Revert "Implement H264 simulcast support and generalize SimulcastEncoderAdapter use for H264 & VP8."
This reverts commit 07efe436c9002e139845f62486e3ee4e29f0d85b. Reason for revert: Breaks downstream project. cricket::GetSimulcastConfig method signature has been updated. I think you can get away with a default value for temporal_layers_supported (and then you can remove it after a few days when projects will be updated). Original change's description: > Implement H264 simulcast support and generalize SimulcastEncoderAdapter use for H264 & VP8. > > * Move SimulcastEncoderAdapter out under modules/video_coding > * Move SimulcastRateAllocator back out to modules/video_coding/utility > * Move TemporalLayers and ScreenshareLayers to modules/video_coding/utility > * Move any VP8 specific code - such as temporal layer bitrate budgeting - > under codec type dependent conditionals. > * Plumb the simulcast index for H264 in the codec specific and RTP format data structures. > > Bug: webrtc:5840 > Change-Id: Ieced8a00e38f273c1a6cfd0f5431a87d07b8f44e > Reviewed-on: https://webrtc-review.googlesource.com/64100 > Commit-Queue: Harald Alvestrand <hta@webrtc.org> > Reviewed-by: Stefan Holmer <stefan@webrtc.org> > Reviewed-by: Erik Språng <sprang@webrtc.org> > Cr-Commit-Position: refs/heads/master@{#23705} TBR=sprang@webrtc.org,stefan@webrtc.org,mflodman@webrtc.org,hta@webrtc.org,sergio.garcia.murillo@gmail.com,titovartem@webrtc.org,agouaillard@gmail.com Change-Id: Ic9d3b1eeaf195bb5ec2063954421f5e77866d663 No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: webrtc:5840 Reviewed-on: https://webrtc-review.googlesource.com/84760 Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23710}
This commit is contained in:
committed by
Commit Bot
parent
f341f3feb5
commit
6f440ed5b5
@ -1,244 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "common_types.h" // NOLINT(build/include)
|
||||
#include "rtc_base/checks.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
SimulcastRateAllocator::SimulcastRateAllocator(const VideoCodec& codec)
|
||||
: codec_(codec) {}
|
||||
|
||||
VideoBitrateAllocation SimulcastRateAllocator::GetAllocation(
|
||||
uint32_t total_bitrate_bps,
|
||||
uint32_t framerate) {
|
||||
VideoBitrateAllocation allocated_bitrates_bps;
|
||||
DistributeAllocationToSimulcastLayers(total_bitrate_bps,
|
||||
&allocated_bitrates_bps);
|
||||
DistributeAllocationToTemporalLayers(framerate, &allocated_bitrates_bps);
|
||||
return allocated_bitrates_bps;
|
||||
}
|
||||
|
||||
void SimulcastRateAllocator::DistributeAllocationToSimulcastLayers(
|
||||
uint32_t total_bitrate_bps,
|
||||
VideoBitrateAllocation* allocated_bitrates_bps) const {
|
||||
uint32_t left_to_allocate = total_bitrate_bps;
|
||||
if (codec_.maxBitrate && codec_.maxBitrate * 1000 < left_to_allocate)
|
||||
left_to_allocate = codec_.maxBitrate * 1000;
|
||||
|
||||
if (codec_.numberOfSimulcastStreams == 0) {
|
||||
// No simulcast, just set the target as this has been capped already.
|
||||
if (codec_.active) {
|
||||
allocated_bitrates_bps->SetBitrate(
|
||||
0, 0, std::max(codec_.minBitrate * 1000, left_to_allocate));
|
||||
}
|
||||
return;
|
||||
}
|
||||
// Find the first active layer. We don't allocate to inactive layers.
|
||||
size_t active_layer = 0;
|
||||
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
|
||||
if (codec_.simulcastStream[active_layer].active) {
|
||||
// Found the first active layer.
|
||||
break;
|
||||
}
|
||||
}
|
||||
// All streams could be inactive, and nothing more to do.
|
||||
if (active_layer == codec_.numberOfSimulcastStreams) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Always allocate enough bitrate for the minimum bitrate of the first
|
||||
// active layer. Suspending below min bitrate is controlled outside the
|
||||
// codec implementation and is not overridden by this.
|
||||
left_to_allocate = std::max(
|
||||
codec_.simulcastStream[active_layer].minBitrate * 1000, left_to_allocate);
|
||||
|
||||
// Begin by allocating bitrate to simulcast streams, putting all bitrate in
|
||||
// temporal layer 0. We'll then distribute this bitrate, across potential
|
||||
// temporal layers, when stream allocation is done.
|
||||
|
||||
size_t top_active_layer = active_layer;
|
||||
// Allocate up to the target bitrate for each active simulcast layer.
|
||||
for (; active_layer < codec_.numberOfSimulcastStreams; ++active_layer) {
|
||||
const SimulcastStream& stream = codec_.simulcastStream[active_layer];
|
||||
if (!stream.active) {
|
||||
continue;
|
||||
}
|
||||
// If we can't allocate to the current layer we can't allocate to higher
|
||||
// layers because they require a higher minimum bitrate.
|
||||
if (left_to_allocate < stream.minBitrate * 1000) {
|
||||
break;
|
||||
}
|
||||
// We are allocating to this layer so it is the current active allocation.
|
||||
top_active_layer = active_layer;
|
||||
uint32_t allocation =
|
||||
std::min(left_to_allocate, stream.targetBitrate * 1000);
|
||||
allocated_bitrates_bps->SetBitrate(active_layer, 0, allocation);
|
||||
RTC_DCHECK_LE(allocation, left_to_allocate);
|
||||
left_to_allocate -= allocation;
|
||||
}
|
||||
|
||||
// Next, try allocate remaining bitrate, up to max bitrate, in top active
|
||||
// stream.
|
||||
// TODO(sprang): Allocate up to max bitrate for all layers once we have a
|
||||
// better idea of possible performance implications.
|
||||
if (left_to_allocate > 0) {
|
||||
const SimulcastStream& stream = codec_.simulcastStream[top_active_layer];
|
||||
uint32_t bitrate_bps =
|
||||
allocated_bitrates_bps->GetSpatialLayerSum(top_active_layer);
|
||||
uint32_t allocation =
|
||||
std::min(left_to_allocate, stream.maxBitrate * 1000 - bitrate_bps);
|
||||
bitrate_bps += allocation;
|
||||
RTC_DCHECK_LE(allocation, left_to_allocate);
|
||||
left_to_allocate -= allocation;
|
||||
allocated_bitrates_bps->SetBitrate(top_active_layer, 0, bitrate_bps);
|
||||
}
|
||||
}
|
||||
|
||||
void SimulcastRateAllocator::DistributeAllocationToTemporalLayers(
|
||||
uint32_t framerate,
|
||||
VideoBitrateAllocation* allocated_bitrates_bps) const {
|
||||
const int num_spatial_streams =
|
||||
std::max(1, static_cast<int>(codec_.numberOfSimulcastStreams));
|
||||
|
||||
// Finally, distribute the bitrate for the simulcast streams across the
|
||||
// available temporal layers.
|
||||
for (int simulcast_id = 0; simulcast_id < num_spatial_streams;
|
||||
++simulcast_id) {
|
||||
uint32_t target_bitrate_kbps =
|
||||
allocated_bitrates_bps->GetBitrate(simulcast_id, 0) / 1000;
|
||||
if (target_bitrate_kbps == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const uint32_t expected_allocated_bitrate_kbps = target_bitrate_kbps;
|
||||
RTC_DCHECK_EQ(
|
||||
target_bitrate_kbps,
|
||||
allocated_bitrates_bps->GetSpatialLayerSum(simulcast_id) / 1000);
|
||||
const int num_temporal_streams = NumTemporalStreams(simulcast_id);
|
||||
uint32_t max_bitrate_kbps;
|
||||
// Legacy temporal-layered only screenshare, or simulcast screenshare
|
||||
// with legacy mode for simulcast stream 0.
|
||||
const bool conference_screenshare_mode =
|
||||
codec_.mode == VideoCodecMode::kScreensharing &&
|
||||
codec_.targetBitrate > 0 &&
|
||||
((num_spatial_streams == 1 && num_temporal_streams == 2) || // Legacy.
|
||||
(num_spatial_streams > 1 && simulcast_id == 0)); // Simulcast.
|
||||
if (conference_screenshare_mode) {
|
||||
// TODO(holmer): This is a "temporary" hack for screensharing, where we
|
||||
// interpret the startBitrate as the encoder target bitrate. This is
|
||||
// to allow for a different max bitrate, so if the codec can't meet
|
||||
// the target we still allow it to overshoot up to the max before dropping
|
||||
// frames. This hack should be improved.
|
||||
int tl0_bitrate = std::min(codec_.targetBitrate, target_bitrate_kbps);
|
||||
max_bitrate_kbps = std::min(codec_.maxBitrate, target_bitrate_kbps);
|
||||
target_bitrate_kbps = tl0_bitrate;
|
||||
} else if (num_spatial_streams == 1) {
|
||||
max_bitrate_kbps = codec_.maxBitrate;
|
||||
} else {
|
||||
max_bitrate_kbps = codec_.simulcastStream[simulcast_id].maxBitrate;
|
||||
}
|
||||
|
||||
std::vector<uint32_t> tl_allocation;
|
||||
if (num_temporal_streams == 1) {
|
||||
tl_allocation.push_back(target_bitrate_kbps);
|
||||
} else {
|
||||
if (conference_screenshare_mode) {
|
||||
tl_allocation = ScreenshareTemporalLayerAllocation(
|
||||
target_bitrate_kbps, max_bitrate_kbps, framerate, simulcast_id);
|
||||
} else {
|
||||
tl_allocation = DefaultTemporalLayerAllocation(
|
||||
target_bitrate_kbps, max_bitrate_kbps, framerate, simulcast_id);
|
||||
}
|
||||
}
|
||||
RTC_DCHECK_GT(tl_allocation.size(), 0);
|
||||
RTC_DCHECK_LE(tl_allocation.size(), num_temporal_streams);
|
||||
|
||||
uint64_t tl_allocation_sum_kbps = 0;
|
||||
for (size_t tl_index = 0; tl_index < tl_allocation.size(); ++tl_index) {
|
||||
uint32_t layer_rate_kbps = tl_allocation[tl_index];
|
||||
if (layer_rate_kbps > 0) {
|
||||
allocated_bitrates_bps->SetBitrate(simulcast_id, tl_index,
|
||||
layer_rate_kbps * 1000);
|
||||
}
|
||||
tl_allocation_sum_kbps += layer_rate_kbps;
|
||||
}
|
||||
RTC_DCHECK_LE(tl_allocation_sum_kbps, expected_allocated_bitrate_kbps);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<uint32_t> SimulcastRateAllocator::DefaultTemporalLayerAllocation(
|
||||
int bitrate_kbps,
|
||||
int max_bitrate_kbps,
|
||||
int framerate,
|
||||
int simulcast_id) const {
|
||||
const size_t num_temporal_layers = NumTemporalStreams(simulcast_id);
|
||||
std::vector<uint32_t> bitrates;
|
||||
for (size_t i = 0; i < num_temporal_layers; ++i) {
|
||||
float layer_bitrate =
|
||||
bitrate_kbps * kLayerRateAllocation[num_temporal_layers - 1][i];
|
||||
bitrates.push_back(static_cast<uint32_t>(layer_bitrate + 0.5));
|
||||
}
|
||||
|
||||
// Allocation table is of aggregates, transform to individual rates.
|
||||
uint32_t sum = 0;
|
||||
for (size_t i = 0; i < num_temporal_layers; ++i) {
|
||||
uint32_t layer_bitrate = bitrates[i];
|
||||
RTC_DCHECK_LE(sum, bitrates[i]);
|
||||
bitrates[i] -= sum;
|
||||
sum = layer_bitrate;
|
||||
|
||||
if (sum >= static_cast<uint32_t>(bitrate_kbps)) {
|
||||
// Sum adds up; any subsequent layers will be 0.
|
||||
bitrates.resize(i + 1);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return bitrates;
|
||||
}
|
||||
|
||||
std::vector<uint32_t>
|
||||
SimulcastRateAllocator::ScreenshareTemporalLayerAllocation(
|
||||
int bitrate_kbps,
|
||||
int max_bitrate_kbps,
|
||||
int framerate,
|
||||
int simulcast_id) const {
|
||||
if (simulcast_id > 0) {
|
||||
return DefaultTemporalLayerAllocation(bitrate_kbps, max_bitrate_kbps,
|
||||
framerate, simulcast_id);
|
||||
}
|
||||
std::vector<uint32_t> allocation;
|
||||
allocation.push_back(bitrate_kbps);
|
||||
if (max_bitrate_kbps > bitrate_kbps)
|
||||
allocation.push_back(max_bitrate_kbps - bitrate_kbps);
|
||||
return allocation;
|
||||
}
|
||||
|
||||
const VideoCodec& webrtc::SimulcastRateAllocator::GetCodec() const {
|
||||
return codec_;
|
||||
}
|
||||
|
||||
int SimulcastRateAllocator::NumTemporalStreams(size_t simulcast_id) const {
|
||||
return std::max<uint8_t>(
|
||||
1,
|
||||
codec_.codecType == kVideoCodecVP8 && codec_.numberOfSimulcastStreams == 0
|
||||
? codec_.VP8().numberOfTemporalLayers
|
||||
: codec_.simulcastStream[simulcast_id].numberOfTemporalLayers);
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
@ -1,70 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef MODULES_VIDEO_CODING_UTILITY_SIMULCAST_RATE_ALLOCATOR_H_
|
||||
#define MODULES_VIDEO_CODING_UTILITY_SIMULCAST_RATE_ALLOCATOR_H_
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "api/video_codecs/video_encoder.h"
|
||||
#include "common_types.h" // NOLINT(build/include)
|
||||
#include "common_video/include/video_bitrate_allocator.h"
|
||||
#include "rtc_base/constructormagic.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
// Ratio allocation between temporal streams:
|
||||
// Values as required for the VP8 codec (accumulating).
|
||||
static const float
|
||||
kLayerRateAllocation[kMaxSimulcastStreams][kMaxTemporalStreams] = {
|
||||
{1.0f, 1.0f, 1.0f, 1.0f}, // 1 layer
|
||||
{0.6f, 1.0f, 1.0f, 1.0f}, // 2 layers {60%, 40%}
|
||||
{0.4f, 0.6f, 1.0f, 1.0f}, // 3 layers {40%, 20%, 40%}
|
||||
{0.25f, 0.4f, 0.6f, 1.0f} // 4 layers {25%, 15%, 20%, 40%}
|
||||
};
|
||||
|
||||
class SimulcastRateAllocator : public VideoBitrateAllocator {
|
||||
public:
|
||||
explicit SimulcastRateAllocator(const VideoCodec& codec);
|
||||
|
||||
VideoBitrateAllocation GetAllocation(uint32_t total_bitrate_bps,
|
||||
uint32_t framerate) override;
|
||||
const VideoCodec& GetCodec() const;
|
||||
|
||||
private:
|
||||
void DistributeAllocationToSimulcastLayers(
|
||||
uint32_t total_bitrate_bps,
|
||||
VideoBitrateAllocation* allocated_bitrates_bps) const;
|
||||
void DistributeAllocationToTemporalLayers(
|
||||
uint32_t framerate,
|
||||
VideoBitrateAllocation* allocated_bitrates_bps) const;
|
||||
std::vector<uint32_t> DefaultTemporalLayerAllocation(int bitrate_kbps,
|
||||
int max_bitrate_kbps,
|
||||
int framerate,
|
||||
int simulcast_id) const;
|
||||
std::vector<uint32_t> ScreenshareTemporalLayerAllocation(
|
||||
int bitrate_kbps,
|
||||
int max_bitrate_kbps,
|
||||
int framerate,
|
||||
int simulcast_id) const;
|
||||
int NumTemporalStreams(size_t simulcast_id) const;
|
||||
|
||||
const VideoCodec codec_;
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(SimulcastRateAllocator);
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // MODULES_VIDEO_CODING_UTILITY_SIMULCAST_RATE_ALLOCATOR_H_
|
||||
@ -8,15 +8,13 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
|
||||
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
|
||||
|
||||
#include <limits>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "modules/video_coding/codecs/vp8/temporal_layers.h"
|
||||
|
||||
#include "test/gmock.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
|
||||
@ -1,829 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/video_coding/utility/simulcast_test_fixture_impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "api/video_codecs/sdp_video_format.h"
|
||||
#include "common_video/include/video_frame.h"
|
||||
#include "common_video/libyuv/include/webrtc_libyuv.h"
|
||||
#include "modules/video_coding/include/video_coding_defines.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
using ::testing::_;
|
||||
using ::testing::AllOf;
|
||||
using ::testing::Field;
|
||||
using ::testing::Return;
|
||||
|
||||
namespace webrtc {
|
||||
namespace test {
|
||||
|
||||
namespace {
|
||||
|
||||
const int kDefaultWidth = 1280;
|
||||
const int kDefaultHeight = 720;
|
||||
const int kNumberOfSimulcastStreams = 3;
|
||||
const int kColorY = 66;
|
||||
const int kColorU = 22;
|
||||
const int kColorV = 33;
|
||||
const int kMaxBitrates[kNumberOfSimulcastStreams] = {150, 600, 1200};
|
||||
const int kMinBitrates[kNumberOfSimulcastStreams] = {50, 150, 600};
|
||||
const int kTargetBitrates[kNumberOfSimulcastStreams] = {100, 450, 1000};
|
||||
const int kDefaultTemporalLayerProfile[3] = {3, 3, 3};
|
||||
const int kNoTemporalLayerProfile[3] = {0, 0, 0};
|
||||
|
||||
template <typename T>
|
||||
void SetExpectedValues3(T value0, T value1, T value2, T* expected_values) {
|
||||
expected_values[0] = value0;
|
||||
expected_values[1] = value1;
|
||||
expected_values[2] = value2;
|
||||
}
|
||||
|
||||
enum PlaneType {
|
||||
kYPlane = 0,
|
||||
kUPlane = 1,
|
||||
kVPlane = 2,
|
||||
kNumOfPlanes = 3,
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
class SimulcastTestFixtureImpl::TestEncodedImageCallback
|
||||
: public EncodedImageCallback {
|
||||
public:
|
||||
TestEncodedImageCallback() {
|
||||
memset(temporal_layer_, -1, sizeof(temporal_layer_));
|
||||
memset(layer_sync_, false, sizeof(layer_sync_));
|
||||
}
|
||||
|
||||
~TestEncodedImageCallback() {
|
||||
delete[] encoded_key_frame_._buffer;
|
||||
delete[] encoded_frame_._buffer;
|
||||
}
|
||||
|
||||
virtual Result OnEncodedImage(const EncodedImage& encoded_image,
|
||||
const CodecSpecificInfo* codec_specific_info,
|
||||
const RTPFragmentationHeader* fragmentation) {
|
||||
uint16_t simulcast_idx = 0;
|
||||
bool is_vp8 = (codec_specific_info->codecType == kVideoCodecVP8);
|
||||
if (is_vp8) {
|
||||
simulcast_idx = codec_specific_info->codecSpecific.VP8.simulcastIdx;
|
||||
} else {
|
||||
simulcast_idx = codec_specific_info->codecSpecific.H264.simulcast_idx;
|
||||
}
|
||||
// Only store the base layer.
|
||||
if (simulcast_idx) {
|
||||
if (encoded_image._frameType == kVideoFrameKey) {
|
||||
delete[] encoded_key_frame_._buffer;
|
||||
encoded_key_frame_._buffer = new uint8_t[encoded_image._size];
|
||||
encoded_key_frame_._size = encoded_image._size;
|
||||
encoded_key_frame_._length = encoded_image._length;
|
||||
encoded_key_frame_._frameType = kVideoFrameKey;
|
||||
encoded_key_frame_._completeFrame = encoded_image._completeFrame;
|
||||
memcpy(encoded_key_frame_._buffer, encoded_image._buffer,
|
||||
encoded_image._length);
|
||||
} else {
|
||||
delete[] encoded_frame_._buffer;
|
||||
encoded_frame_._buffer = new uint8_t[encoded_image._size];
|
||||
encoded_frame_._size = encoded_image._size;
|
||||
encoded_frame_._length = encoded_image._length;
|
||||
memcpy(encoded_frame_._buffer, encoded_image._buffer,
|
||||
encoded_image._length);
|
||||
}
|
||||
}
|
||||
if (is_vp8) {
|
||||
layer_sync_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
|
||||
codec_specific_info->codecSpecific.VP8.layerSync;
|
||||
temporal_layer_[codec_specific_info->codecSpecific.VP8.simulcastIdx] =
|
||||
codec_specific_info->codecSpecific.VP8.temporalIdx;
|
||||
}
|
||||
return Result(Result::OK, encoded_image._timeStamp);
|
||||
}
|
||||
// This method only makes sense for VP8.
|
||||
void GetLastEncodedFrameInfo(int* temporal_layer,
|
||||
bool* layer_sync,
|
||||
int stream) {
|
||||
*temporal_layer = temporal_layer_[stream];
|
||||
*layer_sync = layer_sync_[stream];
|
||||
}
|
||||
void GetLastEncodedKeyFrame(EncodedImage* encoded_key_frame) {
|
||||
*encoded_key_frame = encoded_key_frame_;
|
||||
}
|
||||
void GetLastEncodedFrame(EncodedImage* encoded_frame) {
|
||||
*encoded_frame = encoded_frame_;
|
||||
}
|
||||
|
||||
private:
|
||||
EncodedImage encoded_key_frame_;
|
||||
EncodedImage encoded_frame_;
|
||||
int temporal_layer_[kNumberOfSimulcastStreams];
|
||||
bool layer_sync_[kNumberOfSimulcastStreams];
|
||||
};
|
||||
|
||||
class SimulcastTestFixtureImpl::TestDecodedImageCallback
|
||||
: public DecodedImageCallback {
|
||||
public:
|
||||
TestDecodedImageCallback() : decoded_frames_(0) {}
|
||||
int32_t Decoded(VideoFrame& decoded_image) override {
|
||||
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
|
||||
decoded_image.video_frame_buffer()->ToI420();
|
||||
for (int i = 0; i < decoded_image.width(); ++i) {
|
||||
EXPECT_NEAR(kColorY, i420_buffer->DataY()[i], 1);
|
||||
}
|
||||
|
||||
// TODO(mikhal): Verify the difference between U,V and the original.
|
||||
for (int i = 0; i < i420_buffer->ChromaWidth(); ++i) {
|
||||
EXPECT_NEAR(kColorU, i420_buffer->DataU()[i], 4);
|
||||
EXPECT_NEAR(kColorV, i420_buffer->DataV()[i], 4);
|
||||
}
|
||||
decoded_frames_++;
|
||||
return 0;
|
||||
}
|
||||
int32_t Decoded(VideoFrame& decoded_image, int64_t decode_time_ms) override {
|
||||
RTC_NOTREACHED();
|
||||
return -1;
|
||||
}
|
||||
void Decoded(VideoFrame& decoded_image,
|
||||
absl::optional<int32_t> decode_time_ms,
|
||||
absl::optional<uint8_t> qp) override {
|
||||
Decoded(decoded_image);
|
||||
}
|
||||
int DecodedFrames() { return decoded_frames_; }
|
||||
|
||||
private:
|
||||
int decoded_frames_;
|
||||
};
|
||||
|
||||
namespace {
|
||||
|
||||
void SetPlane(uint8_t* data, uint8_t value, int width, int height, int stride) {
|
||||
for (int i = 0; i < height; i++, data += stride) {
|
||||
// Setting allocated area to zero - setting only image size to
|
||||
// requested values - will make it easier to distinguish between image
|
||||
// size and frame size (accounting for stride).
|
||||
memset(data, value, width);
|
||||
memset(data + width, 0, stride - width);
|
||||
}
|
||||
}
|
||||
|
||||
// Fills in an I420Buffer from |plane_colors|.
|
||||
void CreateImage(const rtc::scoped_refptr<I420Buffer>& buffer,
|
||||
int plane_colors[kNumOfPlanes]) {
|
||||
SetPlane(buffer->MutableDataY(), plane_colors[0], buffer->width(),
|
||||
buffer->height(), buffer->StrideY());
|
||||
|
||||
SetPlane(buffer->MutableDataU(), plane_colors[1], buffer->ChromaWidth(),
|
||||
buffer->ChromaHeight(), buffer->StrideU());
|
||||
|
||||
SetPlane(buffer->MutableDataV(), plane_colors[2], buffer->ChromaWidth(),
|
||||
buffer->ChromaHeight(), buffer->StrideV());
|
||||
}
|
||||
|
||||
void ConfigureStream(int width,
|
||||
int height,
|
||||
int max_bitrate,
|
||||
int min_bitrate,
|
||||
int target_bitrate,
|
||||
SimulcastStream* stream,
|
||||
int num_temporal_layers) {
|
||||
assert(stream);
|
||||
stream->width = width;
|
||||
stream->height = height;
|
||||
stream->maxBitrate = max_bitrate;
|
||||
stream->minBitrate = min_bitrate;
|
||||
stream->targetBitrate = target_bitrate;
|
||||
if (num_temporal_layers >= 0) {
|
||||
stream->numberOfTemporalLayers = num_temporal_layers;
|
||||
}
|
||||
stream->qpMax = 45;
|
||||
stream->active = true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void SimulcastTestFixtureImpl::DefaultSettings(
|
||||
VideoCodec* settings,
|
||||
const int* temporal_layer_profile,
|
||||
VideoCodecType codec_type) {
|
||||
RTC_CHECK(settings);
|
||||
memset(settings, 0, sizeof(VideoCodec));
|
||||
settings->codecType = codec_type;
|
||||
// 96 to 127 dynamic payload types for video codecs
|
||||
settings->plType = 120;
|
||||
settings->startBitrate = 300;
|
||||
settings->minBitrate = 30;
|
||||
settings->maxBitrate = 0;
|
||||
settings->maxFramerate = 30;
|
||||
settings->width = kDefaultWidth;
|
||||
settings->height = kDefaultHeight;
|
||||
settings->numberOfSimulcastStreams = kNumberOfSimulcastStreams;
|
||||
settings->active = true;
|
||||
ASSERT_EQ(3, kNumberOfSimulcastStreams);
|
||||
settings->timing_frame_thresholds = {kDefaultTimingFramesDelayMs,
|
||||
kDefaultOutlierFrameSizePercent};
|
||||
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, kMaxBitrates[0],
|
||||
kMinBitrates[0], kTargetBitrates[0],
|
||||
&settings->simulcastStream[0], temporal_layer_profile[0]);
|
||||
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, kMaxBitrates[1],
|
||||
kMinBitrates[1], kTargetBitrates[1],
|
||||
&settings->simulcastStream[1], temporal_layer_profile[1]);
|
||||
ConfigureStream(kDefaultWidth, kDefaultHeight, kMaxBitrates[2],
|
||||
kMinBitrates[2], kTargetBitrates[2],
|
||||
&settings->simulcastStream[2], temporal_layer_profile[2]);
|
||||
if (codec_type == kVideoCodecVP8) {
|
||||
settings->VP8()->denoisingOn = true;
|
||||
settings->VP8()->automaticResizeOn = false;
|
||||
settings->VP8()->frameDroppingOn = true;
|
||||
settings->VP8()->keyFrameInterval = 3000;
|
||||
} else {
|
||||
settings->H264()->frameDroppingOn = true;
|
||||
settings->H264()->keyFrameInterval = 3000;
|
||||
}
|
||||
}
|
||||
|
||||
SimulcastTestFixtureImpl::SimulcastTestFixtureImpl(
|
||||
std::unique_ptr<VideoEncoderFactory> encoder_factory,
|
||||
std::unique_ptr<VideoDecoderFactory> decoder_factory,
|
||||
SdpVideoFormat video_format)
|
||||
: codec_type_(PayloadStringToCodecType(video_format.name)) {
|
||||
encoder_ = encoder_factory->CreateVideoEncoder(video_format);
|
||||
decoder_ = decoder_factory->CreateVideoDecoder(video_format);
|
||||
SetUpCodec(codec_type_ == kVideoCodecVP8 ? kDefaultTemporalLayerProfile
|
||||
: kNoTemporalLayerProfile);
|
||||
}
|
||||
|
||||
SimulcastTestFixtureImpl::~SimulcastTestFixtureImpl() {
|
||||
encoder_->Release();
|
||||
decoder_->Release();
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::SetUpCodec(const int* temporal_layer_profile) {
|
||||
encoder_->RegisterEncodeCompleteCallback(&encoder_callback_);
|
||||
decoder_->RegisterDecodeCompleteCallback(&decoder_callback_);
|
||||
DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
|
||||
SetUpRateAllocator();
|
||||
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
||||
EXPECT_EQ(0, decoder_->InitDecode(&settings_, 1));
|
||||
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight);
|
||||
input_buffer_->InitializeData();
|
||||
input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
|
||||
0 /* timestamp_us */));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::SetUpRateAllocator() {
|
||||
rate_allocator_.reset(new SimulcastRateAllocator(settings_));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::SetRates(uint32_t bitrate_kbps, uint32_t fps) {
|
||||
encoder_->SetRateAllocation(
|
||||
rate_allocator_->GetAllocation(bitrate_kbps * 1000, fps), fps);
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::RunActiveStreamsTest(
|
||||
const std::vector<bool> active_streams) {
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
UpdateActiveStreams(active_streams);
|
||||
// Set sufficient bitrate for all streams so we can test active without
|
||||
// bitrate being an issue.
|
||||
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
|
||||
|
||||
ExpectStreams(kVideoFrameKey, active_streams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, active_streams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::UpdateActiveStreams(
|
||||
const std::vector<bool> active_streams) {
|
||||
ASSERT_EQ(static_cast<int>(active_streams.size()), kNumberOfSimulcastStreams);
|
||||
for (size_t i = 0; i < active_streams.size(); ++i) {
|
||||
settings_.simulcastStream[i].active = active_streams[i];
|
||||
}
|
||||
// Re initialize the allocator and encoder with the new settings.
|
||||
// TODO(bugs.webrtc.org/8807): Currently, we do a full "hard"
|
||||
// reconfiguration of the allocator and encoder. When the video bitrate
|
||||
// allocator has support for updating active streams without a
|
||||
// reinitialization, we can just call that here instead.
|
||||
SetUpRateAllocator();
|
||||
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::ExpectStreams(
|
||||
FrameType frame_type,
|
||||
const std::vector<bool> expected_streams_active) {
|
||||
ASSERT_EQ(static_cast<int>(expected_streams_active.size()),
|
||||
kNumberOfSimulcastStreams);
|
||||
if (expected_streams_active[0]) {
|
||||
EXPECT_CALL(
|
||||
encoder_callback_,
|
||||
OnEncodedImage(
|
||||
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
||||
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 4),
|
||||
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 4)),
|
||||
_, _))
|
||||
.Times(1)
|
||||
.WillRepeatedly(Return(
|
||||
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
|
||||
}
|
||||
if (expected_streams_active[1]) {
|
||||
EXPECT_CALL(
|
||||
encoder_callback_,
|
||||
OnEncodedImage(
|
||||
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
||||
Field(&EncodedImage::_encodedWidth, kDefaultWidth / 2),
|
||||
Field(&EncodedImage::_encodedHeight, kDefaultHeight / 2)),
|
||||
_, _))
|
||||
.Times(1)
|
||||
.WillRepeatedly(Return(
|
||||
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
|
||||
}
|
||||
if (expected_streams_active[2]) {
|
||||
EXPECT_CALL(encoder_callback_,
|
||||
OnEncodedImage(
|
||||
AllOf(Field(&EncodedImage::_frameType, frame_type),
|
||||
Field(&EncodedImage::_encodedWidth, kDefaultWidth),
|
||||
Field(&EncodedImage::_encodedHeight, kDefaultHeight)),
|
||||
_, _))
|
||||
.Times(1)
|
||||
.WillRepeatedly(Return(
|
||||
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
|
||||
}
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::ExpectStreams(FrameType frame_type,
|
||||
int expected_video_streams) {
|
||||
ASSERT_GE(expected_video_streams, 0);
|
||||
ASSERT_LE(expected_video_streams, kNumberOfSimulcastStreams);
|
||||
std::vector<bool> expected_streams_active(kNumberOfSimulcastStreams, false);
|
||||
for (int i = 0; i < expected_video_streams; ++i) {
|
||||
expected_streams_active[i] = true;
|
||||
}
|
||||
ExpectStreams(frame_type, expected_streams_active);
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
TestEncodedImageCallback* encoder_callback,
|
||||
const int* expected_temporal_idx,
|
||||
const bool* expected_layer_sync,
|
||||
int num_spatial_layers) {
|
||||
int temporal_layer = -1;
|
||||
bool layer_sync = false;
|
||||
for (int i = 0; i < num_spatial_layers; i++) {
|
||||
encoder_callback->GetLastEncodedFrameInfo(&temporal_layer, &layer_sync, i);
|
||||
EXPECT_EQ(expected_temporal_idx[i], temporal_layer);
|
||||
EXPECT_EQ(expected_layer_sync[i], layer_sync);
|
||||
}
|
||||
}
|
||||
|
||||
// We currently expect all active streams to generate a key frame even though
|
||||
// a key frame was only requested for some of them.
|
||||
void SimulcastTestFixtureImpl::TestKeyFrameRequestsOnAllStreams() {
|
||||
SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
frame_types[0] = kVideoFrameKey;
|
||||
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
|
||||
frame_types[1] = kVideoFrameKey;
|
||||
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
|
||||
frame_types[2] = kVideoFrameKey;
|
||||
ExpectStreams(kVideoFrameKey, kNumberOfSimulcastStreams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
std::fill(frame_types.begin(), frame_types.end(), kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameDelta, kNumberOfSimulcastStreams);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestPaddingAllStreams() {
|
||||
// We should always encode the base layer.
|
||||
SetRates(kMinBitrates[0] - 1, 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 1);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 1);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestPaddingTwoStreams() {
|
||||
// We have just enough to get only the first stream and padding for two.
|
||||
SetRates(kMinBitrates[0], 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 1);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 1);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestPaddingTwoStreamsOneMaxedOut() {
|
||||
// We are just below limit of sending second stream, so we should get
|
||||
// the first stream maxed out (at |maxBitrate|), and padding for two.
|
||||
SetRates(kTargetBitrates[0] + kMinBitrates[1] - 1, 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 1);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 1);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestPaddingOneStream() {
|
||||
// We have just enough to send two streams, so padding for one stream.
|
||||
SetRates(kTargetBitrates[0] + kMinBitrates[1], 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 2);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 2);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestPaddingOneStreamTwoMaxedOut() {
|
||||
// We are just below limit of sending third stream, so we should get
|
||||
// first stream's rate maxed out at |targetBitrate|, second at |maxBitrate|.
|
||||
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] - 1, 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 2);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 2);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestSendAllStreams() {
|
||||
// We have just enough to send all streams.
|
||||
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2], 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 3);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 3);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestDisablingStreams() {
|
||||
// We should get three media streams.
|
||||
SetRates(kMaxBitrates[0] + kMaxBitrates[1] + kMaxBitrates[2], 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
ExpectStreams(kVideoFrameKey, 3);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
ExpectStreams(kVideoFrameDelta, 3);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// We should only get two streams and padding for one.
|
||||
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
|
||||
ExpectStreams(kVideoFrameDelta, 2);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// We should only get the first stream and padding for two.
|
||||
SetRates(kTargetBitrates[0] + kMinBitrates[1] / 2, 30);
|
||||
ExpectStreams(kVideoFrameDelta, 1);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// We don't have enough bitrate for the thumbnail stream, but we should get
|
||||
// it anyway with current configuration.
|
||||
SetRates(kTargetBitrates[0] - 1, 30);
|
||||
ExpectStreams(kVideoFrameDelta, 1);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// We should only get two streams and padding for one.
|
||||
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kMinBitrates[2] / 2, 30);
|
||||
// We get a key frame because a new stream is being enabled.
|
||||
ExpectStreams(kVideoFrameKey, 2);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// We should get all three streams.
|
||||
SetRates(kTargetBitrates[0] + kTargetBitrates[1] + kTargetBitrates[2], 30);
|
||||
// We get a key frame because a new stream is being enabled.
|
||||
ExpectStreams(kVideoFrameKey, 3);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestActiveStreams() {
|
||||
// All streams on.
|
||||
RunActiveStreamsTest({true, true, true});
|
||||
// All streams off.
|
||||
RunActiveStreamsTest({false, false, false});
|
||||
// Low stream off.
|
||||
RunActiveStreamsTest({false, true, true});
|
||||
// Middle stream off.
|
||||
RunActiveStreamsTest({true, false, true});
|
||||
// High stream off.
|
||||
RunActiveStreamsTest({true, true, false});
|
||||
// Only low stream turned on.
|
||||
RunActiveStreamsTest({true, false, false});
|
||||
// Only middle stream turned on.
|
||||
RunActiveStreamsTest({false, true, false});
|
||||
// Only high stream turned on.
|
||||
RunActiveStreamsTest({false, false, true});
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::SwitchingToOneStream(int width, int height) {
|
||||
const int* temporal_layer_profile = nullptr;
|
||||
// Disable all streams except the last and set the bitrate of the last to
|
||||
// 100 kbps. This verifies the way GTP switches to screenshare mode.
|
||||
if (codec_type_ == kVideoCodecVP8) {
|
||||
settings_.VP8()->numberOfTemporalLayers = 1;
|
||||
temporal_layer_profile = kDefaultTemporalLayerProfile;
|
||||
} else {
|
||||
temporal_layer_profile = kNoTemporalLayerProfile;
|
||||
}
|
||||
settings_.maxBitrate = 100;
|
||||
settings_.startBitrate = 100;
|
||||
settings_.width = width;
|
||||
settings_.height = height;
|
||||
for (int i = 0; i < settings_.numberOfSimulcastStreams - 1; ++i) {
|
||||
settings_.simulcastStream[i].maxBitrate = 0;
|
||||
settings_.simulcastStream[i].width = settings_.width;
|
||||
settings_.simulcastStream[i].height = settings_.height;
|
||||
settings_.simulcastStream[i].numberOfTemporalLayers = 1;
|
||||
}
|
||||
// Setting input image to new resolution.
|
||||
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
|
||||
input_buffer_->InitializeData();
|
||||
|
||||
input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
|
||||
0 /* timestamp_us */));
|
||||
|
||||
// The for loop above did not set the bitrate of the highest layer.
|
||||
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].maxBitrate =
|
||||
0;
|
||||
// The highest layer has to correspond to the non-simulcast resolution.
|
||||
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].width =
|
||||
settings_.width;
|
||||
settings_.simulcastStream[settings_.numberOfSimulcastStreams - 1].height =
|
||||
settings_.height;
|
||||
SetUpRateAllocator();
|
||||
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
||||
|
||||
// Encode one frame and verify.
|
||||
SetRates(kMaxBitrates[0] + kMaxBitrates[1], 30);
|
||||
std::vector<FrameType> frame_types(kNumberOfSimulcastStreams,
|
||||
kVideoFrameDelta);
|
||||
EXPECT_CALL(
|
||||
encoder_callback_,
|
||||
OnEncodedImage(AllOf(Field(&EncodedImage::_frameType, kVideoFrameKey),
|
||||
Field(&EncodedImage::_encodedWidth, width),
|
||||
Field(&EncodedImage::_encodedHeight, height)),
|
||||
_, _))
|
||||
.Times(1)
|
||||
.WillRepeatedly(Return(
|
||||
EncodedImageCallback::Result(EncodedImageCallback::Result::OK, 0)));
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
|
||||
// Switch back.
|
||||
DefaultSettings(&settings_, temporal_layer_profile, codec_type_);
|
||||
// Start at the lowest bitrate for enabling base stream.
|
||||
settings_.startBitrate = kMinBitrates[0];
|
||||
SetUpRateAllocator();
|
||||
EXPECT_EQ(0, encoder_->InitEncode(&settings_, 1, 1200));
|
||||
SetRates(settings_.startBitrate, 30);
|
||||
ExpectStreams(kVideoFrameKey, 1);
|
||||
// Resize |input_frame_| to the new resolution.
|
||||
input_buffer_ = I420Buffer::Create(settings_.width, settings_.height);
|
||||
input_buffer_->InitializeData();
|
||||
input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
|
||||
0 /* timestamp_us */));
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, &frame_types));
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestSwitchingToOneStream() {
|
||||
SwitchingToOneStream(1024, 768);
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestSwitchingToOneOddStream() {
|
||||
SwitchingToOneStream(1023, 769);
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestSwitchingToOneSmallStream() {
|
||||
SwitchingToOneStream(4, 4);
|
||||
}
|
||||
|
||||
// Test the layer pattern and sync flag for various spatial-temporal patterns.
|
||||
// 3-3-3 pattern: 3 temporal layers for all spatial streams, so same
|
||||
// temporal_layer id and layer_sync is expected for all streams.
|
||||
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers333PatternEncoder() {
|
||||
EXPECT_EQ(codec_type_, kVideoCodecVP8);
|
||||
TestEncodedImageCallback encoder_callback;
|
||||
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
||||
SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
||||
|
||||
int expected_temporal_idx[3] = {-1, -1, -1};
|
||||
bool expected_layer_sync[3] = {false, false, false};
|
||||
|
||||
// First frame: #0.
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #1.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #2.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(1, 1, 1, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, true, true, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #3.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #4.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(0, 0, 0, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #5.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 2, 2, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
}
|
||||
|
||||
// Test the layer pattern and sync flag for various spatial-temporal patterns.
|
||||
// 3-2-1 pattern: 3 temporal layers for lowest resolution, 2 for middle, and
|
||||
// 1 temporal layer for highest resolution.
|
||||
// For this profile, we expect the temporal index pattern to be:
|
||||
// 1st stream: 0, 2, 1, 2, ....
|
||||
// 2nd stream: 0, 1, 0, 1, ...
|
||||
// 3rd stream: -1, -1, -1, -1, ....
|
||||
// Regarding the 3rd stream, note that a stream/encoder with 1 temporal layer
|
||||
// should always have temporal layer idx set to kNoTemporalIdx = -1.
|
||||
// Since CodecSpecificInfoVP8.temporalIdx is uint8_t, this will wrap to 255.
|
||||
// TODO(marpan): Although this seems safe for now, we should fix this.
|
||||
void SimulcastTestFixtureImpl::TestSpatioTemporalLayers321PatternEncoder() {
|
||||
EXPECT_EQ(codec_type_, kVideoCodecVP8);
|
||||
int temporal_layer_profile[3] = {3, 2, 1};
|
||||
SetUpCodec(temporal_layer_profile);
|
||||
TestEncodedImageCallback encoder_callback;
|
||||
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
||||
SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
||||
|
||||
int expected_temporal_idx[3] = {-1, -1, -1};
|
||||
bool expected_layer_sync[3] = {false, false, false};
|
||||
|
||||
// First frame: #0.
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #1.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, true, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #2.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(1, 0, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(true, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #3.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #4.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(0, 0, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
|
||||
// Next frame: #5.
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
SetExpectedValues3<int>(2, 1, 255, expected_temporal_idx);
|
||||
SetExpectedValues3<bool>(false, false, false, expected_layer_sync);
|
||||
VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
&encoder_callback, expected_temporal_idx, expected_layer_sync, 3);
|
||||
}
|
||||
|
||||
void SimulcastTestFixtureImpl::TestStrideEncodeDecode() {
|
||||
TestEncodedImageCallback encoder_callback;
|
||||
TestDecodedImageCallback decoder_callback;
|
||||
encoder_->RegisterEncodeCompleteCallback(&encoder_callback);
|
||||
decoder_->RegisterDecodeCompleteCallback(&decoder_callback);
|
||||
|
||||
SetRates(kMaxBitrates[2], 30); // To get all three streams.
|
||||
// Setting two (possibly) problematic use cases for stride:
|
||||
// 1. stride > width 2. stride_y != stride_uv/2
|
||||
int stride_y = kDefaultWidth + 20;
|
||||
int stride_uv = ((kDefaultWidth + 1) / 2) + 5;
|
||||
input_buffer_ = I420Buffer::Create(kDefaultWidth, kDefaultHeight, stride_y,
|
||||
stride_uv, stride_uv);
|
||||
input_frame_.reset(new VideoFrame(input_buffer_, webrtc::kVideoRotation_0,
|
||||
0 /* timestamp_us */));
|
||||
|
||||
// Set color.
|
||||
int plane_offset[kNumOfPlanes];
|
||||
plane_offset[kYPlane] = kColorY;
|
||||
plane_offset[kUPlane] = kColorU;
|
||||
plane_offset[kVPlane] = kColorV;
|
||||
CreateImage(input_buffer_, plane_offset);
|
||||
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
|
||||
// Change color.
|
||||
plane_offset[kYPlane] += 1;
|
||||
plane_offset[kUPlane] += 1;
|
||||
plane_offset[kVPlane] += 1;
|
||||
CreateImage(input_buffer_, plane_offset);
|
||||
input_frame_->set_timestamp(input_frame_->timestamp() + 3000);
|
||||
EXPECT_EQ(0, encoder_->Encode(*input_frame_, NULL, NULL));
|
||||
|
||||
EncodedImage encoded_frame;
|
||||
// Only encoding one frame - so will be a key frame.
|
||||
encoder_callback.GetLastEncodedKeyFrame(&encoded_frame);
|
||||
EXPECT_EQ(0, decoder_->Decode(encoded_frame, false, NULL, 0));
|
||||
encoder_callback.GetLastEncodedFrame(&encoded_frame);
|
||||
decoder_->Decode(encoded_frame, false, NULL, 0);
|
||||
EXPECT_EQ(2, decoder_callback.DecodedFrames());
|
||||
}
|
||||
|
||||
} // namespace test
|
||||
} // namespace webrtc
|
||||
@ -1,91 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef MODULES_VIDEO_CODING_UTILITY_SIMULCAST_TEST_FIXTURE_IMPL_H_
|
||||
#define MODULES_VIDEO_CODING_UTILITY_SIMULCAST_TEST_FIXTURE_IMPL_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include "api/test/simulcast_test_fixture.h"
|
||||
#include "api/video/i420_buffer.h"
|
||||
#include "api/video/video_frame.h"
|
||||
#include "api/video_codecs/video_decoder_factory.h"
|
||||
#include "api/video_codecs/video_encoder_factory.h"
|
||||
#include "common_types.h" // NOLINT(build/include)
|
||||
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
|
||||
#include "modules/video_coding/include/mock/mock_video_codec_interface.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace test {
|
||||
|
||||
class SimulcastTestFixtureImpl final : public SimulcastTestFixture {
|
||||
public:
|
||||
SimulcastTestFixtureImpl(
|
||||
std::unique_ptr<VideoEncoderFactory> encoder_factory,
|
||||
std::unique_ptr<VideoDecoderFactory> decoder_factory,
|
||||
SdpVideoFormat video_format);
|
||||
~SimulcastTestFixtureImpl() final;
|
||||
|
||||
// Implements SimulcastTestFixture.
|
||||
void TestKeyFrameRequestsOnAllStreams() override;
|
||||
void TestPaddingAllStreams() override;
|
||||
void TestPaddingTwoStreams() override;
|
||||
void TestPaddingTwoStreamsOneMaxedOut() override;
|
||||
void TestPaddingOneStream() override;
|
||||
void TestPaddingOneStreamTwoMaxedOut() override;
|
||||
void TestSendAllStreams() override;
|
||||
void TestDisablingStreams() override;
|
||||
void TestActiveStreams() override;
|
||||
void TestSwitchingToOneStream() override;
|
||||
void TestSwitchingToOneOddStream() override;
|
||||
void TestSwitchingToOneSmallStream() override;
|
||||
void TestSpatioTemporalLayers333PatternEncoder() override;
|
||||
void TestSpatioTemporalLayers321PatternEncoder() override;
|
||||
void TestStrideEncodeDecode() override;
|
||||
|
||||
static void DefaultSettings(VideoCodec* settings,
|
||||
const int* temporal_layer_profile,
|
||||
VideoCodecType codec_type);
|
||||
|
||||
private:
|
||||
class TestEncodedImageCallback;
|
||||
class TestDecodedImageCallback;
|
||||
|
||||
void SetUpCodec(const int* temporal_layer_profile);
|
||||
void SetUpRateAllocator();
|
||||
void SetRates(uint32_t bitrate_kbps, uint32_t fps);
|
||||
void RunActiveStreamsTest(const std::vector<bool> active_streams);
|
||||
void UpdateActiveStreams(const std::vector<bool> active_streams);
|
||||
void ExpectStreams(FrameType frame_type,
|
||||
const std::vector<bool> expected_streams_active);
|
||||
void ExpectStreams(FrameType frame_type, int expected_video_streams);
|
||||
void VerifyTemporalIdxAndSyncForAllSpatialLayers(
|
||||
TestEncodedImageCallback* encoder_callback,
|
||||
const int* expected_temporal_idx,
|
||||
const bool* expected_layer_sync,
|
||||
int num_spatial_layers);
|
||||
void SwitchingToOneStream(int width, int height);
|
||||
|
||||
std::unique_ptr<VideoEncoder> encoder_;
|
||||
MockEncodedImageCallback encoder_callback_;
|
||||
std::unique_ptr<VideoDecoder> decoder_;
|
||||
MockDecodedImageCallback decoder_callback_;
|
||||
VideoCodec settings_;
|
||||
rtc::scoped_refptr<I420Buffer> input_buffer_;
|
||||
std::unique_ptr<VideoFrame> input_frame_;
|
||||
std::unique_ptr<SimulcastRateAllocator> rate_allocator_;
|
||||
VideoCodecType codec_type_;
|
||||
};
|
||||
|
||||
} // namespace test
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // MODULES_VIDEO_CODING_UTILITY_SIMULCAST_TEST_FIXTURE_IMPL_H_
|
||||
@ -1,65 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/video_coding/utility/simulcast_utility.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
uint32_t SimulcastUtility::SumStreamMaxBitrate(int streams,
|
||||
const VideoCodec& codec) {
|
||||
uint32_t bitrate_sum = 0;
|
||||
for (int i = 0; i < streams; ++i) {
|
||||
bitrate_sum += codec.simulcastStream[i].maxBitrate;
|
||||
}
|
||||
return bitrate_sum;
|
||||
}
|
||||
|
||||
int SimulcastUtility::NumberOfSimulcastStreams(const VideoCodec& codec) {
|
||||
int streams =
|
||||
codec.numberOfSimulcastStreams < 1 ? 1 : codec.numberOfSimulcastStreams;
|
||||
uint32_t simulcast_max_bitrate = SumStreamMaxBitrate(streams, codec);
|
||||
if (simulcast_max_bitrate == 0) {
|
||||
streams = 1;
|
||||
}
|
||||
return streams;
|
||||
}
|
||||
|
||||
bool SimulcastUtility::ValidSimulcastResolutions(const VideoCodec& codec,
|
||||
int num_streams) {
|
||||
if (codec.width != codec.simulcastStream[num_streams - 1].width ||
|
||||
codec.height != codec.simulcastStream[num_streams - 1].height) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < num_streams; ++i) {
|
||||
if (codec.width * codec.simulcastStream[i].height !=
|
||||
codec.height * codec.simulcastStream[i].width) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
for (int i = 1; i < num_streams; ++i) {
|
||||
if (codec.simulcastStream[i].width !=
|
||||
codec.simulcastStream[i - 1].width * 2) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool SimulcastUtility::ValidSimulcastTemporalLayers(const VideoCodec& codec,
|
||||
int num_streams) {
|
||||
for (int i = 0; i < num_streams - 1; ++i) {
|
||||
if (codec.simulcastStream[i].numberOfTemporalLayers !=
|
||||
codec.simulcastStream[i + 1].numberOfTemporalLayers)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
@ -1,30 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef MODULES_VIDEO_CODING_UTILITY_SIMULCAST_UTILITY_H_
|
||||
#define MODULES_VIDEO_CODING_UTILITY_SIMULCAST_UTILITY_H_
|
||||
|
||||
#include "api/video_codecs/video_encoder.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
class SimulcastUtility {
|
||||
public:
|
||||
static uint32_t SumStreamMaxBitrate(int streams, const VideoCodec& codec);
|
||||
static int NumberOfSimulcastStreams(const VideoCodec& codec);
|
||||
static bool ValidSimulcastResolutions(const VideoCodec& codec,
|
||||
int num_streams);
|
||||
static bool ValidSimulcastTemporalLayers(const VideoCodec& codec,
|
||||
int num_streams);
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // MODULES_VIDEO_CODING_UTILITY_SIMULCAST_UTILITY_H_
|
||||
Reference in New Issue
Block a user