Reformat the WebRTC code base
Running clang-format with chromium's style guide. The goal is n-fold: * providing consistency and readability (that's what code guidelines are for) * preventing noise with presubmit checks and git cl format * building on the previous point: making it easier to automatically fix format issues * you name it Please consider using git-hyper-blame to ignore this commit. Bug: webrtc:9340 Change-Id: I694567c4cdf8cee2860958cfe82bfaf25848bb87 Reviewed-on: https://webrtc-review.googlesource.com/81185 Reviewed-by: Patrik Höglund <phoglund@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23660}
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@ -29,109 +29,109 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
int16_t real;
|
||||
int16_t imag;
|
||||
int16_t real;
|
||||
int16_t imag;
|
||||
} ComplexInt16;
|
||||
|
||||
typedef struct {
|
||||
int farBufWritePos;
|
||||
int farBufReadPos;
|
||||
int knownDelay;
|
||||
int lastKnownDelay;
|
||||
int firstVAD; // Parameter to control poorly initialized channels
|
||||
int farBufWritePos;
|
||||
int farBufReadPos;
|
||||
int knownDelay;
|
||||
int lastKnownDelay;
|
||||
int firstVAD; // Parameter to control poorly initialized channels
|
||||
|
||||
RingBuffer* farFrameBuf;
|
||||
RingBuffer* nearNoisyFrameBuf;
|
||||
RingBuffer* nearCleanFrameBuf;
|
||||
RingBuffer* outFrameBuf;
|
||||
RingBuffer* farFrameBuf;
|
||||
RingBuffer* nearNoisyFrameBuf;
|
||||
RingBuffer* nearCleanFrameBuf;
|
||||
RingBuffer* outFrameBuf;
|
||||
|
||||
int16_t farBuf[FAR_BUF_LEN];
|
||||
int16_t farBuf[FAR_BUF_LEN];
|
||||
|
||||
int16_t mult;
|
||||
uint32_t seed;
|
||||
int16_t mult;
|
||||
uint32_t seed;
|
||||
|
||||
// Delay estimation variables
|
||||
void* delay_estimator_farend;
|
||||
void* delay_estimator;
|
||||
uint16_t currentDelay;
|
||||
// Far end history variables
|
||||
// TODO(bjornv): Replace |far_history| with ring_buffer.
|
||||
uint16_t far_history[PART_LEN1 * MAX_DELAY];
|
||||
int far_history_pos;
|
||||
int far_q_domains[MAX_DELAY];
|
||||
// Delay estimation variables
|
||||
void* delay_estimator_farend;
|
||||
void* delay_estimator;
|
||||
uint16_t currentDelay;
|
||||
// Far end history variables
|
||||
// TODO(bjornv): Replace |far_history| with ring_buffer.
|
||||
uint16_t far_history[PART_LEN1 * MAX_DELAY];
|
||||
int far_history_pos;
|
||||
int far_q_domains[MAX_DELAY];
|
||||
|
||||
int16_t nlpFlag;
|
||||
int16_t fixedDelay;
|
||||
int16_t nlpFlag;
|
||||
int16_t fixedDelay;
|
||||
|
||||
uint32_t totCount;
|
||||
uint32_t totCount;
|
||||
|
||||
int16_t dfaCleanQDomain;
|
||||
int16_t dfaCleanQDomainOld;
|
||||
int16_t dfaNoisyQDomain;
|
||||
int16_t dfaNoisyQDomainOld;
|
||||
int16_t dfaCleanQDomain;
|
||||
int16_t dfaCleanQDomainOld;
|
||||
int16_t dfaNoisyQDomain;
|
||||
int16_t dfaNoisyQDomainOld;
|
||||
|
||||
int16_t nearLogEnergy[MAX_BUF_LEN];
|
||||
int16_t farLogEnergy;
|
||||
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
|
||||
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
|
||||
int16_t nearLogEnergy[MAX_BUF_LEN];
|
||||
int16_t farLogEnergy;
|
||||
int16_t echoAdaptLogEnergy[MAX_BUF_LEN];
|
||||
int16_t echoStoredLogEnergy[MAX_BUF_LEN];
|
||||
|
||||
// The extra 16 or 32 bytes in the following buffers are for alignment based
|
||||
// Neon code.
|
||||
// It's designed this way since the current GCC compiler can't align a
|
||||
// buffer in 16 or 32 byte boundaries properly.
|
||||
int16_t channelStored_buf[PART_LEN1 + 8];
|
||||
int16_t channelAdapt16_buf[PART_LEN1 + 8];
|
||||
int32_t channelAdapt32_buf[PART_LEN1 + 8];
|
||||
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
|
||||
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
|
||||
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
|
||||
int16_t outBuf_buf[PART_LEN + 8];
|
||||
// The extra 16 or 32 bytes in the following buffers are for alignment based
|
||||
// Neon code.
|
||||
// It's designed this way since the current GCC compiler can't align a
|
||||
// buffer in 16 or 32 byte boundaries properly.
|
||||
int16_t channelStored_buf[PART_LEN1 + 8];
|
||||
int16_t channelAdapt16_buf[PART_LEN1 + 8];
|
||||
int32_t channelAdapt32_buf[PART_LEN1 + 8];
|
||||
int16_t xBuf_buf[PART_LEN2 + 16]; // farend
|
||||
int16_t dBufClean_buf[PART_LEN2 + 16]; // nearend
|
||||
int16_t dBufNoisy_buf[PART_LEN2 + 16]; // nearend
|
||||
int16_t outBuf_buf[PART_LEN + 8];
|
||||
|
||||
// Pointers to the above buffers
|
||||
int16_t *channelStored;
|
||||
int16_t *channelAdapt16;
|
||||
int32_t *channelAdapt32;
|
||||
int16_t *xBuf;
|
||||
int16_t *dBufClean;
|
||||
int16_t *dBufNoisy;
|
||||
int16_t *outBuf;
|
||||
// Pointers to the above buffers
|
||||
int16_t* channelStored;
|
||||
int16_t* channelAdapt16;
|
||||
int32_t* channelAdapt32;
|
||||
int16_t* xBuf;
|
||||
int16_t* dBufClean;
|
||||
int16_t* dBufNoisy;
|
||||
int16_t* outBuf;
|
||||
|
||||
int32_t echoFilt[PART_LEN1];
|
||||
int16_t nearFilt[PART_LEN1];
|
||||
int32_t noiseEst[PART_LEN1];
|
||||
int noiseEstTooLowCtr[PART_LEN1];
|
||||
int noiseEstTooHighCtr[PART_LEN1];
|
||||
int16_t noiseEstCtr;
|
||||
int16_t cngMode;
|
||||
int32_t echoFilt[PART_LEN1];
|
||||
int16_t nearFilt[PART_LEN1];
|
||||
int32_t noiseEst[PART_LEN1];
|
||||
int noiseEstTooLowCtr[PART_LEN1];
|
||||
int noiseEstTooHighCtr[PART_LEN1];
|
||||
int16_t noiseEstCtr;
|
||||
int16_t cngMode;
|
||||
|
||||
int32_t mseAdaptOld;
|
||||
int32_t mseStoredOld;
|
||||
int32_t mseThreshold;
|
||||
int32_t mseAdaptOld;
|
||||
int32_t mseStoredOld;
|
||||
int32_t mseThreshold;
|
||||
|
||||
int16_t farEnergyMin;
|
||||
int16_t farEnergyMax;
|
||||
int16_t farEnergyMaxMin;
|
||||
int16_t farEnergyVAD;
|
||||
int16_t farEnergyMSE;
|
||||
int currentVADValue;
|
||||
int16_t vadUpdateCount;
|
||||
int16_t farEnergyMin;
|
||||
int16_t farEnergyMax;
|
||||
int16_t farEnergyMaxMin;
|
||||
int16_t farEnergyVAD;
|
||||
int16_t farEnergyMSE;
|
||||
int currentVADValue;
|
||||
int16_t vadUpdateCount;
|
||||
|
||||
int16_t startupState;
|
||||
int16_t mseChannelCount;
|
||||
int16_t supGain;
|
||||
int16_t supGainOld;
|
||||
int16_t startupState;
|
||||
int16_t mseChannelCount;
|
||||
int16_t supGain;
|
||||
int16_t supGainOld;
|
||||
|
||||
int16_t supGainErrParamA;
|
||||
int16_t supGainErrParamD;
|
||||
int16_t supGainErrParamDiffAB;
|
||||
int16_t supGainErrParamDiffBD;
|
||||
int16_t supGainErrParamA;
|
||||
int16_t supGainErrParamD;
|
||||
int16_t supGainErrParamDiffAB;
|
||||
int16_t supGainErrParamDiffBD;
|
||||
|
||||
struct RealFFT* real_fft;
|
||||
struct RealFFT* real_fft;
|
||||
|
||||
#ifdef AEC_DEBUG
|
||||
FILE *farFile;
|
||||
FILE *nearFile;
|
||||
FILE *outFile;
|
||||
FILE* farFile;
|
||||
FILE* nearFile;
|
||||
FILE* outFile;
|
||||
#endif
|
||||
} AecmCore;
|
||||
|
||||
|
||||
@ -30,28 +30,25 @@ extern "C" {
|
||||
|
||||
// Square root of Hanning window in Q14.
|
||||
static const ALIGN8_BEG int16_t WebRtcAecm_kSqrtHanning[] ALIGN8_END = {
|
||||
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172,
|
||||
3562, 3951, 4337, 4720, 5101, 5478, 5853, 6224,
|
||||
6591, 6954, 7313, 7668, 8019, 8364, 8705, 9040,
|
||||
9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
|
||||
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553,
|
||||
13773, 13985, 14189, 14384, 14571, 14749, 14918, 15079,
|
||||
15231, 15373, 15506, 15631, 15746, 15851, 15947, 16034,
|
||||
16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384
|
||||
};
|
||||
0, 399, 798, 1196, 1594, 1990, 2386, 2780, 3172, 3562, 3951,
|
||||
4337, 4720, 5101, 5478, 5853, 6224, 6591, 6954, 7313, 7668, 8019,
|
||||
8364, 8705, 9040, 9370, 9695, 10013, 10326, 10633, 10933, 11227, 11514,
|
||||
11795, 12068, 12335, 12594, 12845, 13089, 13325, 13553, 13773, 13985, 14189,
|
||||
14384, 14571, 14749, 14918, 15079, 15231, 15373, 15506, 15631, 15746, 15851,
|
||||
15947, 16034, 16111, 16179, 16237, 16286, 16325, 16354, 16373, 16384};
|
||||
|
||||
#ifdef AECM_WITH_ABS_APPROX
|
||||
//Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
|
||||
// Q15 alpha = 0.99439986968132 const Factor for magnitude approximation
|
||||
static const uint16_t kAlpha1 = 32584;
|
||||
//Q15 beta = 0.12967166976970 const Factor for magnitude approximation
|
||||
// Q15 beta = 0.12967166976970 const Factor for magnitude approximation
|
||||
static const uint16_t kBeta1 = 4249;
|
||||
//Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
|
||||
// Q15 alpha = 0.94234827210087 const Factor for magnitude approximation
|
||||
static const uint16_t kAlpha2 = 30879;
|
||||
//Q15 beta = 0.33787806009150 const Factor for magnitude approximation
|
||||
// Q15 beta = 0.33787806009150 const Factor for magnitude approximation
|
||||
static const uint16_t kBeta2 = 11072;
|
||||
//Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
|
||||
// Q15 alpha = 0.82247698684306 const Factor for magnitude approximation
|
||||
static const uint16_t kAlpha3 = 26951;
|
||||
//Q15 beta = 0.57762063060713 const Factor for magnitude approximation
|
||||
// Q15 beta = 0.57762063060713 const Factor for magnitude approximation
|
||||
static const uint16_t kBeta3 = 18927;
|
||||
#endif
|
||||
|
||||
@ -77,8 +74,8 @@ static void WindowAndFFT(AecmCore* aecm,
|
||||
int16_t scaled_time_signal = time_signal[i] * (1 << time_signal_scaling);
|
||||
fft[i] = (int16_t)((scaled_time_signal * WebRtcAecm_kSqrtHanning[i]) >> 14);
|
||||
scaled_time_signal = time_signal[i + PART_LEN] * (1 << time_signal_scaling);
|
||||
fft[PART_LEN + i] = (int16_t)((
|
||||
scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
|
||||
fft[PART_LEN + i] = (int16_t)(
|
||||
(scaled_time_signal * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14);
|
||||
}
|
||||
|
||||
// Do forward FFT, then take only the first PART_LEN complex samples,
|
||||
@ -115,32 +112,27 @@ static void InverseFFTAndWindow(AecmCore* aecm,
|
||||
outCFFT = WebRtcSpl_RealInverseFFT(aecm->real_fft, fft, ifft_out);
|
||||
for (i = 0; i < PART_LEN; i++) {
|
||||
ifft_out[i] = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
|
||||
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
|
||||
ifft_out[i], WebRtcAecm_kSqrtHanning[i], 14);
|
||||
tmp32no1 = WEBRTC_SPL_SHIFT_W32((int32_t)ifft_out[i],
|
||||
outCFFT - aecm->dfaCleanQDomain);
|
||||
outCFFT - aecm->dfaCleanQDomain);
|
||||
output[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
|
||||
tmp32no1 + aecm->outBuf[i],
|
||||
WEBRTC_SPL_WORD16_MIN);
|
||||
|
||||
tmp32no1 = (ifft_out[PART_LEN + i] *
|
||||
WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
|
||||
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1,
|
||||
outCFFT - aecm->dfaCleanQDomain);
|
||||
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX,
|
||||
tmp32no1,
|
||||
WEBRTC_SPL_WORD16_MIN);
|
||||
tmp32no1 =
|
||||
(ifft_out[PART_LEN + i] * WebRtcAecm_kSqrtHanning[PART_LEN - i]) >> 14;
|
||||
tmp32no1 = WEBRTC_SPL_SHIFT_W32(tmp32no1, outCFFT - aecm->dfaCleanQDomain);
|
||||
aecm->outBuf[i] = (int16_t)WEBRTC_SPL_SAT(WEBRTC_SPL_WORD16_MAX, tmp32no1,
|
||||
WEBRTC_SPL_WORD16_MIN);
|
||||
}
|
||||
|
||||
// Copy the current block to the old position
|
||||
// (aecm->outBuf is shifted elsewhere)
|
||||
memcpy(aecm->xBuf, aecm->xBuf + PART_LEN, sizeof(int16_t) * PART_LEN);
|
||||
memcpy(aecm->dBufNoisy,
|
||||
aecm->dBufNoisy + PART_LEN,
|
||||
memcpy(aecm->dBufNoisy, aecm->dBufNoisy + PART_LEN,
|
||||
sizeof(int16_t) * PART_LEN);
|
||||
if (nearendClean != NULL)
|
||||
{
|
||||
memcpy(aecm->dBufClean,
|
||||
aecm->dBufClean + PART_LEN,
|
||||
if (nearendClean != NULL) {
|
||||
memcpy(aecm->dBufClean, aecm->dBufClean + PART_LEN,
|
||||
sizeof(int16_t) * PART_LEN);
|
||||
}
|
||||
}
|
||||
@ -171,7 +163,7 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
|
||||
|
||||
// In fft_buf, +16 for 32-byte alignment.
|
||||
int16_t fft_buf[PART_LEN4 + 16];
|
||||
int16_t *fft = (int16_t *) (((uintptr_t) fft_buf + 31) & ~31);
|
||||
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
|
||||
|
||||
int16_t tmp16no1;
|
||||
#ifndef WEBRTC_ARCH_ARM_V7
|
||||
@ -196,54 +188,43 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
|
||||
freq_signal[0].imag = 0;
|
||||
freq_signal[PART_LEN].imag = 0;
|
||||
freq_signal_abs[0] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[0].real);
|
||||
freq_signal_abs[PART_LEN] = (uint16_t)WEBRTC_SPL_ABS_W16(
|
||||
freq_signal[PART_LEN].real);
|
||||
(*freq_signal_sum_abs) = (uint32_t)(freq_signal_abs[0]) +
|
||||
(uint32_t)(freq_signal_abs[PART_LEN]);
|
||||
freq_signal_abs[PART_LEN] =
|
||||
(uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[PART_LEN].real);
|
||||
(*freq_signal_sum_abs) =
|
||||
(uint32_t)(freq_signal_abs[0]) + (uint32_t)(freq_signal_abs[PART_LEN]);
|
||||
|
||||
for (i = 1; i < PART_LEN; i++)
|
||||
{
|
||||
if (freq_signal[i].real == 0)
|
||||
{
|
||||
for (i = 1; i < PART_LEN; i++) {
|
||||
if (freq_signal[i].real == 0) {
|
||||
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
||||
}
|
||||
else if (freq_signal[i].imag == 0)
|
||||
{
|
||||
} else if (freq_signal[i].imag == 0) {
|
||||
freq_signal_abs[i] = (uint16_t)WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Approximation for magnitude of complex fft output
|
||||
// magn = sqrt(real^2 + imag^2)
|
||||
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
|
||||
//
|
||||
// The parameters alpha and beta are stored in Q15
|
||||
} else {
|
||||
// Approximation for magnitude of complex fft output
|
||||
// magn = sqrt(real^2 + imag^2)
|
||||
// magn ~= alpha * max(|imag|,|real|) + beta * min(|imag|,|real|)
|
||||
//
|
||||
// The parameters alpha and beta are stored in Q15
|
||||
|
||||
#ifdef AECM_WITH_ABS_APPROX
|
||||
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
||||
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
||||
|
||||
if(tmp16no1 > tmp16no2)
|
||||
{
|
||||
if (tmp16no1 > tmp16no2) {
|
||||
max_value = tmp16no1;
|
||||
min_value = tmp16no2;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
max_value = tmp16no2;
|
||||
min_value = tmp16no1;
|
||||
}
|
||||
|
||||
// Magnitude in Q(-6)
|
||||
if ((max_value >> 2) > min_value)
|
||||
{
|
||||
if ((max_value >> 2) > min_value) {
|
||||
alpha = kAlpha1;
|
||||
beta = kBeta1;
|
||||
} else if ((max_value >> 1) > min_value)
|
||||
{
|
||||
} else if ((max_value >> 1) > min_value) {
|
||||
alpha = kAlpha2;
|
||||
beta = kBeta2;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
alpha = kAlpha3;
|
||||
beta = kBeta3;
|
||||
}
|
||||
@ -253,24 +234,21 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
|
||||
#else
|
||||
#ifdef WEBRTC_ARCH_ARM_V7
|
||||
__asm __volatile(
|
||||
"smulbb %[tmp32no1], %[real], %[real]\n\t"
|
||||
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
|
||||
:[tmp32no1]"+&r"(tmp32no1),
|
||||
[tmp32no2]"=r"(tmp32no2)
|
||||
:[real]"r"(freq_signal[i].real),
|
||||
[imag]"r"(freq_signal[i].imag)
|
||||
);
|
||||
"smulbb %[tmp32no1], %[real], %[real]\n\t"
|
||||
"smlabb %[tmp32no2], %[imag], %[imag], %[tmp32no1]\n\t"
|
||||
: [tmp32no1] "+&r"(tmp32no1), [tmp32no2] "=r"(tmp32no2)
|
||||
: [real] "r"(freq_signal[i].real), [imag] "r"(freq_signal[i].imag));
|
||||
#else
|
||||
tmp16no1 = WEBRTC_SPL_ABS_W16(freq_signal[i].real);
|
||||
tmp16no2 = WEBRTC_SPL_ABS_W16(freq_signal[i].imag);
|
||||
tmp32no1 = tmp16no1 * tmp16no1;
|
||||
tmp32no2 = tmp16no2 * tmp16no2;
|
||||
tmp32no2 = WebRtcSpl_AddSatW32(tmp32no1, tmp32no2);
|
||||
#endif // WEBRTC_ARCH_ARM_V7
|
||||
#endif // WEBRTC_ARCH_ARM_V7
|
||||
tmp32no1 = WebRtcSpl_SqrtFloor(tmp32no2);
|
||||
|
||||
freq_signal_abs[i] = (uint16_t)tmp32no1;
|
||||
#endif // AECM_WITH_ABS_APPROX
|
||||
#endif // AECM_WITH_ABS_APPROX
|
||||
}
|
||||
(*freq_signal_sum_abs) += (uint32_t)freq_signal_abs[i];
|
||||
}
|
||||
@ -279,11 +257,11 @@ static int TimeToFrequencyDomain(AecmCore* aecm,
|
||||
}
|
||||
|
||||
int RTC_NO_SANITIZE("signed-integer-overflow") // bugs.webrtc.org/8200
|
||||
WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
const int16_t* farend,
|
||||
const int16_t* nearendNoisy,
|
||||
const int16_t* nearendClean,
|
||||
int16_t* output) {
|
||||
WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
const int16_t* farend,
|
||||
const int16_t* nearendNoisy,
|
||||
const int16_t* nearendClean,
|
||||
int16_t* output) {
|
||||
int i;
|
||||
|
||||
uint32_t xfaSum;
|
||||
@ -302,13 +280,13 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
|
||||
// 32 byte aligned buffers (with +8 or +16).
|
||||
// TODO(kma): define fft with ComplexInt16.
|
||||
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
|
||||
int16_t fft_buf[PART_LEN4 + 2 + 16]; // +2 to make a loop safe.
|
||||
int32_t echoEst32_buf[PART_LEN1 + 8];
|
||||
int32_t dfw_buf[PART_LEN2 + 8];
|
||||
int32_t efw_buf[PART_LEN2 + 8];
|
||||
|
||||
int16_t* fft = (int16_t*) (((uintptr_t) fft_buf + 31) & ~ 31);
|
||||
int32_t* echoEst32 = (int32_t*) (((uintptr_t) echoEst32_buf + 31) & ~ 31);
|
||||
int16_t* fft = (int16_t*)(((uintptr_t)fft_buf + 31) & ~31);
|
||||
int32_t* echoEst32 = (int32_t*)(((uintptr_t)echoEst32_buf + 31) & ~31);
|
||||
ComplexInt16* dfw = (ComplexInt16*)(((uintptr_t)dfw_buf + 31) & ~31);
|
||||
ComplexInt16* efw = (ComplexInt16*)(((uintptr_t)efw_buf + 31) & ~31);
|
||||
|
||||
@ -334,53 +312,37 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
// (1) another CONV_LEN blocks
|
||||
// (2) the rest
|
||||
|
||||
if (aecm->startupState < 2)
|
||||
{
|
||||
aecm->startupState = (aecm->totCount >= CONV_LEN) +
|
||||
(aecm->totCount >= CONV_LEN2);
|
||||
if (aecm->startupState < 2) {
|
||||
aecm->startupState =
|
||||
(aecm->totCount >= CONV_LEN) + (aecm->totCount >= CONV_LEN2);
|
||||
}
|
||||
// END: Determine startup state
|
||||
|
||||
// Buffer near and far end signals
|
||||
memcpy(aecm->xBuf + PART_LEN, farend, sizeof(int16_t) * PART_LEN);
|
||||
memcpy(aecm->dBufNoisy + PART_LEN, nearendNoisy, sizeof(int16_t) * PART_LEN);
|
||||
if (nearendClean != NULL)
|
||||
{
|
||||
memcpy(aecm->dBufClean + PART_LEN,
|
||||
nearendClean,
|
||||
if (nearendClean != NULL) {
|
||||
memcpy(aecm->dBufClean + PART_LEN, nearendClean,
|
||||
sizeof(int16_t) * PART_LEN);
|
||||
}
|
||||
|
||||
// Transform far end signal from time domain to frequency domain.
|
||||
far_q = TimeToFrequencyDomain(aecm,
|
||||
aecm->xBuf,
|
||||
dfw,
|
||||
xfa,
|
||||
&xfaSum);
|
||||
far_q = TimeToFrequencyDomain(aecm, aecm->xBuf, dfw, xfa, &xfaSum);
|
||||
|
||||
// Transform noisy near end signal from time domain to frequency domain.
|
||||
zerosDBufNoisy = TimeToFrequencyDomain(aecm,
|
||||
aecm->dBufNoisy,
|
||||
dfw,
|
||||
dfaNoisy,
|
||||
&dfaNoisySum);
|
||||
zerosDBufNoisy =
|
||||
TimeToFrequencyDomain(aecm, aecm->dBufNoisy, dfw, dfaNoisy, &dfaNoisySum);
|
||||
aecm->dfaNoisyQDomainOld = aecm->dfaNoisyQDomain;
|
||||
aecm->dfaNoisyQDomain = (int16_t)zerosDBufNoisy;
|
||||
|
||||
|
||||
if (nearendClean == NULL)
|
||||
{
|
||||
if (nearendClean == NULL) {
|
||||
ptrDfaClean = dfaNoisy;
|
||||
aecm->dfaCleanQDomainOld = aecm->dfaNoisyQDomainOld;
|
||||
aecm->dfaCleanQDomain = aecm->dfaNoisyQDomain;
|
||||
dfaCleanSum = dfaNoisySum;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// Transform clean near end signal from time domain to frequency domain.
|
||||
zerosDBufClean = TimeToFrequencyDomain(aecm,
|
||||
aecm->dBufClean,
|
||||
dfw,
|
||||
dfaClean,
|
||||
zerosDBufClean = TimeToFrequencyDomain(aecm, aecm->dBufClean, dfw, dfaClean,
|
||||
&dfaCleanSum);
|
||||
aecm->dfaCleanQDomainOld = aecm->dfaCleanQDomain;
|
||||
aecm->dfaCleanQDomain = (int16_t)zerosDBufClean;
|
||||
@ -389,46 +351,34 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
// Get the delay
|
||||
// Save far-end history and estimate delay
|
||||
WebRtcAecm_UpdateFarHistory(aecm, xfa, far_q);
|
||||
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend,
|
||||
xfa,
|
||||
PART_LEN1,
|
||||
if (WebRtc_AddFarSpectrumFix(aecm->delay_estimator_farend, xfa, PART_LEN1,
|
||||
far_q) == -1) {
|
||||
return -1;
|
||||
}
|
||||
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator,
|
||||
dfaNoisy,
|
||||
PART_LEN1,
|
||||
zerosDBufNoisy);
|
||||
if (delay == -1)
|
||||
{
|
||||
delay = WebRtc_DelayEstimatorProcessFix(aecm->delay_estimator, dfaNoisy,
|
||||
PART_LEN1, zerosDBufNoisy);
|
||||
if (delay == -1) {
|
||||
return -1;
|
||||
}
|
||||
else if (delay == -2)
|
||||
{
|
||||
} else if (delay == -2) {
|
||||
// If the delay is unknown, we assume zero.
|
||||
// NOTE: this will have to be adjusted if we ever add lookahead.
|
||||
delay = 0;
|
||||
}
|
||||
|
||||
if (aecm->fixedDelay >= 0)
|
||||
{
|
||||
if (aecm->fixedDelay >= 0) {
|
||||
// Use fixed delay
|
||||
delay = aecm->fixedDelay;
|
||||
}
|
||||
|
||||
// Get aligned far end spectrum
|
||||
far_spectrum_ptr = WebRtcAecm_AlignedFarend(aecm, &far_q, delay);
|
||||
zerosXBuf = (int16_t) far_q;
|
||||
if (far_spectrum_ptr == NULL)
|
||||
{
|
||||
zerosXBuf = (int16_t)far_q;
|
||||
if (far_spectrum_ptr == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Calculate log(energy) and update energy threshold levels
|
||||
WebRtcAecm_CalcEnergies(aecm,
|
||||
far_spectrum_ptr,
|
||||
zerosXBuf,
|
||||
dfaNoisySum,
|
||||
WebRtcAecm_CalcEnergies(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisySum,
|
||||
echoEst32);
|
||||
|
||||
// Calculate stepsize
|
||||
@ -440,18 +390,12 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
// This is the channel estimation algorithm.
|
||||
// It is base on NLMS but has a variable step length,
|
||||
// which was calculated above.
|
||||
WebRtcAecm_UpdateChannel(aecm,
|
||||
far_spectrum_ptr,
|
||||
zerosXBuf,
|
||||
dfaNoisy,
|
||||
mu,
|
||||
WebRtcAecm_UpdateChannel(aecm, far_spectrum_ptr, zerosXBuf, dfaNoisy, mu,
|
||||
echoEst32);
|
||||
supGain = WebRtcAecm_CalcSuppressionGain(aecm);
|
||||
|
||||
|
||||
// Calculate Wiener filter hnl[]
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
// Far end signal through channel estimate in Q8
|
||||
// How much can we shift right to preserve resolution
|
||||
tmp32no1 = echoEst32[i] - aecm->echoFilt[i];
|
||||
@ -460,28 +404,24 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
|
||||
zeros32 = WebRtcSpl_NormW32(aecm->echoFilt[i]) + 1;
|
||||
zeros16 = WebRtcSpl_NormW16(supGain) + 1;
|
||||
if (zeros32 + zeros16 > 16)
|
||||
{
|
||||
if (zeros32 + zeros16 > 16) {
|
||||
// Multiplication is safe
|
||||
// Result in
|
||||
// Q(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN+
|
||||
// aecm->xfaQDomainBuf[diff])
|
||||
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
|
||||
(uint16_t)supGain);
|
||||
echoEst32Gained =
|
||||
WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i], (uint16_t)supGain);
|
||||
resolutionDiff = 14 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
|
||||
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
tmp16no1 = 17 - zeros32 - zeros16;
|
||||
resolutionDiff = 14 + tmp16no1 - RESOLUTION_CHANNEL16 -
|
||||
RESOLUTION_SUPGAIN;
|
||||
resolutionDiff =
|
||||
14 + tmp16no1 - RESOLUTION_CHANNEL16 - RESOLUTION_SUPGAIN;
|
||||
resolutionDiff += (aecm->dfaCleanQDomain - zerosXBuf);
|
||||
if (zeros32 > tmp16no1)
|
||||
{
|
||||
if (zeros32 > tmp16no1) {
|
||||
echoEst32Gained = WEBRTC_SPL_UMUL_32_16((uint32_t)aecm->echoFilt[i],
|
||||
supGain >> tmp16no1);
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// Result in Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN-16)
|
||||
echoEst32Gained = (aecm->echoFilt[i] >> tmp16no1) * supGain;
|
||||
}
|
||||
@ -513,125 +453,100 @@ WebRtcAecm_ProcessBlock(AecmCore* aecm,
|
||||
}
|
||||
|
||||
// Wiener filter coefficients, resulting hnl in Q14
|
||||
if (echoEst32Gained == 0)
|
||||
{
|
||||
if (echoEst32Gained == 0) {
|
||||
hnl[i] = ONE_Q14;
|
||||
} else if (aecm->nearFilt[i] == 0)
|
||||
{
|
||||
} else if (aecm->nearFilt[i] == 0) {
|
||||
hnl[i] = 0;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// Multiply the suppression gain
|
||||
// Rounding
|
||||
echoEst32Gained += (uint32_t)(aecm->nearFilt[i] >> 1);
|
||||
tmpU32 = WebRtcSpl_DivU32U16(echoEst32Gained,
|
||||
(uint16_t)aecm->nearFilt[i]);
|
||||
tmpU32 =
|
||||
WebRtcSpl_DivU32U16(echoEst32Gained, (uint16_t)aecm->nearFilt[i]);
|
||||
|
||||
// Current resolution is
|
||||
// Q-(RESOLUTION_CHANNEL+RESOLUTION_SUPGAIN- max(0,17-zeros16- zeros32))
|
||||
// Make sure we are in Q14
|
||||
tmp32no1 = (int32_t)WEBRTC_SPL_SHIFT_W32(tmpU32, resolutionDiff);
|
||||
if (tmp32no1 > ONE_Q14)
|
||||
{
|
||||
if (tmp32no1 > ONE_Q14) {
|
||||
hnl[i] = 0;
|
||||
} else if (tmp32no1 < 0)
|
||||
{
|
||||
} else if (tmp32no1 < 0) {
|
||||
hnl[i] = ONE_Q14;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// 1-echoEst/dfa
|
||||
hnl[i] = ONE_Q14 - (int16_t)tmp32no1;
|
||||
if (hnl[i] < 0)
|
||||
{
|
||||
if (hnl[i] < 0) {
|
||||
hnl[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (hnl[i])
|
||||
{
|
||||
if (hnl[i]) {
|
||||
numPosCoef++;
|
||||
}
|
||||
}
|
||||
// Only in wideband. Prevent the gain in upper band from being larger than
|
||||
// in lower band.
|
||||
if (aecm->mult == 2)
|
||||
{
|
||||
if (aecm->mult == 2) {
|
||||
// TODO(bjornv): Investigate if the scaling of hnl[i] below can cause
|
||||
// speech distortion in double-talk.
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
hnl[i] = (int16_t)((hnl[i] * hnl[i]) >> 14);
|
||||
}
|
||||
|
||||
for (i = kMinPrefBand; i <= kMaxPrefBand; i++)
|
||||
{
|
||||
for (i = kMinPrefBand; i <= kMaxPrefBand; i++) {
|
||||
avgHnl32 += (int32_t)hnl[i];
|
||||
}
|
||||
RTC_DCHECK_GT(kMaxPrefBand - kMinPrefBand + 1, 0);
|
||||
avgHnl32 /= (kMaxPrefBand - kMinPrefBand + 1);
|
||||
|
||||
for (i = kMaxPrefBand; i < PART_LEN1; i++)
|
||||
{
|
||||
if (hnl[i] > (int16_t)avgHnl32)
|
||||
{
|
||||
for (i = kMaxPrefBand; i < PART_LEN1; i++) {
|
||||
if (hnl[i] > (int16_t)avgHnl32) {
|
||||
hnl[i] = (int16_t)avgHnl32;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate NLP gain, result is in Q14
|
||||
if (aecm->nlpFlag)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
if (aecm->nlpFlag) {
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
// Truncate values close to zero and one.
|
||||
if (hnl[i] > NLP_COMP_HIGH)
|
||||
{
|
||||
if (hnl[i] > NLP_COMP_HIGH) {
|
||||
hnl[i] = ONE_Q14;
|
||||
} else if (hnl[i] < NLP_COMP_LOW)
|
||||
{
|
||||
} else if (hnl[i] < NLP_COMP_LOW) {
|
||||
hnl[i] = 0;
|
||||
}
|
||||
|
||||
// Remove outliers
|
||||
if (numPosCoef < 3)
|
||||
{
|
||||
if (numPosCoef < 3) {
|
||||
nlpGain = 0;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
nlpGain = ONE_Q14;
|
||||
}
|
||||
|
||||
// NLP
|
||||
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14))
|
||||
{
|
||||
if ((hnl[i] == ONE_Q14) && (nlpGain == ONE_Q14)) {
|
||||
hnl[i] = ONE_Q14;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
hnl[i] = (int16_t)((hnl[i] * nlpGain) >> 14);
|
||||
}
|
||||
|
||||
// multiply with Wiener coefficients
|
||||
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
|
||||
hnl[i], 14));
|
||||
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
|
||||
hnl[i], 14));
|
||||
efw[i].real = (int16_t)(
|
||||
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
|
||||
efw[i].imag = (int16_t)(
|
||||
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
// multiply with Wiener coefficients
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
efw[i].real = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real,
|
||||
hnl[i], 14));
|
||||
efw[i].imag = (int16_t)(WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag,
|
||||
hnl[i], 14));
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
efw[i].real = (int16_t)(
|
||||
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].real, hnl[i], 14));
|
||||
efw[i].imag = (int16_t)(
|
||||
WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(dfw[i].imag, hnl[i], 14));
|
||||
}
|
||||
}
|
||||
|
||||
if (aecm->cngMode == AecmTrue)
|
||||
{
|
||||
if (aecm->cngMode == AecmTrue) {
|
||||
ComfortNoise(aecm, ptrDfaClean, efw, hnl);
|
||||
}
|
||||
|
||||
@ -660,83 +575,66 @@ static void ComfortNoise(AecmCore* aecm,
|
||||
RTC_DCHECK_GE(shiftFromNearToNoise, 0);
|
||||
RTC_DCHECK_LT(shiftFromNearToNoise, 16);
|
||||
|
||||
if (aecm->noiseEstCtr < 100)
|
||||
{
|
||||
if (aecm->noiseEstCtr < 100) {
|
||||
// Track the minimum more quickly initially.
|
||||
aecm->noiseEstCtr++;
|
||||
minTrackShift = 6;
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
minTrackShift = 9;
|
||||
}
|
||||
|
||||
// Estimate noise power.
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
// Shift to the noise domain.
|
||||
tmp32 = (int32_t)dfa[i];
|
||||
outLShift32 = tmp32 << shiftFromNearToNoise;
|
||||
|
||||
if (outLShift32 < aecm->noiseEst[i])
|
||||
{
|
||||
if (outLShift32 < aecm->noiseEst[i]) {
|
||||
// Reset "too low" counter
|
||||
aecm->noiseEstTooLowCtr[i] = 0;
|
||||
// Track the minimum.
|
||||
if (aecm->noiseEst[i] < (1 << minTrackShift))
|
||||
{
|
||||
if (aecm->noiseEst[i] < (1 << minTrackShift)) {
|
||||
// For small values, decrease noiseEst[i] every
|
||||
// |kNoiseEstIncCount| block. The regular approach below can not
|
||||
// go further down due to truncation.
|
||||
aecm->noiseEstTooHighCtr[i]++;
|
||||
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount)
|
||||
{
|
||||
if (aecm->noiseEstTooHighCtr[i] >= kNoiseEstIncCount) {
|
||||
aecm->noiseEst[i]--;
|
||||
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
|
||||
aecm->noiseEstTooHighCtr[i] = 0; // Reset the counter
|
||||
}
|
||||
} else {
|
||||
aecm->noiseEst[i] -=
|
||||
((aecm->noiseEst[i] - outLShift32) >> minTrackShift);
|
||||
}
|
||||
else
|
||||
{
|
||||
aecm->noiseEst[i] -= ((aecm->noiseEst[i] - outLShift32)
|
||||
>> minTrackShift);
|
||||
}
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// Reset "too high" counter
|
||||
aecm->noiseEstTooHighCtr[i] = 0;
|
||||
// Ramp slowly upwards until we hit the minimum again.
|
||||
if ((aecm->noiseEst[i] >> 19) > 0)
|
||||
{
|
||||
if ((aecm->noiseEst[i] >> 19) > 0) {
|
||||
// Avoid overflow.
|
||||
// Multiplication with 2049 will cause wrap around. Scale
|
||||
// down first and then multiply
|
||||
aecm->noiseEst[i] >>= 11;
|
||||
aecm->noiseEst[i] *= 2049;
|
||||
}
|
||||
else if ((aecm->noiseEst[i] >> 11) > 0)
|
||||
{
|
||||
} else if ((aecm->noiseEst[i] >> 11) > 0) {
|
||||
// Large enough for relative increase
|
||||
aecm->noiseEst[i] *= 2049;
|
||||
aecm->noiseEst[i] >>= 11;
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
// Make incremental increases based on size every
|
||||
// |kNoiseEstIncCount| block
|
||||
aecm->noiseEstTooLowCtr[i]++;
|
||||
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount)
|
||||
{
|
||||
if (aecm->noiseEstTooLowCtr[i] >= kNoiseEstIncCount) {
|
||||
aecm->noiseEst[i] += (aecm->noiseEst[i] >> 9) + 1;
|
||||
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
|
||||
aecm->noiseEstTooLowCtr[i] = 0; // Reset counter
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
tmp32 = aecm->noiseEst[i] >> shiftFromNearToNoise;
|
||||
if (tmp32 > 32767)
|
||||
{
|
||||
if (tmp32 > 32767) {
|
||||
tmp32 = 32767;
|
||||
aecm->noiseEst[i] = tmp32 << shiftFromNearToNoise;
|
||||
}
|
||||
@ -750,23 +648,21 @@ static void ComfortNoise(AecmCore* aecm,
|
||||
WebRtcSpl_RandUArray(randW16, PART_LEN, &aecm->seed);
|
||||
|
||||
// Generate noise according to estimated energy.
|
||||
uReal[0] = 0; // Reject LF noise.
|
||||
uReal[0] = 0; // Reject LF noise.
|
||||
uImag[0] = 0;
|
||||
for (i = 1; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 1; i < PART_LEN1; i++) {
|
||||
// Get a random index for the cos and sin tables over [0 359].
|
||||
tmp16 = (int16_t)((359 * randW16[i - 1]) >> 15);
|
||||
|
||||
// Tables are in Q13.
|
||||
uReal[i] = (int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >>
|
||||
13);
|
||||
uImag[i] = (int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >>
|
||||
13);
|
||||
uReal[i] =
|
||||
(int16_t)((noiseRShift16[i] * WebRtcAecm_kCosTable[tmp16]) >> 13);
|
||||
uImag[i] =
|
||||
(int16_t)((-noiseRShift16[i] * WebRtcAecm_kSinTable[tmp16]) >> 13);
|
||||
}
|
||||
uImag[PART_LEN] = 0;
|
||||
|
||||
for (i = 0; i < PART_LEN1; i++)
|
||||
{
|
||||
for (i = 0; i < PART_LEN1; i++) {
|
||||
out[i].real = WebRtcSpl_AddSatW16(out[i].real, uReal[i]);
|
||||
out[i].imag = WebRtcSpl_AddSatW16(out[i].imag, uImag[i]);
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -77,12 +77,12 @@ void WebRtcAecm_CalcLinearEnergiesNeon(AecmCore* aecm,
|
||||
echo_stored_v = vaddq_u32(echo_est_v_low, echo_stored_v);
|
||||
echo_stored_v = vaddq_u32(echo_est_v_high, echo_stored_v);
|
||||
|
||||
echo_adapt_v = vmlal_u16(echo_adapt_v,
|
||||
vreinterpret_u16_s16(vget_low_s16(adapt_v)),
|
||||
vget_low_u16(spectrum_v));
|
||||
echo_adapt_v = vmlal_u16(echo_adapt_v,
|
||||
vreinterpret_u16_s16(vget_high_s16(adapt_v)),
|
||||
vget_high_u16(spectrum_v));
|
||||
echo_adapt_v =
|
||||
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_low_s16(adapt_v)),
|
||||
vget_low_u16(spectrum_v));
|
||||
echo_adapt_v =
|
||||
vmlal_u16(echo_adapt_v, vreinterpret_u16_s16(vget_high_s16(adapt_v)),
|
||||
vget_high_u16(spectrum_v));
|
||||
|
||||
start_stored_p += 8;
|
||||
start_adapt_p += 8;
|
||||
|
||||
@ -11,77 +11,77 @@
|
||||
#ifndef MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
|
||||
#define MODULES_AUDIO_PROCESSING_AECM_AECM_DEFINES_H_
|
||||
|
||||
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
|
||||
#define AECM_DYNAMIC_Q /* Turn on/off dynamic Q-domain. */
|
||||
|
||||
/* Algorithm parameters */
|
||||
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
|
||||
#define FRAME_LEN 80 /* Total frame length, 10 ms. */
|
||||
|
||||
#define PART_LEN 64 /* Length of partition. */
|
||||
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
|
||||
#define PART_LEN 64 /* Length of partition. */
|
||||
#define PART_LEN_SHIFT 7 /* Length of (PART_LEN * 2) in base 2. */
|
||||
|
||||
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
|
||||
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
|
||||
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
|
||||
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
|
||||
#define MAX_DELAY 100
|
||||
#define PART_LEN1 (PART_LEN + 1) /* Unique fft coefficients. */
|
||||
#define PART_LEN2 (PART_LEN << 1) /* Length of partition * 2. */
|
||||
#define PART_LEN4 (PART_LEN << 2) /* Length of partition * 4. */
|
||||
#define FAR_BUF_LEN PART_LEN4 /* Length of buffers. */
|
||||
#define MAX_DELAY 100
|
||||
|
||||
/* Counter parameters */
|
||||
#define CONV_LEN 512 /* Convergence length used at startup. */
|
||||
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
|
||||
#define CONV_LEN 512 /* Convergence length used at startup. */
|
||||
#define CONV_LEN2 (CONV_LEN << 1) /* Used at startup. */
|
||||
|
||||
/* Energy parameters */
|
||||
#define MAX_BUF_LEN 64 /* History length of energy signals. */
|
||||
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
|
||||
/* in energy. */
|
||||
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
|
||||
/* and min. */
|
||||
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
|
||||
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
|
||||
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
|
||||
#define MAX_BUF_LEN 64 /* History length of energy signals. */
|
||||
#define FAR_ENERGY_MIN 1025 /* Lowest Far energy level: At least 2 */
|
||||
/* in energy. */
|
||||
#define FAR_ENERGY_DIFF 929 /* Allowed difference between max */
|
||||
/* and min. */
|
||||
#define ENERGY_DEV_OFFSET 0 /* The energy error offset in Q8. */
|
||||
#define ENERGY_DEV_TOL 400 /* The energy estimation tolerance (Q8). */
|
||||
#define FAR_ENERGY_VAD_REGION 230 /* Far VAD tolerance region. */
|
||||
|
||||
/* Stepsize parameters */
|
||||
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
|
||||
/* dependent). */
|
||||
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
|
||||
/* dependent). */
|
||||
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
|
||||
#define MU_MIN 10 /* Min stepsize 2^-MU_MIN (far end energy */
|
||||
/* dependent). */
|
||||
#define MU_MAX 1 /* Max stepsize 2^-MU_MAX (far end energy */
|
||||
/* dependent). */
|
||||
#define MU_DIFF 9 /* MU_MIN - MU_MAX */
|
||||
|
||||
/* Channel parameters */
|
||||
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
|
||||
/* far end energy to compare channel estimates. */
|
||||
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
|
||||
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
|
||||
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
|
||||
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
|
||||
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
|
||||
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
|
||||
/* to update channel. */
|
||||
#define MIN_MSE_COUNT 20 /* Min number of consecutive blocks with enough */
|
||||
/* far end energy to compare channel estimates. */
|
||||
#define MIN_MSE_DIFF 29 /* The ratio between adapted and stored channel to */
|
||||
/* accept a new storage (0.8 in Q-MSE_RESOLUTION). */
|
||||
#define MSE_RESOLUTION 5 /* MSE parameter resolution. */
|
||||
#define RESOLUTION_CHANNEL16 12 /* W16 Channel in Q-RESOLUTION_CHANNEL16. */
|
||||
#define RESOLUTION_CHANNEL32 28 /* W32 Channel in Q-RESOLUTION_CHANNEL. */
|
||||
#define CHANNEL_VAD 16 /* Minimum energy in frequency band */
|
||||
/* to update channel. */
|
||||
|
||||
/* Suppression gain parameters: SUPGAIN parameters in Q-(RESOLUTION_SUPGAIN). */
|
||||
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
|
||||
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
|
||||
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
|
||||
/* (Maximum gain) (8 in Q8). */
|
||||
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
|
||||
/* (Gain before going down). */
|
||||
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
|
||||
/* (Should be the same as Default) (1 in Q8). */
|
||||
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
|
||||
#define RESOLUTION_SUPGAIN 8 /* Channel in Q-(RESOLUTION_SUPGAIN). */
|
||||
#define SUPGAIN_DEFAULT (1 << RESOLUTION_SUPGAIN) /* Default. */
|
||||
#define SUPGAIN_ERROR_PARAM_A 3072 /* Estimation error parameter */
|
||||
/* (Maximum gain) (8 in Q8). */
|
||||
#define SUPGAIN_ERROR_PARAM_B 1536 /* Estimation error parameter */
|
||||
/* (Gain before going down). */
|
||||
#define SUPGAIN_ERROR_PARAM_D SUPGAIN_DEFAULT /* Estimation error parameter */
|
||||
/* (Should be the same as Default) (1 in Q8). */
|
||||
#define SUPGAIN_EPC_DT 200 /* SUPGAIN_ERROR_PARAM_C * ENERGY_DEV_TOL */
|
||||
|
||||
/* Defines for "check delay estimation" */
|
||||
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
|
||||
#define CORR_MAX 16 /* Maximum correlation offset. */
|
||||
#define CORR_MAX_BUF 63
|
||||
#define CORR_DEV 4
|
||||
#define CORR_MAX_LEVEL 20
|
||||
#define CORR_MAX_LOW 4
|
||||
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
|
||||
#define CORR_WIDTH 31 /* Number of samples to correlate over. */
|
||||
#define CORR_MAX 16 /* Maximum correlation offset. */
|
||||
#define CORR_MAX_BUF 63
|
||||
#define CORR_DEV 4
|
||||
#define CORR_MAX_LEVEL 20
|
||||
#define CORR_MAX_LOW 4
|
||||
#define CORR_BUF_LEN (CORR_MAX << 1) + 1
|
||||
/* Note that CORR_WIDTH + 2*CORR_MAX <= MAX_BUF_LEN. */
|
||||
|
||||
#define ONE_Q14 (1 << 14)
|
||||
#define ONE_Q14 (1 << 14)
|
||||
|
||||
/* NLP defines */
|
||||
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
|
||||
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
|
||||
#define NLP_COMP_LOW 3277 /* 0.2 in Q14 */
|
||||
#define NLP_COMP_HIGH ONE_Q14 /* 1 in Q14 */
|
||||
|
||||
#endif
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -15,24 +15,21 @@
|
||||
|
||||
#include "typedefs.h" // NOLINT(build/include)
|
||||
|
||||
enum {
|
||||
AecmFalse = 0,
|
||||
AecmTrue
|
||||
};
|
||||
enum { AecmFalse = 0, AecmTrue };
|
||||
|
||||
// Errors
|
||||
#define AECM_UNSPECIFIED_ERROR 12000
|
||||
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
|
||||
#define AECM_UNINITIALIZED_ERROR 12002
|
||||
#define AECM_NULL_POINTER_ERROR 12003
|
||||
#define AECM_BAD_PARAMETER_ERROR 12004
|
||||
#define AECM_UNSPECIFIED_ERROR 12000
|
||||
#define AECM_UNSUPPORTED_FUNCTION_ERROR 12001
|
||||
#define AECM_UNINITIALIZED_ERROR 12002
|
||||
#define AECM_NULL_POINTER_ERROR 12003
|
||||
#define AECM_BAD_PARAMETER_ERROR 12004
|
||||
|
||||
// Warnings
|
||||
#define AECM_BAD_PARAMETER_WARNING 12100
|
||||
#define AECM_BAD_PARAMETER_WARNING 12100
|
||||
|
||||
typedef struct {
|
||||
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
|
||||
int16_t echoMode; // 0, 1, 2, 3 (default), 4
|
||||
int16_t cngMode; // AECM_FALSE, AECM_TRUE (default)
|
||||
int16_t echoMode; // 0, 1, 2, 3 (default), 4
|
||||
} AecmConfig;
|
||||
|
||||
#ifdef __cplusplus
|
||||
@ -202,7 +199,6 @@ int32_t WebRtcAecm_GetEchoPath(void* aecmInst,
|
||||
*/
|
||||
size_t WebRtcAecm_echo_path_size_bytes();
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user