Adds shared base class for data units.

This reduces code duplication and ensures common behavior
between the unit classes.

Bug: webrtc:9709
Change-Id: I9529ef10b3f538355f53250a2b67c6b4e250cce8
Reviewed-on: https://webrtc-review.googlesource.com/c/110901
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25690}
This commit is contained in:
Sebastian Jansson
2018-11-19 11:17:12 +01:00
committed by Commit Bot
parent d474672dcd
commit 72bba625d5
14 changed files with 697 additions and 678 deletions

View File

@ -15,191 +15,94 @@
#include <ostream> // no-presubmit-check TODO(webrtc:8982)
#endif // UNIT_TEST
#include <math.h>
#include <stdint.h>
#include <limits>
#include <string>
#include <type_traits>
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace timestamp_impl {
constexpr int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
constexpr int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
} // namespace timestamp_impl
// Timestamp represents the time that has passed since some unspecified epoch.
// The epoch is assumed to be before any represented timestamps, this means that
// negative values are not valid. The most notable feature is that the
// difference of two Timestamps results in a TimeDelta.
class Timestamp {
class Timestamp final : public rtc_units_impl::UnitBase<Timestamp> {
public:
Timestamp() = delete;
static constexpr Timestamp PlusInfinity() {
return Timestamp(timestamp_impl::kPlusInfinityVal);
}
static constexpr Timestamp MinusInfinity() {
return Timestamp(timestamp_impl::kMinusInfinityVal);
}
template <int64_t seconds>
static constexpr Timestamp Seconds() {
static_assert(seconds >= 0, "");
static_assert(seconds < timestamp_impl::kPlusInfinityVal / 1000000, "");
return Timestamp(seconds * 1000000);
return FromStaticFraction<seconds, 1000000>();
}
template <int64_t ms>
static constexpr Timestamp Millis() {
static_assert(ms >= 0, "");
static_assert(ms < timestamp_impl::kPlusInfinityVal / 1000, "");
return Timestamp(ms * 1000);
return FromStaticFraction<ms, 1000>();
}
template <int64_t us>
static constexpr Timestamp Micros() {
static_assert(us >= 0, "");
static_assert(us < timestamp_impl::kPlusInfinityVal, "");
return Timestamp(us);
return FromStaticValue<us>();
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
template <typename T>
static Timestamp seconds(T seconds) {
RTC_DCHECK_GE(seconds, 0);
RTC_DCHECK_LT(seconds, timestamp_impl::kPlusInfinityVal / 1000000);
return Timestamp(rtc::dchecked_cast<int64_t>(seconds) * 1000000);
return FromFraction<1000000>(seconds);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
template <typename T>
static Timestamp ms(T milliseconds) {
RTC_DCHECK_GE(milliseconds, 0);
RTC_DCHECK_LT(milliseconds, timestamp_impl::kPlusInfinityVal / 1000);
return Timestamp(rtc::dchecked_cast<int64_t>(milliseconds) * 1000);
return FromFraction<1000>(milliseconds);
}
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
template <typename T>
static Timestamp us(T microseconds) {
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp seconds(T seconds) {
return Timestamp::us(seconds * 1e6);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp ms(T milliseconds) {
return Timestamp::us(milliseconds * 1e3);
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static Timestamp us(T microseconds) {
if (microseconds == std::numeric_limits<double>::infinity()) {
return PlusInfinity();
} else if (microseconds == -std::numeric_limits<double>::infinity()) {
return MinusInfinity();
} else {
RTC_DCHECK(!std::isnan(microseconds));
RTC_DCHECK_GE(microseconds, 0);
RTC_DCHECK_LT(microseconds, timestamp_impl::kPlusInfinityVal);
return Timestamp(rtc::dchecked_cast<int64_t>(microseconds));
}
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type seconds() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(UnsafeSeconds());
return FromValue(microseconds);
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type ms() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(UnsafeMillis());
T seconds() const {
return ToFraction<1000000, T>();
}
template <typename T = int64_t>
typename std::enable_if<std::is_integral<T>::value, T>::type us() const {
RTC_DCHECK(IsFinite());
return rtc::dchecked_cast<T>(microseconds_);
T ms() const {
return ToFraction<1000, T>();
}
template <typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
seconds() const {
return us<T>() * 1e-6;
}
template <typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
ms() const {
return us<T>() * 1e-3;
}
template <typename T>
constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
us() const {
return IsPlusInfinity()
? std::numeric_limits<T>::infinity()
: IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
: microseconds_;
template <typename T = int64_t>
T us() const {
return ToValue<T>();
}
constexpr int64_t seconds_or(int64_t fallback_value) const {
return IsFinite() ? UnsafeSeconds() : fallback_value;
return ToFractionOr<1000000>(fallback_value);
}
constexpr int64_t ms_or(int64_t fallback_value) const {
return IsFinite() ? UnsafeMillis() : fallback_value;
return ToFractionOr<1000>(fallback_value);
}
constexpr int64_t us_or(int64_t fallback_value) const {
return IsFinite() ? microseconds_ : fallback_value;
return ToValueOr(fallback_value);
}
constexpr bool IsFinite() const { return !IsInfinite(); }
constexpr bool IsInfinite() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal ||
microseconds_ == timedelta_impl::kMinusInfinityVal;
}
constexpr bool IsPlusInfinity() const {
return microseconds_ == timedelta_impl::kPlusInfinityVal;
}
constexpr bool IsMinusInfinity() const {
return microseconds_ == timedelta_impl::kMinusInfinityVal;
}
Timestamp operator+(const TimeDelta& other) const {
if (IsPlusInfinity() || other.IsPlusInfinity()) {
Timestamp operator+(const TimeDelta delta) const {
if (IsPlusInfinity() || delta.IsPlusInfinity()) {
RTC_DCHECK(!IsMinusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
RTC_DCHECK(!delta.IsMinusInfinity());
return PlusInfinity();
} else if (IsMinusInfinity() || other.IsMinusInfinity()) {
} else if (IsMinusInfinity() || delta.IsMinusInfinity()) {
RTC_DCHECK(!IsPlusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
RTC_DCHECK(!delta.IsPlusInfinity());
return MinusInfinity();
}
return Timestamp::us(us() + other.us());
return Timestamp::us(us() + delta.us());
}
Timestamp operator-(const TimeDelta& other) const {
if (IsPlusInfinity() || other.IsMinusInfinity()) {
Timestamp operator-(const TimeDelta delta) const {
if (IsPlusInfinity() || delta.IsMinusInfinity()) {
RTC_DCHECK(!IsMinusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
RTC_DCHECK(!delta.IsPlusInfinity());
return PlusInfinity();
} else if (IsMinusInfinity() || other.IsPlusInfinity()) {
} else if (IsMinusInfinity() || delta.IsPlusInfinity()) {
RTC_DCHECK(!IsPlusInfinity());
RTC_DCHECK(!other.IsMinusInfinity());
RTC_DCHECK(!delta.IsMinusInfinity());
return MinusInfinity();
}
return Timestamp::us(us() - other.us());
return Timestamp::us(us() - delta.us());
}
TimeDelta operator-(const Timestamp& other) const {
TimeDelta operator-(const Timestamp other) const {
if (IsPlusInfinity() || other.IsMinusInfinity()) {
RTC_DCHECK(!IsMinusInfinity());
RTC_DCHECK(!other.IsPlusInfinity());
@ -211,45 +114,22 @@ class Timestamp {
}
return TimeDelta::us(us() - other.us());
}
Timestamp& operator-=(const TimeDelta& other) {
*this = *this - other;
Timestamp& operator-=(const TimeDelta delta) {
*this = *this - delta;
return *this;
}
Timestamp& operator+=(const TimeDelta& other) {
*this = *this + other;
Timestamp& operator+=(const TimeDelta delta) {
*this = *this + delta;
return *this;
}
constexpr bool operator==(const Timestamp& other) const {
return microseconds_ == other.microseconds_;
}
constexpr bool operator!=(const Timestamp& other) const {
return microseconds_ != other.microseconds_;
}
constexpr bool operator<=(const Timestamp& other) const {
return microseconds_ <= other.microseconds_;
}
constexpr bool operator>=(const Timestamp& other) const {
return microseconds_ >= other.microseconds_;
}
constexpr bool operator>(const Timestamp& other) const {
return microseconds_ > other.microseconds_;
}
constexpr bool operator<(const Timestamp& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit constexpr Timestamp(int64_t us) : microseconds_(us) {}
constexpr int64_t UnsafeSeconds() const {
return (microseconds_ + 500000) / 1000000;
}
constexpr int64_t UnsafeMillis() const {
return (microseconds_ + 500) / 1000;
}
int64_t microseconds_;
friend class rtc_units_impl::UnitBase<Timestamp>;
using UnitBase::UnitBase;
static constexpr bool one_sided = true;
};
std::string ToString(const Timestamp& value);
std::string ToString(Timestamp value);
#ifdef UNIT_TEST
inline std::ostream& operator<<( // no-presubmit-check TODO(webrtc:8982)