Reformat the WebRTC code base

Running clang-format with chromium's style guide.

The goal is n-fold:
 * providing consistency and readability (that's what code guidelines are for)
 * preventing noise with presubmit checks and git cl format
 * building on the previous point: making it easier to automatically fix format issues
 * you name it

Please consider using git-hyper-blame to ignore this commit.

Bug: webrtc:9340
Change-Id: I694567c4cdf8cee2860958cfe82bfaf25848bb87
Reviewed-on: https://webrtc-review.googlesource.com/81185
Reviewed-by: Patrik Höglund <phoglund@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23660}
This commit is contained in:
Yves Gerey
2018-06-19 15:03:05 +02:00
parent b602123a5a
commit 665174fdbb
1569 changed files with 30495 additions and 30309 deletions

View File

@ -23,169 +23,35 @@ const int kNumberCodes = kMaxMediaPacketsTest * (kMaxMediaPacketsTest + 1) / 2;
// loss expected for each code size up to:
// (kMaxMediaPacketsTest, kMaxMediaPacketsTest).
const float kMaxResidualLossRandomMask[kNumberCodes] = {
0.009463f,
0.022436f,
0.007376f,
0.033895f,
0.012423f,
0.004644f,
0.043438f,
0.019937f,
0.008820f,
0.003438f,
0.051282f,
0.025795f,
0.012872f,
0.006458f,
0.003195f,
0.057728f,
0.032146f,
0.016708f,
0.009242f,
0.005054f,
0.003078f,
0.063050f,
0.037261f,
0.021767f,
0.012447f,
0.007099f,
0.003826f,
0.002504f,
0.067476f,
0.042348f,
0.026169f,
0.015695f,
0.009478f,
0.005887f,
0.003568f,
0.001689f,
0.071187f,
0.046575f,
0.031697f,
0.019797f,
0.012433f,
0.007027f,
0.004845f,
0.002777f,
0.001753f,
0.074326f,
0.050628f,
0.034978f,
0.021955f,
0.014821f,
0.009462f,
0.006393f,
0.004181f,
0.003105f,
0.001231f,
0.077008f,
0.054226f,
0.038407f,
0.026251f,
0.018634f,
0.011568f,
0.008130f,
0.004957f,
0.003334f,
0.002069f,
0.001304f,
0.079318f,
0.057180f,
0.041268f,
0.028842f,
0.020033f,
0.014061f,
0.009636f,
0.006411f,
0.004583f,
0.002817f,
0.001770f,
0.001258f
};
0.009463f, 0.022436f, 0.007376f, 0.033895f, 0.012423f, 0.004644f, 0.043438f,
0.019937f, 0.008820f, 0.003438f, 0.051282f, 0.025795f, 0.012872f, 0.006458f,
0.003195f, 0.057728f, 0.032146f, 0.016708f, 0.009242f, 0.005054f, 0.003078f,
0.063050f, 0.037261f, 0.021767f, 0.012447f, 0.007099f, 0.003826f, 0.002504f,
0.067476f, 0.042348f, 0.026169f, 0.015695f, 0.009478f, 0.005887f, 0.003568f,
0.001689f, 0.071187f, 0.046575f, 0.031697f, 0.019797f, 0.012433f, 0.007027f,
0.004845f, 0.002777f, 0.001753f, 0.074326f, 0.050628f, 0.034978f, 0.021955f,
0.014821f, 0.009462f, 0.006393f, 0.004181f, 0.003105f, 0.001231f, 0.077008f,
0.054226f, 0.038407f, 0.026251f, 0.018634f, 0.011568f, 0.008130f, 0.004957f,
0.003334f, 0.002069f, 0.001304f, 0.079318f, 0.057180f, 0.041268f, 0.028842f,
0.020033f, 0.014061f, 0.009636f, 0.006411f, 0.004583f, 0.002817f, 0.001770f,
0.001258f};
// For the bursty mask type: reference level for the maximum average residual
// loss expected for each code size up to:
// (kMaxMediaPacketsTestf, kMaxMediaPacketsTest).
const float kMaxResidualLossBurstyMask[kNumberCodes] = {
0.033236f,
0.053344f,
0.026616f,
0.064129f,
0.036589f,
0.021892f,
0.071055f,
0.043890f,
0.028009f,
0.018524f,
0.075968f,
0.049828f,
0.033288f,
0.022791f,
0.016088f,
0.079672f,
0.054586f,
0.037872f,
0.026679f,
0.019326f,
0.014293f,
0.082582f,
0.058719f,
0.042045f,
0.030504f,
0.022391f,
0.016894f,
0.012946f,
0.084935f,
0.062169f,
0.045620f,
0.033713f,
0.025570f,
0.019439f,
0.015121f,
0.011920f,
0.086881f,
0.065267f,
0.048721f,
0.037613f,
0.028278f,
0.022152f,
0.017314f,
0.013791f,
0.011130f,
0.088516f,
0.067911f,
0.051709f,
0.040819f,
0.030777f,
0.024547f,
0.019689f,
0.015877f,
0.012773f,
0.010516f,
0.089909f,
0.070332f,
0.054402f,
0.043210f,
0.034096f,
0.026625f,
0.021823f,
0.017648f,
0.014649f,
0.011982f,
0.010035f,
0.091109f,
0.072428f,
0.056775f,
0.045418f,
0.036679f,
0.028599f,
0.023693f,
0.019966f,
0.016603f,
0.013690f,
0.011359f,
0.009657f
};
0.033236f, 0.053344f, 0.026616f, 0.064129f, 0.036589f, 0.021892f, 0.071055f,
0.043890f, 0.028009f, 0.018524f, 0.075968f, 0.049828f, 0.033288f, 0.022791f,
0.016088f, 0.079672f, 0.054586f, 0.037872f, 0.026679f, 0.019326f, 0.014293f,
0.082582f, 0.058719f, 0.042045f, 0.030504f, 0.022391f, 0.016894f, 0.012946f,
0.084935f, 0.062169f, 0.045620f, 0.033713f, 0.025570f, 0.019439f, 0.015121f,
0.011920f, 0.086881f, 0.065267f, 0.048721f, 0.037613f, 0.028278f, 0.022152f,
0.017314f, 0.013791f, 0.011130f, 0.088516f, 0.067911f, 0.051709f, 0.040819f,
0.030777f, 0.024547f, 0.019689f, 0.015877f, 0.012773f, 0.010516f, 0.089909f,
0.070332f, 0.054402f, 0.043210f, 0.034096f, 0.026625f, 0.021823f, 0.017648f,
0.014649f, 0.011982f, 0.010035f, 0.091109f, 0.072428f, 0.056775f, 0.045418f,
0.036679f, 0.028599f, 0.023693f, 0.019966f, 0.016603f, 0.013690f, 0.011359f,
0.009657f};
} // namespace webrtc
#endif // MODULES_RTP_RTCP_TEST_TESTFEC_AVERAGE_RESIDUAL_LOSS_XOR_CODES_H_

View File

@ -252,8 +252,8 @@ void RunTest(bool use_flexfec) {
const uint32_t kMinPacketSize = 12;
const uint32_t kMaxPacketSize = static_cast<uint32_t>(
IP_PACKET_SIZE - 12 - 28 - fec->MaxPacketOverhead());
media_packet->length = random.Rand(kMinPacketSize,
kMaxPacketSize);
media_packet->length =
random.Rand(kMinPacketSize, kMaxPacketSize);
// Generate random values for the first 2 bytes.
media_packet->data[0] = random.Rand<uint8_t>();
@ -456,8 +456,8 @@ void RunTest(bool use_flexfec) {
} // loop over num_imp_packets
} // loop over FecPackets
} // loop over num_media_packets
} // loop over loss rates
} // loop over mask types
} // loop over loss rates
} // loop over mask types
// Have DecodeFec clear the recovered packet list.
fec->ResetState(&recovered_packet_list);

View File

@ -41,7 +41,7 @@
* (1) Random loss: Bernoulli process, characterized by the average loss rate.
* (2) Bursty loss: Markov chain (Gilbert-Elliot model), characterized by two
* parameters: average loss rate and average burst length.
*/
*/
#include <math.h>
@ -71,9 +71,9 @@ const int kNumStatesDistribution = 2 * kMaxMediaPacketsTest * kMaxGapSize + 1;
// The code type.
enum CodeType {
xor_random_code, // XOR with random mask type.
xor_bursty_code, // XOR with bursty mask type.
rs_code // Reed_solomon.
xor_random_code, // XOR with random mask type.
xor_bursty_code, // XOR with bursty mask type.
rs_code // Reed_solomon.
};
// The code size parameters.
@ -89,10 +89,7 @@ struct CodeSizeParams {
};
// The type of loss models.
enum LossModelType {
kRandomLossModel,
kBurstyLossModel
};
enum LossModelType { kRandomLossModel, kBurstyLossModel };
struct LossModel {
LossModelType loss_type;
@ -101,19 +98,19 @@ struct LossModel {
};
// Average loss rates.
const float kAverageLossRate[] = { 0.025f, 0.05f, 0.1f, 0.25f };
const float kAverageLossRate[] = {0.025f, 0.05f, 0.1f, 0.25f};
// Average burst lengths. The case of |kAverageBurstLength = 1.0| refers to
// the random model. Note that for the random (Bernoulli) model, the average
// burst length is determined by the average loss rate, i.e.,
// AverageBurstLength = 1 / (1 - AverageLossRate) for random model.
const float kAverageBurstLength[] = { 1.0f, 2.0f, 4.0f };
const float kAverageBurstLength[] = {1.0f, 2.0f, 4.0f};
// Total number of loss models: For each burst length case, there are
// a number of models corresponding to the loss rates.
const int kNumLossModels = (sizeof(kAverageBurstLength) /
sizeof(*kAverageBurstLength)) * (sizeof(kAverageLossRate) /
sizeof(*kAverageLossRate));
const int kNumLossModels =
(sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength)) *
(sizeof(kAverageLossRate) / sizeof(*kAverageLossRate));
// Thresholds on the average loss rate of the packet loss model, below which
// certain properties of the codes are expected.
@ -123,8 +120,8 @@ float loss_rate_lower_threshold = 0.025f;
// Set of thresholds on the expected average recovery rate, for each code type.
// These are global thresholds for now; in future version we may condition them
// on the code length/size and protection level.
const float kRecoveryRateXorRandom[3] = { 0.94f, 0.50f, 0.19f };
const float kRecoveryRateXorBursty[3] = { 0.90f, 0.54f, 0.22f };
const float kRecoveryRateXorRandom[3] = {0.94f, 0.50f, 0.19f};
const float kRecoveryRateXorBursty[3] = {0.90f, 0.54f, 0.22f};
// Metrics for a given FEC code; each code is defined by the code type
// (RS, XOR-random/bursty), and the code size parameters (k,m), where
@ -150,7 +147,7 @@ MetricsFecCode kMetricsReedSolomon[kNumberCodes];
class FecPacketMaskMetricsTest : public ::testing::Test {
protected:
FecPacketMaskMetricsTest() { }
FecPacketMaskMetricsTest() {}
int max_num_codes_;
LossModel loss_model_[kNumLossModels];
@ -251,10 +248,9 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
int tot_num_packets) {
// Loop over the loss models.
for (int k = 0; k < kNumLossModels; k++) {
double loss_rate = static_cast<double>(
loss_model_[k].average_loss_rate);
double burst_length = static_cast<double>(
loss_model_[k].average_burst_length);
double loss_rate = static_cast<double>(loss_model_[k].average_loss_rate);
double burst_length =
static_cast<double>(loss_model_[k].average_burst_length);
double result = 1.0;
if (loss_model_[k].loss_type == kRandomLossModel) {
for (int i = 0; i < tot_num_packets; i++) {
@ -279,7 +275,7 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
// Use stationary probability for first state/packet.
if (state[0] == 0) { // Received
result = (1.0 - loss_rate);
} else { // Lost
} else { // Lost
result = loss_rate;
}
@ -287,13 +283,13 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
for (int i = 1; i < tot_num_packets; i++) {
// Current state is received
if (state[i] == 0) {
if (state[i-1] == 0) {
result *= prob00; // Previous received, current received.
} else {
result *= prob10; // Previous lost, current received.
}
if (state[i - 1] == 0) {
result *= prob00; // Previous received, current received.
} else {
result *= prob10; // Previous lost, current received.
}
} else { // Current state is lost
if (state[i-1] == 0) {
if (state[i - 1] == 0) {
result *= prob01; // Previous received, current lost.
} else {
result *= prob11; // Previous lost, current lost.
@ -333,13 +329,12 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
for (int loss = 1; loss <= num_fec_packets; loss++) {
int index = gap_number * (2 * kMaxMediaPacketsTest) + loss;
residual_loss_gap += metrics.residual_loss_per_loss_gap[index];
tot_num_configs +=
code_params_[code_index].configuration_density[index];
tot_num_configs += code_params_[code_index].configuration_density[index];
}
// Normalize, to compare across code sizes.
if (tot_num_configs > 0) {
residual_loss_gap = residual_loss_gap /
static_cast<double>(tot_num_configs);
residual_loss_gap =
residual_loss_gap / static_cast<double>(tot_num_configs);
}
return residual_loss_gap;
}
@ -354,7 +349,7 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
metrics->recovery_rate_per_loss[loss] = 0.0;
int tot_num_configs = 0;
double arl = 0.0;
for (int gap = 0; gap < kMaxGapSize; gap ++) {
for (int gap = 0; gap < kMaxGapSize; gap++) {
int index = gap * (2 * kMaxMediaPacketsTest) + loss;
arl += metrics->residual_loss_per_loss_gap[index];
tot_num_configs +=
@ -366,7 +361,8 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
// Recovery rate for a given loss |loss| is 1 minus the scaled |arl|,
// where the scale factor is relative to code size/parameters.
double scaled_loss = static_cast<double>(loss * num_media_packets) /
double scaled_loss =
static_cast<double>(loss * num_media_packets) /
static_cast<double>(num_media_packets + num_fec_packets);
metrics->recovery_rate_per_loss[loss] = 1.0 - arl / scaled_loss;
}
@ -384,10 +380,9 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
// Compute the metrics for an FEC code, given by the code type |code_type|
// (XOR-random/ bursty or RS), and by the code index |code_index|
// (which containes the code size parameters/protection length).
void ComputeMetricsForCode(CodeType code_type,
int code_index) {
void ComputeMetricsForCode(CodeType code_type, int code_index) {
std::unique_ptr<double[]> prob_weight(new double[kNumLossModels]);
memset(prob_weight.get() , 0, sizeof(double) * kNumLossModels);
memset(prob_weight.get(), 0, sizeof(double) * kNumLossModels);
MetricsFecCode metrics_code;
SetMetricsZero(&metrics_code);
@ -395,7 +390,7 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
int num_fec_packets = code_params_[code_index].num_fec_packets;
int tot_num_packets = num_media_packets + num_fec_packets;
std::unique_ptr<uint8_t[]> state(new uint8_t[tot_num_packets]);
memset(state.get() , 0, tot_num_packets);
memset(state.get(), 0, tot_num_packets);
int num_loss_configurations = static_cast<int>(pow(2.0f, tot_num_packets));
// Loop over all loss configurations for the symbol sequence of length
@ -426,9 +421,9 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
if (bit_value == 1) {
state[j] = 1; // Lost state.
num_packets_lost++;
if (j < num_media_packets) {
num_media_packets_lost++;
}
if (j < num_media_packets) {
num_media_packets_lost++;
}
}
} // Done with loop over total number of packets.
assert(num_media_packets_lost <= num_media_packets);
@ -440,9 +435,8 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
// Compute the number of recovered packets.
int num_recovered_packets = 0;
if (code_type == xor_random_code || code_type == xor_bursty_code) {
num_recovered_packets = RecoveredMediaPackets(num_media_packets,
num_fec_packets,
state.get());
num_recovered_packets = RecoveredMediaPackets(
num_media_packets, num_fec_packets, state.get());
} else {
// For the RS code, we can either completely recover all the packets
// if the loss is less than or equal to the number of FEC packets,
@ -455,18 +449,17 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
assert(num_recovered_packets <= num_media_packets);
// Compute the residual loss. We only care about recovering media/source
// packets, so residual loss is based on lost/recovered media packets.
residual_loss = static_cast<double>(num_media_packets_lost -
num_recovered_packets);
residual_loss =
static_cast<double>(num_media_packets_lost - num_recovered_packets);
// Compute the probability weights for this configuration.
ComputeProbabilityWeight(prob_weight.get(),
state.get(),
ComputeProbabilityWeight(prob_weight.get(), state.get(),
tot_num_packets);
// Update the average and variance of the residual loss.
for (int k = 0; k < kNumLossModels; k++) {
metrics_code.average_residual_loss[k] += residual_loss *
prob_weight[k];
metrics_code.variance_residual_loss[k] += residual_loss *
metrics_code.average_residual_loss[k] +=
residual_loss * prob_weight[k];
metrics_code.variance_residual_loss[k] +=
residual_loss * residual_loss * prob_weight[k];
}
} // Done with processing for num_media_packets_lost >= 1.
// Update the distribution statistics.
@ -494,12 +487,12 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
metrics_code.average_residual_loss[k] /
static_cast<double>(tot_num_packets);
metrics_code.variance_residual_loss[k] =
metrics_code.variance_residual_loss[k] /
static_cast<double>(num_media_packets * num_media_packets);
metrics_code.variance_residual_loss[k] /
static_cast<double>(num_media_packets * num_media_packets);
metrics_code.variance_residual_loss[k] =
metrics_code.variance_residual_loss[k] -
(metrics_code.average_residual_loss[k] *
metrics_code.average_residual_loss[k]);
metrics_code.average_residual_loss[k]);
assert(metrics_code.variance_residual_loss[k] >= 0.0);
assert(metrics_code.average_residual_loss[k] > 0.0);
metrics_code.variance_residual_loss[k] =
@ -508,10 +501,8 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
// Compute marginal distribution as a function of loss parameter.
ComputeRecoveryRatePerLoss(&metrics_code,
num_media_packets,
num_fec_packets,
code_index);
ComputeRecoveryRatePerLoss(&metrics_code, num_media_packets,
num_fec_packets, code_index);
if (code_type == rs_code) {
CopyMetrics(&kMetricsReedSolomon[code_index], metrics_code);
} else if (code_type == xor_random_code) {
@ -523,24 +514,25 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
}
void WriteOutMetricsAllFecCodes() {
void WriteOutMetricsAllFecCodes() {
std::string filename = test::OutputPath() + "data_metrics_all_codes";
FILE* fp = fopen(filename.c_str(), "wb");
// Loop through codes up to |kMaxMediaPacketsTest|.
int code_index = 0;
for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
num_media_packets++) {
num_media_packets++) {
for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
num_fec_packets++) {
num_fec_packets++) {
fprintf(fp, "FOR CODE: (%d, %d) \n", num_media_packets,
num_fec_packets);
for (int k = 0; k < kNumLossModels; k++) {
float loss_rate = loss_model_[k].average_loss_rate;
float burst_length = loss_model_[k].average_burst_length;
fprintf(fp, "Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f"
fprintf(
fp,
"Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f"
" **** %.4f %.4f %.4f \n",
loss_rate,
burst_length,
loss_rate, burst_length,
100 * kMetricsReedSolomon[code_index].average_residual_loss[k],
100 * kMetricsXorRandom[code_index].average_residual_loss[k],
100 * kMetricsXorBursty[code_index].average_residual_loss[k],
@ -548,40 +540,27 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
kMetricsXorRandom[code_index].variance_residual_loss[k],
kMetricsXorBursty[code_index].variance_residual_loss[k]);
}
for (int gap = 0; gap < kGapSizeOutput; gap ++) {
double rs_residual_loss = ComputeResidualLossPerGap(
kMetricsReedSolomon[code_index],
gap,
num_fec_packets,
code_index);
for (int gap = 0; gap < kGapSizeOutput; gap++) {
double rs_residual_loss =
ComputeResidualLossPerGap(kMetricsReedSolomon[code_index], gap,
num_fec_packets, code_index);
double xor_random_residual_loss = ComputeResidualLossPerGap(
kMetricsXorRandom[code_index],
gap,
num_fec_packets,
code_index);
kMetricsXorRandom[code_index], gap, num_fec_packets, code_index);
double xor_bursty_residual_loss = ComputeResidualLossPerGap(
kMetricsXorBursty[code_index],
gap,
num_fec_packets,
code_index);
fprintf(fp, "Residual loss as a function of gap "
"%d: %.4f %.4f %.4f \n",
gap,
rs_residual_loss,
xor_random_residual_loss,
xor_bursty_residual_loss);
kMetricsXorBursty[code_index], gap, num_fec_packets, code_index);
fprintf(fp,
"Residual loss as a function of gap "
"%d: %.4f %.4f %.4f \n",
gap, rs_residual_loss, xor_random_residual_loss,
xor_bursty_residual_loss);
}
fprintf(fp, "Recovery rate as a function of loss number \n");
for (int loss = 1; loss <= num_media_packets + num_fec_packets;
loss ++) {
fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n",
loss,
kMetricsReedSolomon[code_index].
recovery_rate_per_loss[loss],
kMetricsXorRandom[code_index].
recovery_rate_per_loss[loss],
kMetricsXorBursty[code_index].
recovery_rate_per_loss[loss]);
loss++) {
fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n", loss,
kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss],
kMetricsXorRandom[code_index].recovery_rate_per_loss[loss],
kMetricsXorBursty[code_index].recovery_rate_per_loss[loss]);
}
fprintf(fp, "******************\n");
fprintf(fp, "\n");
@ -592,10 +571,9 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
void SetLossModels() {
int num_loss_rates = sizeof(kAverageLossRate) /
sizeof(*kAverageLossRate);
int num_burst_lengths = sizeof(kAverageBurstLength) /
sizeof(*kAverageBurstLength);
int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
int num_burst_lengths =
sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
int num_loss_models = 0;
for (int k = 0; k < num_burst_lengths; k++) {
for (int k2 = 0; k2 < num_loss_rates; k2++) {
@ -617,9 +595,9 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
void SetCodeParams() {
int code_index = 0;
for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
num_media_packets++) {
num_media_packets++) {
for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
num_fec_packets++) {
num_fec_packets++) {
code_params_[code_index].num_media_packets = num_media_packets;
code_params_[code_index].num_fec_packets = num_fec_packets;
code_params_[code_index].protection_level =
@ -646,8 +624,10 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
}
if (row_degree == 0) {
printf("Invalid mask: FEC packet has empty mask (does not protect "
"anything) %d %d %d \n", i, num_media_packets, num_fec_packets);
printf(
"Invalid mask: FEC packet has empty mask (does not protect "
"anything) %d %d %d \n",
i, num_media_packets, num_fec_packets);
return -1;
}
}
@ -660,8 +640,10 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
}
if (column_degree == 0) {
printf("Invalid mask: Media packet has no protection at all %d %d %d "
"\n", j, num_media_packets, num_fec_packets);
printf(
"Invalid mask: Media packet has no protection at all %d %d %d "
"\n",
j, num_media_packets, num_fec_packets);
return -1;
}
}
@ -696,8 +678,10 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
}
}
if (degree == num_fec_packets) {
printf("Invalid mask: Two media packets are have full degree "
"%d %d %d %d \n", j, j2, num_media_packets, num_fec_packets);
printf(
"Invalid mask: Two media packets are have full degree "
"%d %d %d %d \n",
j, j2, num_media_packets, num_fec_packets);
return -1;
}
}
@ -738,7 +722,7 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
static_cast<int>(internal::PacketMaskSize(num_media_packets));
internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
num_fec_packets++) {
num_fec_packets++) {
memset(packet_mask.get(), 0, num_media_packets * mask_bytes_fec_packet);
rtc::ArrayView<const uint8_t> mask =
mask_table.LookUp(num_media_packets, num_fec_packets);
@ -751,8 +735,7 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
return -1;
}
// Compute the metrics for this code/mask.
ComputeMetricsForCode(code_type,
code_index);
ComputeMetricsForCode(code_type, code_index);
code_index++;
}
}
@ -763,12 +746,11 @@ class FecPacketMaskMetricsTest : public ::testing::Test {
void ProcessRS(CodeType code_type) {
int code_index = 0;
for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
num_media_packets++) {
num_media_packets++) {
for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
num_fec_packets++) {
num_fec_packets++) {
// Compute the metrics for this code type.
ComputeMetricsForCode(code_type,
code_index);
ComputeMetricsForCode(code_type, code_index);
code_index++;
}
}
@ -801,10 +783,9 @@ TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) {
SetCodeParams();
ComputeMetricsAllCodes();
WriteOutMetricsAllFecCodes();
int num_loss_rates = sizeof(kAverageLossRate) /
sizeof(*kAverageLossRate);
int num_burst_lengths = sizeof(kAverageBurstLength) /
sizeof(*kAverageBurstLength);
int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
int num_burst_lengths =
sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
for (int code_index = 0; code_index < max_num_codes_; code_index++) {
double sum_residual_loss_random_mask_random_loss = 0.0;
double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
@ -822,7 +803,7 @@ TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) {
sum_residual_loss_random_mask_random_loss / num_loss_rates;
float average_residual_loss_bursty_mask_bursty_loss =
sum_residual_loss_bursty_mask_bursty_loss /
(num_loss_rates * (num_burst_lengths - 1));
(num_loss_rates * (num_burst_lengths - 1));
const float ref_random_mask = kMaxResidualLossRandomMask[code_index];
const float ref_bursty_mask = kMaxResidualLossBurstyMask[code_index];
EXPECT_LE(average_residual_loss_random_mask_random_loss, ref_random_mask);
@ -844,16 +825,16 @@ TEST_F(FecPacketMaskMetricsTest, FecXorVsRS) {
float loss_rate = loss_model_[k].average_loss_rate;
float protection_level = code_params_[code_index].protection_level;
// Under these conditions we expect XOR to not be better than RS.
if (loss_model_[k].loss_type == kRandomLossModel &&
loss_rate <= protection_level) {
if (loss_model_[k].loss_type == kRandomLossModel &&
loss_rate <= protection_level) {
EXPECT_GE(kMetricsXorRandom[code_index].average_residual_loss[k],
kMetricsReedSolomon[code_index].average_residual_loss[k]);
EXPECT_GE(kMetricsXorBursty[code_index].average_residual_loss[k],
kMetricsReedSolomon[code_index].average_residual_loss[k]);
}
// TODO(marpan): There are some cases (for high loss rates and/or
// burst loss models) where XOR is better than RS. Is there some pattern
// we can identify and enforce as a constraint?
}
// TODO(marpan): There are some cases (for high loss rates and/or
// burst loss models) where XOR is better than RS. Is there some pattern
// we can identify and enforce as a constraint?
}
}
}
@ -868,25 +849,24 @@ TEST_F(FecPacketMaskMetricsTest, FecTrendXorVsRsLossRate) {
// TODO(marpan): Examine this further to see if the condition can be strictly
// satisfied (i.e., scale = 1.0) for all codes with different/better masks.
double scale = 0.90;
int num_loss_rates = sizeof(kAverageLossRate) /
sizeof(*kAverageLossRate);
int num_burst_lengths = sizeof(kAverageBurstLength) /
sizeof(*kAverageBurstLength);
int num_loss_rates = sizeof(kAverageLossRate) / sizeof(*kAverageLossRate);
int num_burst_lengths =
sizeof(kAverageBurstLength) / sizeof(*kAverageBurstLength);
for (int code_index = 0; code_index < max_num_codes_; code_index++) {
for (int i = 0; i < num_burst_lengths; i++) {
for (int j = 0; j < num_loss_rates - 1; j++) {
int k = num_loss_rates * i + j;
// For XOR random.
if (kMetricsXorRandom[code_index].average_residual_loss[k] >
kMetricsReedSolomon[code_index].average_residual_loss[k]) {
kMetricsReedSolomon[code_index].average_residual_loss[k]) {
double diff_rs_xor_random_loss1 =
(kMetricsXorRandom[code_index].average_residual_loss[k] -
kMetricsReedSolomon[code_index].average_residual_loss[k]) /
kMetricsXorRandom[code_index].average_residual_loss[k];
kMetricsXorRandom[code_index].average_residual_loss[k];
double diff_rs_xor_random_loss2 =
(kMetricsXorRandom[code_index].average_residual_loss[k+1] -
kMetricsReedSolomon[code_index].average_residual_loss[k+1]) /
kMetricsXorRandom[code_index].average_residual_loss[k+1];
(kMetricsXorRandom[code_index].average_residual_loss[k + 1] -
kMetricsReedSolomon[code_index].average_residual_loss[k + 1]) /
kMetricsXorRandom[code_index].average_residual_loss[k + 1];
EXPECT_GE(diff_rs_xor_random_loss1, scale * diff_rs_xor_random_loss2);
}
// TODO(marpan): Investigate the cases for the bursty mask where
@ -909,11 +889,11 @@ TEST_F(FecPacketMaskMetricsTest, FecBehaviorViaProtectionLevelAndLength) {
for (int code_index1 = 0; code_index1 < max_num_codes_; code_index1++) {
float protection_level1 = code_params_[code_index1].protection_level;
int length1 = code_params_[code_index1].num_media_packets +
code_params_[code_index1].num_fec_packets;
code_params_[code_index1].num_fec_packets;
for (int code_index2 = 0; code_index2 < max_num_codes_; code_index2++) {
float protection_level2 = code_params_[code_index2].protection_level;
int length2 = code_params_[code_index2].num_media_packets +
code_params_[code_index2].num_fec_packets;
code_params_[code_index2].num_fec_packets;
// Codes with higher protection are more efficient, conditioned on the
// length of the code (higher protection but shorter length codes are
// generally not more efficient). For two codes with equal protection,
@ -959,11 +939,9 @@ TEST_F(FecPacketMaskMetricsTest, FecVarianceBehaviorXorVsRs) {
double scale = 0.95;
for (int code_index = 0; code_index < max_num_codes_; code_index++) {
for (int k = 0; k < kNumLossModels; k++) {
EXPECT_LE(scale *
kMetricsXorRandom[code_index].variance_residual_loss[k],
EXPECT_LE(scale * kMetricsXorRandom[code_index].variance_residual_loss[k],
kMetricsReedSolomon[code_index].variance_residual_loss[k]);
EXPECT_LE(scale *
kMetricsXorBursty[code_index].variance_residual_loss[k],
EXPECT_LE(scale * kMetricsXorBursty[code_index].variance_residual_loss[k],
kMetricsReedSolomon[code_index].variance_residual_loss[k]);
}
}
@ -979,8 +957,8 @@ TEST_F(FecPacketMaskMetricsTest, FecXorBurstyPerfectRecoveryConsecutiveLoss) {
int num_fec_packets = code_params_[code_index].num_fec_packets;
for (int loss = 1; loss <= num_fec_packets; loss++) {
int index = loss; // |gap| is zero.
EXPECT_EQ(kMetricsXorBursty[code_index].
residual_loss_per_loss_gap[index], 0.0);
EXPECT_EQ(kMetricsXorBursty[code_index].residual_loss_per_loss_gap[index],
0.0);
}
}
}
@ -1036,42 +1014,46 @@ TEST_F(FecPacketMaskMetricsTest, FecRecoveryRateUnderLossConditions) {
// Perfect recovery (|recovery_rate_per_loss| == 1) is expected for
// |loss_number| = 1, for all codes.
int loss_number = 1;
EXPECT_EQ(kMetricsReedSolomon[code_index].
recovery_rate_per_loss[loss_number], 1.0);
EXPECT_EQ(kMetricsXorRandom[code_index].
recovery_rate_per_loss[loss_number], 1.0);
EXPECT_EQ(kMetricsXorBursty[code_index].
recovery_rate_per_loss[loss_number], 1.0);
EXPECT_EQ(
kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1.0);
EXPECT_EQ(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
1.0);
EXPECT_EQ(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
1.0);
// For |loss_number| = |num_fec_packets| / 2, we expect the following:
// Perfect recovery for RS, and recovery for XOR above the threshold.
loss_number = num_fec_packets / 2 > 0 ? num_fec_packets / 2 : 1;
EXPECT_EQ(kMetricsReedSolomon[code_index].
recovery_rate_per_loss[loss_number], 1.0);
EXPECT_GE(kMetricsXorRandom[code_index].
recovery_rate_per_loss[loss_number], kRecoveryRateXorRandom[0]);
EXPECT_GE(kMetricsXorBursty[code_index].
recovery_rate_per_loss[loss_number], kRecoveryRateXorBursty[0]);
EXPECT_EQ(
kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1.0);
EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorRandom[0]);
EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorBursty[0]);
// For |loss_number| = |num_fec_packets|, we expect the following:
// Perfect recovery for RS, and recovery for XOR above the threshold.
loss_number = num_fec_packets;
EXPECT_EQ(kMetricsReedSolomon[code_index].
recovery_rate_per_loss[loss_number], 1.0);
EXPECT_GE(kMetricsXorRandom[code_index].
recovery_rate_per_loss[loss_number], kRecoveryRateXorRandom[1]);
EXPECT_GE(kMetricsXorBursty[code_index].
recovery_rate_per_loss[loss_number], kRecoveryRateXorBursty[1]);
EXPECT_EQ(
kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
1.0);
EXPECT_GE(kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorRandom[1]);
EXPECT_GE(kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorBursty[1]);
// For |loss_number| = |num_fec_packets| + 1, we expect the following:
// Zero recovery for RS, but non-zero recovery for XOR.
if (num_fec_packets > 1 && num_media_packets > 2) {
loss_number = num_fec_packets + 1;
EXPECT_EQ(kMetricsReedSolomon[code_index].
recovery_rate_per_loss[loss_number], 0.0);
EXPECT_GE(kMetricsXorRandom[code_index].
recovery_rate_per_loss[loss_number],
kRecoveryRateXorRandom[2]);
EXPECT_GE(kMetricsXorBursty[code_index].
recovery_rate_per_loss[loss_number],
kRecoveryRateXorBursty[2]);
loss_number = num_fec_packets + 1;
EXPECT_EQ(
kMetricsReedSolomon[code_index].recovery_rate_per_loss[loss_number],
0.0);
EXPECT_GE(
kMetricsXorRandom[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorRandom[2]);
EXPECT_GE(
kMetricsXorBursty[code_index].recovery_rate_per_loss[loss_number],
kRecoveryRateXorBursty[2]);
}
}
}