canceller.SetExtraOptions(false, false, false);
EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(aec_core));
// Retains setting after initialization.
echo_canceller.Initialize(AudioProcessing::kSampleRate16kHz, 1, 1, 1);
EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(aec_core));
}
TEST(EchoCancellationInternalTest, DelayAgnostic) {
EchoCancellationImpl echo_canceller;
echo_canceller.Initialize(AudioProcessing::kSampleRate32kHz, 1, 1, 1);
AecCore* aec_core = echo_canceller.aec_core();
ASSERT_TRUE(aec_core != NULL);
// Enabled by default.
EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(aec_core));
Config config;
echo_canceller.SetExtraOptions(false, true, false);
EXPECT_EQ(1, WebRtcAec_delay_agnostic_enabled(aec_core));
// Retains setting after initialization.
echo_canceller.Initialize(AudioProcessing::kSampleRate32kHz, 2, 2, 2);
EXPECT_EQ(1, WebRtcAec_delay_agnostic_enabled(aec_core));
config.Set<DelayAgnostic>(new DelayAgnostic(false));
echo_canceller.SetExtraOptions(false, false, false);
EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(aec_core));
// Retains setting after initialization.
echo_canceller.Initialize(AudioProcessing::kSampleRate16kHz, 2, 2, 2);
EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(aec_core));
}
TEST(EchoCancellationInternalTest, InterfaceConfiguration) {
EchoCancellationImpl echo_canceller;
echo_canceller.Initialize(AudioProcessing::kSampleRate16kHz, 1, 1, 1);
EXPECT_EQ(0, echo_canceller.enable_drift_compensation(true));
EXPECT_TRUE(echo_canceller.is_drift_compensation_enabled());
EXPECT_EQ(0, echo_canceller.enable_drift_compensation(false));
EXPECT_FALSE(echo_canceller.is_drift_compensation_enabled());
EchoCancellationImpl::SuppressionLevel level[] = {
EchoCancellationImpl::kLowSuppression,
EchoCancellationImpl::kModerateSuppression,
EchoCancellationImpl::kHighSuppression,
};
for (size_t i = 0; i < arraysize(level); i++) {
EXPECT_EQ(0, echo_canceller.set_suppression_level(level[i]));
EXPECT_EQ(level[i], echo_canceller.suppression_level());
}
EchoCancellationImpl::Metrics metrics;
EXPECT_EQ(0, echo_canceller.enable_metrics(true));
EXPECT_TRUE(echo_canceller.are_metrics_enabled());
EXPECT_EQ(0, echo_canceller.enable_metrics(false));
EXPECT_FALSE(echo_canceller.are_metrics_enabled());
EXPECT_EQ(0, echo_canceller.enable_delay_logging(true));
EXPECT_TRUE(echo_canceller.is_delay_logging_enabled());
EXPECT_EQ(0, echo_canceller.enable_delay_logging(false));
EXPECT_FALSE(echo_canceller.is_delay_logging_enabled());
int median = 0;
int std = 0;
float poor_fraction = 0;
EXPECT_EQ(AudioProcessing::kNotEnabledError,
echo_canceller.GetDelayMetrics(&median, &std, &poor_fraction));
EXPECT_TRUE(echo_canceller.aec_core() != NULL);
}
} // namespace webrtc

View File

@ -37,8 +37,6 @@
namespace webrtc {
struct AecCore;
class AecDump;
class AudioBuffer;
class AudioFrame;
@ -50,53 +48,6 @@ class EchoDetector;
class CustomAudioAnalyzer;
class CustomProcessing;
// Use to enable the extended filter mode in the AEC, along with robustness
// measures around the reported system delays. It comes with a significant
// increase in AEC complexity, but is much more robust to unreliable reported
// delays.
//
// Detailed changes to the algorithm:
// - The filter length is changed from 48 to 128 ms. This comes with tuning of
// several parameters: i) filter adaptation stepsize and error threshold;
// ii) non-linear processing smoothing and overdrive.
// - Option to ignore the reported delays on platforms which we deem
// sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
// - Faster startup times by removing the excessive "startup phase" processing
// of reported delays.
// - Much more conservative adjustments to the far-end read pointer. We smooth
// the delay difference more heavily, and back off from the difference more.
// Adjustments force a readaptation of the filter, so they should be avoided
// except when really necessary.
struct ExtendedFilter {
ExtendedFilter() : enabled(false) {}
explicit ExtendedFilter(bool enabled) : enabled(enabled) {}
static const ConfigOptionID identifier = ConfigOptionID::kExtendedFilter;
bool enabled;
};
// Enables the refined linear filter adaptation in the echo canceller.
// This configuration only applies to non-mobile echo cancellation.
// It can be set in the constructor or using AudioProcessing::SetExtraOptions().
struct RefinedAdaptiveFilter {
RefinedAdaptiveFilter() : enabled(false) {}
explicit RefinedAdaptiveFilter(bool enabled) : enabled(enabled) {}
static const ConfigOptionID identifier =
ConfigOptionID::kAecRefinedAdaptiveFilter;
bool enabled;
};
// Enables delay-agnostic echo cancellation. This feature relies on internally
// estimated delays between the process and reverse streams, thus not relying
// on reported system delays. This configuration only applies to non-mobile echo
// cancellation. It can be set in the constructor or using
// AudioProcessing::SetExtraOptions().
struct DelayAgnostic {
DelayAgnostic() : enabled(false) {}
explicit DelayAgnostic(bool enabled) : enabled(enabled) {}
static const ConfigOptionID identifier = ConfigOptionID::kDelayAgnostic;
bool enabled;
};
// Use to enable experimental gain control (AGC). At startup the experimental
// AGC moves the microphone volume up to |startup_min_volume| if the current
// microphone volume is set too low. The value is clamped to its operating range
@ -279,9 +230,10 @@ class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface {
bool enabled = false;
bool mobile_mode = false;
// Recommended not to use. Will be removed in the future.
// APM components are not fine-tuned for legacy suppression levels.
// TODO(peah): Remove.
bool legacy_moderate_suppression_level = false;
// Recommended not to use. Will be removed in the future.
// TODO(webrtc:11165): Remove.
bool use_legacy_aec = false;
bool export_linear_aec_output = false;
// Enforce the highpass filter to be on (has no effect for the mobile

View File

@ -27,15 +27,15 @@ enum class ConfigOptionID {
kNetEqCapacityConfig, // Deprecated
kNetEqFastAccelerate, // Deprecated
kVoicePacing, // Deprecated
kExtendedFilter,
kDelayAgnostic,
kExtendedFilter, // Deprecated
kDelayAgnostic, // Deprecated
kExperimentalAgc,
kExperimentalNs,
kBeamforming, // Deprecated
kIntelligibility, // Deprecated
kEchoCanceller3, // Deprecated
kAecRefinedAdaptiveFilter,
kLevelControl // Deprecated
kBeamforming, // Deprecated
kIntelligibility, // Deprecated
kEchoCanceller3, // Deprecated
kAecRefinedAdaptiveFilter, // Deprecated
kLevelControl // Deprecated
};
// Class Config is designed to ease passing a set of options across webrtc code.

View File

@ -13,7 +13,6 @@
#include <iostream>
#include <memory>
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/test/protobuf_utils.h"
#include "rtc_base/checks.h"
@ -300,57 +299,6 @@ void AecDumpBasedSimulator::HandleMessage(
}
}
if (msg.has_aec_delay_agnostic_enabled() || settings_.use_delay_agnostic) {
bool enable = settings_.use_delay_agnostic
? *settings_.use_delay_agnostic
: msg.aec_delay_agnostic_enabled();
config.Set<DelayAgnostic>(new DelayAgnostic(enable));
if (settings_.use_verbose_logging) {
std::cout << " aec_delay_agnostic_enabled: "
<< (enable ? "true" : "false") << std::endl;
}
}
if (msg.has_aec_drift_compensation_enabled() ||
settings_.use_drift_compensation) {
if (settings_.use_drift_compensation
? *settings_.use_drift_compensation
: msg.aec_drift_compensation_enabled()) {
RTC_LOG(LS_ERROR)
<< "Ignoring deprecated setting: AEC2 drift compensation";
}
}
if (msg.has_aec_extended_filter_enabled() ||
settings_.use_extended_filter) {
bool enable = settings_.use_extended_filter
? *settings_.use_extended_filter
: msg.aec_extended_filter_enabled();
config.Set<ExtendedFilter>(new ExtendedFilter(enable));
if (settings_.use_verbose_logging) {
std::cout << " aec_extended_filter_enabled: "
<< (enable ? "true" : "false") << std::endl;
}
}
if (msg.has_aec_suppression_level() || settings_.aec_suppression_level) {
auto level = static_cast<webrtc::EchoCancellationImpl::SuppressionLevel>(
settings_.aec_suppression_level ? *settings_.aec_suppression_level
: msg.aec_suppression_level());
if (level ==
webrtc::EchoCancellationImpl::SuppressionLevel::kLowSuppression) {
RTC_LOG(LS_ERROR)
<< "Ignoring deprecated setting: AEC2 low suppression";
} else {
apm_config.echo_canceller.legacy_moderate_suppression_level =
(level == webrtc::EchoCancellationImpl::SuppressionLevel::
kModerateSuppression);
if (settings_.use_verbose_logging) {
std::cout << " aec_suppression_level: " << level << std::endl;
}
}
}
if (msg.has_aecm_enabled() || settings_.use_aecm) {
bool enable =
settings_.use_aecm ? *settings_.use_aecm : msg.aecm_enabled();
@ -486,11 +434,6 @@ void AecDumpBasedSimulator::HandleMessage(
<< msg.experiments_description() << std::endl;
}
if (settings_.use_refined_adaptive_filter) {
config.Set<RefinedAdaptiveFilter>(
new RefinedAdaptiveFilter(*settings_.use_refined_adaptive_filter));
}
if (settings_.use_ed) {
apm_config.residual_echo_detector.enabled = *settings_.use_ed;
}

View File

@ -22,7 +22,6 @@
#include "api/audio/echo_canceller3_factory.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
@ -433,23 +432,17 @@ void AudioProcessingSimulator::CreateAudioProcessor() {
}
}
const bool use_legacy_aec = settings_.use_aec && *settings_.use_aec &&
settings_.use_legacy_aec &&
*settings_.use_legacy_aec;
const bool use_aec = settings_.use_aec && *settings_.use_aec;
const bool use_aecm = settings_.use_aecm && *settings_.use_aecm;
if (use_legacy_aec || use_aec || use_aecm) {
if (use_aec || use_aecm) {
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = use_aecm;
apm_config.echo_canceller.use_legacy_aec = use_legacy_aec;
apm_config.echo_canceller.use_legacy_aec = false;
}
apm_config.echo_canceller.export_linear_aec_output =
!!settings_.linear_aec_output_filename;
RTC_CHECK(!(use_legacy_aec && settings_.aec_settings_filename))
<< "The legacy AEC cannot be configured using settings";
if (use_aec && !use_legacy_aec) {
if (use_aec) {
EchoCanceller3Config cfg;
if (settings_.aec_settings_filename) {
if (settings_.use_verbose_logging) {
@ -472,22 +465,6 @@ void AudioProcessingSimulator::CreateAudioProcessor() {
}
}
if (settings_.use_drift_compensation && *settings_.use_drift_compensation) {
RTC_LOG(LS_ERROR) << "Ignoring deprecated setting: AEC2 drift compensation";
}
if (settings_.aec_suppression_level) {
auto level = static_cast<webrtc::EchoCancellationImpl::SuppressionLevel>(
*settings_.aec_suppression_level);
if (level ==
webrtc::EchoCancellationImpl::SuppressionLevel::kLowSuppression) {
RTC_LOG(LS_ERROR) << "Ignoring deprecated setting: AEC2 low suppression";
} else {
apm_config.echo_canceller.legacy_moderate_suppression_level =
(level == webrtc::EchoCancellationImpl::SuppressionLevel::
kModerateSuppression);
}
}
if (settings_.use_hpf) {
apm_config.high_pass_filter.enabled = *settings_.use_hpf;
}
@ -519,14 +496,6 @@ void AudioProcessingSimulator::CreateAudioProcessor() {
*settings_.agc_compression_gain;
}
if (settings_.use_refined_adaptive_filter) {
config.Set<RefinedAdaptiveFilter>(
new RefinedAdaptiveFilter(*settings_.use_refined_adaptive_filter));
}
config.Set<ExtendedFilter>(new ExtendedFilter(
!settings_.use_extended_filter || *settings_.use_extended_filter));
config.Set<DelayAgnostic>(new DelayAgnostic(!settings_.use_delay_agnostic ||
*settings_.use_delay_agnostic));
config.Set<ExperimentalAgc>(new ExperimentalAgc(
!settings_.use_experimental_agc || *settings_.use_experimental_agc,
!!settings_.use_experimental_agc_agc2_level_estimator &&

View File

@ -37,7 +37,6 @@ struct SimulationSettings {
~SimulationSettings();
absl::optional<int> stream_delay;
absl::optional<bool> use_stream_delay;
absl::optional<int> stream_drift_samples;
absl::optional<int> output_sample_rate_hz;
absl::optional<int> output_num_channels;
absl::optional<int> reverse_output_sample_rate_hz;
@ -61,11 +60,6 @@ struct SimulationSettings {
absl::optional<bool> use_vad;
absl::optional<bool> use_le;
absl::optional<bool> use_all;
absl::optional<int> aec_suppression_level;
absl::optional<bool> use_delay_agnostic;
absl::optional<bool> use_extended_filter;
absl::optional<bool> use_drift_compensation;
absl::optional<bool> use_legacy_aec;
absl::optional<bool> use_legacy_ns;
absl::optional<bool> use_experimental_agc;
absl::optional<bool> use_experimental_agc_agc2_level_estimator;
@ -82,7 +76,6 @@ struct SimulationSettings {
absl::optional<float> pre_amplifier_gain_factor;
absl::optional<int> ns_level;
absl::optional<int> maximum_internal_processing_rate;
absl::optional<bool> use_refined_adaptive_filter;
int initial_mic_level;
bool simulate_mic_gain = false;
absl::optional<bool> multi_channel_render;

View File

@ -114,26 +114,10 @@ ABSL_FLAG(bool,
false,
"Activate all of the default components (will be overridden by any "
"other settings)");
ABSL_FLAG(int,
aec_suppression_level,
kParameterNotSpecifiedValue,
"Set the aec suppression level (0-2)");
ABSL_FLAG(int,
delay_agnostic,
kParameterNotSpecifiedValue,
"Activate (1) or deactivate(0) the AEC delay agnostic mode");
ABSL_FLAG(int,
extended_filter,
kParameterNotSpecifiedValue,
"Activate (1) or deactivate(0) the AEC extended filter mode");
ABSL_FLAG(int,
use_legacy_aec,
kParameterNotSpecifiedValue,
"Activate (1) or deactivate(0) the legacy AEC");
ABSL_FLAG(int,
use_legacy_ns,
kParameterNotSpecifiedValue,
"Activate (1) or deactivate(0) the legacy AEC");
"Activate (1) or deactivate(0) the legacy NS");
ABSL_FLAG(int,
experimental_agc,
kParameterNotSpecifiedValue,
@ -153,11 +137,6 @@ ABSL_FLAG(int,
kParameterNotSpecifiedValue,
"AGC2 level estimation"
" in the experimental AGC. AGC1 level estimation is the default (0)");
ABSL_FLAG(
int,
refined_adaptive_filter,
kParameterNotSpecifiedValue,
"Activate (1) or deactivate(0) the refined adaptive filter functionality");
ABSL_FLAG(int,
agc_mode,
kParameterNotSpecifiedValue,
@ -395,17 +374,6 @@ SimulationSettings CreateSettings() {
SetSettingIfFlagSet(absl::GetFlag(FLAGS_ts), &settings.use_ts);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_vad), &settings.use_vad);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_le), &settings.use_le);
SetSettingIfSpecified(absl::GetFlag(FLAGS_aec_suppression_level),
&settings.aec_suppression_level);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_delay_agnostic),
&settings.use_delay_agnostic);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_extended_filter),
&settings.use_extended_filter);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_refined_adaptive_filter),
&settings.use_refined_adaptive_filter);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_use_legacy_aec),
&settings.use_legacy_aec);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_use_legacy_ns),
&settings.use_legacy_ns);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_experimental_agc),
@ -440,8 +408,6 @@ SimulationSettings CreateSettings() {
&settings.stream_delay);
SetSettingIfFlagSet(absl::GetFlag(FLAGS_use_stream_delay),
&settings.use_stream_delay);
SetSettingIfSpecified(absl::GetFlag(FLAGS_stream_drift_samples),
&settings.stream_drift_samples);
SetSettingIfSpecified(absl::GetFlag(FLAGS_custom_call_order_file),
&settings.call_order_input_filename);
SetSettingIfSpecified(absl::GetFlag(FLAGS_output_custom_call_order_file),
@ -524,14 +490,6 @@ void PerformBasicParameterSanityChecks(const SimulationSettings& settings) {
"Error: The linear AEC ouput filename cannot "
"be specified without the AEC being active");
ReportConditionalErrorAndExit(
((settings.use_aec && *settings.use_aec && settings.use_legacy_aec &&
*settings.use_legacy_aec) ||
(settings.use_aecm && *settings.use_aecm)) &&
!!settings.linear_aec_output_filename,
"Error: The linear AEC ouput filename cannot be specified when the "
"legacy AEC or the AECm are used");
ReportConditionalErrorAndExit(
settings.use_aec && *settings.use_aec && settings.use_aecm &&
*settings.use_aecm,
@ -556,13 +514,6 @@ void PerformBasicParameterSanityChecks(const SimulationSettings& settings) {
*settings.reverse_output_num_channels <= 0,
"Error: --reverse_output_num_channels must be positive!\n");
ReportConditionalErrorAndExit(settings.aec_suppression_level &&
((*settings.aec_suppression_level) < 1 ||
(*settings.aec_suppression_level) > 2),
"Error: --aec_suppression_level must be "
"specified between 1 and 2. 0 is "
"deprecated.\n");
ReportConditionalErrorAndExit(
settings.agc_target_level && ((*settings.agc_target_level) < 0 ||
(*settings.agc_target_level) > 31),

View File

@ -10,7 +10,6 @@
#include "modules/audio_processing/test/debug_dump_replayer.h"
#include "modules/audio_processing/echo_cancellation_impl.h"
#include "modules/audio_processing/test/protobuf_utils.h"
#include "modules/audio_processing/test/runtime_setting_util.h"
#include "rtc_base/checks.h"
@ -181,8 +180,6 @@ void DebugDumpReplayer::MaybeRecreateApm(const audioproc::Config& msg) {
// These configurations cannot be changed on the fly.
Config config;
RTC_CHECK(msg.has_aec_delay_agnostic_enabled());
config.Set<DelayAgnostic>(
new DelayAgnostic(msg.aec_delay_agnostic_enabled()));
RTC_CHECK(msg.has_noise_robust_agc_enabled());
config.Set<ExperimentalAgc>(
@ -193,8 +190,6 @@ void DebugDumpReplayer::MaybeRecreateApm(const audioproc::Config& msg) {
new ExperimentalNs(msg.transient_suppression_enabled()));
RTC_CHECK(msg.has_aec_extended_filter_enabled());
config.Set<ExtendedFilter>(
new ExtendedFilter(msg.aec_extended_filter_enabled()));
// We only create APM once, since changes on these fields should not
// happen in current implementation.
@ -212,12 +207,6 @@ void DebugDumpReplayer::ConfigureApm(const audioproc::Config& msg) {
apm_config.echo_canceller.enabled = msg.aec_enabled() || msg.aecm_enabled();
apm_config.echo_canceller.mobile_mode = msg.aecm_enabled();
RTC_CHECK(msg.has_aec_suppression_level());
apm_config.echo_canceller.legacy_moderate_suppression_level =
static_cast<EchoCancellationImpl::SuppressionLevel>(
msg.aec_suppression_level()) ==
EchoCancellationImpl::SuppressionLevel::kModerateSuppression;
// HPF configs.
RTC_CHECK(msg.has_hpf_enabled());
apm_config.high_pass_filter.enabled = msg.hpf_enabled();

View File

@ -354,35 +354,6 @@ TEST_F(DebugDumpTest, ToggleAec) {
VerifyDebugDump(generator.dump_file_name());
}
TEST_F(DebugDumpTest, VerifyRefinedAdaptiveFilterExperimentalString) {
Config config;
AudioProcessing::Config apm_config;
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.use_legacy_aec = true;
config.Set<RefinedAdaptiveFilter>(new RefinedAdaptiveFilter(true));
DebugDumpGenerator generator(config, apm_config);
generator.StartRecording();
generator.Process(100);
generator.StopRecording();
DebugDumpReplayer debug_dump_replayer_;
ASSERT_TRUE(debug_dump_replayer_.SetDumpFile(generator.dump_file_name()));
while (const absl::optional<audioproc::Event> event =
debug_dump_replayer_.GetNextEvent()) {
debug_dump_replayer_.RunNextEvent();
if (event->type() == audioproc::Event::CONFIG) {
const audioproc::Config* msg = &event->config();
ASSERT_TRUE(msg->has_experiments_description());
EXPECT_PRED_FORMAT2(::testing::IsSubstring, "RefinedAdaptiveFilter",
msg->experiments_description().c_str());
EXPECT_PRED_FORMAT2(::testing::IsSubstring, "Legacy AEC",
msg->experiments_description().c_str());
}
}
}
TEST_F(DebugDumpTest, VerifyCombinedExperimentalStringInclusive) {
Config config;
AudioProcessing::Config apm_config;
@ -406,8 +377,6 @@ TEST_F(DebugDumpTest, VerifyCombinedExperimentalStringInclusive) {
ASSERT_TRUE(msg->has_experiments_description());
EXPECT_PRED_FORMAT2(::testing::IsSubstring, "EchoController",
msg->experiments_description().c_str());
EXPECT_PRED_FORMAT2(::testing::IsNotSubstring, "Legacy AEC",
msg->experiments_description().c_str());
EXPECT_PRED_FORMAT2(::testing::IsSubstring, "AgcClippingLevelExperiment",
msg->experiments_description().c_str());
}
@ -418,7 +387,6 @@ TEST_F(DebugDumpTest, VerifyCombinedExperimentalStringExclusive) {
Config config;
AudioProcessing::Config apm_config;
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.use_legacy_aec = true;
DebugDumpGenerator generator(config, apm_config);
generator.StartRecording();
generator.Process(100);
@ -434,8 +402,6 @@ TEST_F(DebugDumpTest, VerifyCombinedExperimentalStringExclusive) {
if (event->type() == audioproc::Event::CONFIG) {
const audioproc::Config* msg = &event->config();
ASSERT_TRUE(msg->has_experiments_description());
EXPECT_PRED_FORMAT2(::testing::IsNotSubstring, "EchoController",
msg->experiments_description().c_str());
EXPECT_PRED_FORMAT2(::testing::IsNotSubstring,
"AgcClippingLevelExperiment",
msg->experiments_description().c_str());
@ -462,8 +428,6 @@ TEST_F(DebugDumpTest, VerifyAec3ExperimentalString) {
if (event->type() == audioproc::Event::CONFIG) {
const audioproc::Config* msg = &event->config();
ASSERT_TRUE(msg->has_experiments_description());
EXPECT_PRED_FORMAT2(::testing::IsNotSubstring, "Legacy AEC",
msg->experiments_description().c_str());
EXPECT_PRED_FORMAT2(::testing::IsSubstring, "EchoController",
msg->experiments_description().c_str());
}

View File

@ -19,17 +19,6 @@ rtc_library("cascaded_biquad_filter") {
]
}
rtc_library("block_mean_calculator") {
sources = [
"block_mean_calculator.cc",
"block_mean_calculator.h",
]
deps = [
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
]
}
rtc_library("legacy_delay_estimator") {
sources = [
"delay_estimator.cc",
@ -113,20 +102,6 @@ if (rtc_include_tests) {
]
}
rtc_library("block_mean_calculator_unittest") {
testonly = true
sources = [
"block_mean_calculator_unittest.cc",
]
deps = [
":block_mean_calculator",
"../../../rtc_base:rtc_base_approved",
"../../../test:test_support",
"//testing/gtest",
]
}
rtc_library("legacy_delay_estimator_unittest") {
testonly = true

View File

@ -1,50 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/block_mean_calculator.h"
#include "rtc_base/checks.h"
namespace webrtc {
BlockMeanCalculator::BlockMeanCalculator(size_t block_length)
: block_length_(block_length), count_(0), sum_(0.0), mean_(0.0) {
RTC_DCHECK(block_length_ != 0);
}
void BlockMeanCalculator::Reset() {
Clear();
mean_ = 0.0;
}
void BlockMeanCalculator::AddValue(float value) {
sum_ += value;
++count_;
if (count_ == block_length_) {
mean_ = sum_ / block_length_;
Clear();
}
}
bool BlockMeanCalculator::EndOfBlock() const {
return count_ == 0;
}
float BlockMeanCalculator::GetLatestMean() const {
return mean_;
}
// Flush all samples added.
void BlockMeanCalculator::Clear() {
count_ = 0;
sum_ = 0.0;
}
} // namespace webrtc

View File

@ -1,52 +0,0 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_BLOCK_MEAN_CALCULATOR_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_BLOCK_MEAN_CALCULATOR_H_
#include <stddef.h>
#include "rtc_base/constructor_magic.h"
namespace webrtc {
// BlockMeanCalculator calculates the mean of a block of values. Values are
// added one after another, and the mean is updated at the end of every block.
class BlockMeanCalculator {
public:
explicit BlockMeanCalculator(size_t block_length);
// Reset.
void Reset();
// Add one value to the sequence.
void AddValue(float value);
// Return whether the latest added value was at the end of a block.
bool EndOfBlock() const;
// Return the latest mean.
float GetLatestMean() const;
private:
// Clear all values added.
void Clear();
const size_t block_length_;
size_t count_;
float sum_;
float mean_;
RTC_DISALLOW_COPY_AND_ASSIGN(BlockMeanCalculator);
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_BLOCK_MEAN_CALCULATOR_H_

View File

@ -1,59 +0,0 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/utility/block_mean_calculator.h"
#include "test/gtest.h"
namespace webrtc {
TEST(MeanCalculatorTest, Correctness) {
const size_t kBlockLength = 10;
BlockMeanCalculator mean_calculator(kBlockLength);
size_t i = 0;
float reference = 0.0;
for (; i < kBlockLength - 1; ++i) {
mean_calculator.AddValue(static_cast<float>(i));
EXPECT_FALSE(mean_calculator.EndOfBlock());
}
mean_calculator.AddValue(static_cast<float>(i++));
EXPECT_TRUE(mean_calculator.EndOfBlock());
for (; i < 3 * kBlockLength; ++i) {
const bool end_of_block = i % kBlockLength == 0;
if (end_of_block) {
// Sum of (i - kBlockLength) ... (i - 1)
reference = i - 0.5 * (1 + kBlockLength);
}
EXPECT_EQ(mean_calculator.EndOfBlock(), end_of_block);
EXPECT_EQ(reference, mean_calculator.GetLatestMean());
mean_calculator.AddValue(static_cast<float>(i));
}
}
TEST(MeanCalculatorTest, Reset) {
const size_t kBlockLength = 10;
BlockMeanCalculator mean_calculator(kBlockLength);
for (size_t i = 0; i < kBlockLength - 1; ++i) {
mean_calculator.AddValue(static_cast<float>(i));
}
mean_calculator.Reset();
size_t i = 0;
for (; i < kBlockLength - 1; ++i) {
mean_calculator.AddValue(static_cast<float>(i));
EXPECT_FALSE(mean_calculator.EndOfBlock());
}
mean_calculator.AddValue(static_cast<float>(i));
EXPECT_TRUE(mean_calculator.EndOfBlock());
EXPECT_EQ(mean_calculator.GetLatestMean(), 0.5 * (kBlockLength - 1));
}
} // namespace webrtc

View File

@ -41,8 +41,6 @@ std::unique_ptr<AudioProcessing> CreateApm(test::FuzzDataHelper* fuzz_data,
bool exp_agc = fuzz_data->ReadOrDefaultValue(true);
bool exp_ns = fuzz_data->ReadOrDefaultValue(true);
static_cast<void>(fuzz_data->ReadOrDefaultValue(true));
bool ef = fuzz_data->ReadOrDefaultValue(true);
bool raf = fuzz_data->ReadOrDefaultValue(true);
static_cast<void>(fuzz_data->ReadOrDefaultValue(true));
static_cast<void>(fuzz_data->ReadOrDefaultValue(true));
bool red = fuzz_data->ReadOrDefaultValue(true);
@ -108,9 +106,6 @@ std::unique_ptr<AudioProcessing> CreateApm(test::FuzzDataHelper* fuzz_data,
config.Set<ExperimentalAgc>(new ExperimentalAgc(exp_agc));
config.Set<ExperimentalNs>(new ExperimentalNs(exp_ns));
config.Set<ExtendedFilter>(new ExtendedFilter(ef));
config.Set<RefinedAdaptiveFilter>(new RefinedAdaptiveFilter(raf));
config.Set<DelayAgnostic>(new DelayAgnostic(true));
std::unique_ptr<AudioProcessing> apm(
AudioProcessingBuilder()