Refactor delay manager.

Split out `RelativeArrivalDelayTracker` and `DelayOptimizer` logic.

This is in preparation for adding another `DelayOptimizer` specialized in handling reordered packets.

Bug: webrtc:10178
Change-Id: Id3c1746d91980b171fa524f9b2b71cf11fc75f64
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/231224
Commit-Queue: Jakob Ivarsson <jakobi@webrtc.org>
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#34938}
This commit is contained in:
Jakob Ivarsson
2021-09-07 14:24:56 +02:00
committed by WebRTC LUCI CQ
parent 0dfd69bf4e
commit 74158ff761
13 changed files with 561 additions and 458 deletions

View File

@ -28,60 +28,36 @@
namespace webrtc {
namespace {
constexpr int kMaxNumberOfPackets = 240;
constexpr int kMinDelayMs = 0;
constexpr int kMaxHistoryMs = 2000;
constexpr int kMaxNumberOfPackets = 200;
constexpr int kTimeStepMs = 10;
constexpr int kFs = 8000;
constexpr int kFrameSizeMs = 20;
constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000;
constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs;
constexpr int kDefaultHistogramQuantile = 1020054733;
constexpr int kNumBuckets = 100;
constexpr int kForgetFactor = 32745;
} // namespace
class DelayManagerTest : public ::testing::Test {
protected:
DelayManagerTest();
virtual void SetUp();
void RecreateDelayManager();
absl::optional<int> InsertNextPacket();
void IncreaseTime(int inc_ms);
std::unique_ptr<DelayManager> dm_;
DelayManager dm_;
TickTimer tick_timer_;
MockStatisticsCalculator stats_;
MockHistogram* mock_histogram_;
uint32_t ts_;
bool use_mock_histogram_ = false;
absl::optional<int> resample_interval_ms_;
};
DelayManagerTest::DelayManagerTest()
: dm_(nullptr),
ts_(0x12345678) {}
: dm_(DelayManager::Config(), &tick_timer_), ts_(0x12345678) {}
void DelayManagerTest::SetUp() {
RecreateDelayManager();
}
void DelayManagerTest::RecreateDelayManager() {
if (use_mock_histogram_) {
mock_histogram_ = new MockHistogram(kNumBuckets, kForgetFactor);
std::unique_ptr<Histogram> histogram(mock_histogram_);
dm_ = std::make_unique<DelayManager>(kMaxNumberOfPackets, kMinDelayMs,
kDefaultHistogramQuantile,
resample_interval_ms_, kMaxHistoryMs,
&tick_timer_, std::move(histogram));
} else {
dm_ = DelayManager::Create(kMaxNumberOfPackets, kMinDelayMs, &tick_timer_);
}
dm_->SetPacketAudioLength(kFrameSizeMs);
dm_.SetPacketAudioLength(kFrameSizeMs);
}
absl::optional<int> DelayManagerTest::InsertNextPacket() {
auto relative_delay = dm_->Update(ts_, kFs);
auto relative_delay = dm_.Update(ts_, kFs);
ts_ += kTsIncrement;
return relative_delay;
}
@ -104,7 +80,7 @@ TEST_F(DelayManagerTest, UpdateNormal) {
IncreaseTime(kFrameSizeMs);
// Second packet arrival.
InsertNextPacket();
EXPECT_EQ(20, dm_->TargetDelayMs());
EXPECT_EQ(20, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) {
@ -114,7 +90,7 @@ TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) {
IncreaseTime(2 * kFrameSizeMs);
// Second packet arrival.
InsertNextPacket();
EXPECT_EQ(40, dm_->TargetDelayMs());
EXPECT_EQ(40, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, MaxDelay) {
@ -126,16 +102,16 @@ TEST_F(DelayManagerTest, MaxDelay) {
InsertNextPacket();
// No limit is set.
EXPECT_EQ(kExpectedTarget, dm_->TargetDelayMs());
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
const int kMaxDelayMs = 3 * kFrameSizeMs;
EXPECT_TRUE(dm_->SetMaximumDelay(kMaxDelayMs));
EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs));
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(kMaxDelayMs, dm_->TargetDelayMs());
EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs());
// Target level at least should be one packet.
EXPECT_FALSE(dm_->SetMaximumDelay(kFrameSizeMs - 1));
EXPECT_FALSE(dm_.SetMaximumDelay(kFrameSizeMs - 1));
}
TEST_F(DelayManagerTest, MinDelay) {
@ -147,23 +123,23 @@ TEST_F(DelayManagerTest, MinDelay) {
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kExpectedTarget, dm_->TargetDelayMs());
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
int kMinDelayMs = 7 * kFrameSizeMs;
dm_->SetMinimumDelay(kMinDelayMs);
dm_.SetMinimumDelay(kMinDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(kMinDelayMs, dm_->TargetDelayMs());
EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) {
// Base minimum delay should be between [0, 10000] milliseconds.
EXPECT_FALSE(dm_->SetBaseMinimumDelay(-1));
EXPECT_FALSE(dm_->SetBaseMinimumDelay(10001));
EXPECT_EQ(dm_->GetBaseMinimumDelay(), 0);
EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1));
EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0);
EXPECT_TRUE(dm_->SetBaseMinimumDelay(7999));
EXPECT_EQ(dm_->GetBaseMinimumDelay(), 7999);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) {
@ -174,9 +150,9 @@ TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) {
// minimum delay is lower than minimum delay we use minimum delay.
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) {
@ -187,9 +163,9 @@ TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) {
// minimum delay is greater than minimum delay we use base minimum delay.
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
@ -198,7 +174,7 @@ TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
constexpr int kMaximumDelayMs = 20;
constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4;
EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
// Base minimum delay is greater than minimum delay, that is why we clamp
// it to current the highest possible value which is maximum delay.
@ -207,15 +183,15 @@ TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) {
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75);
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
// Unset maximum value.
EXPECT_TRUE(dm_->SetMaximumDelay(0));
EXPECT_TRUE(dm_.SetMaximumDelay(0));
// With maximum value unset, the highest possible value now is 75% of
// currently possible maximum buffer size.
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75);
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75);
}
TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) {
@ -229,10 +205,10 @@ TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) {
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs);
RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs);
EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaximumDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) {
@ -245,10 +221,10 @@ TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) {
RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs);
RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs);
EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs);
}
TEST_F(DelayManagerTest, MinimumDelayMemorization) {
@ -260,19 +236,18 @@ TEST_F(DelayManagerTest, MinimumDelayMemorization) {
constexpr int kMinimumDelayMs = 20;
constexpr int kBaseMinimumDelayMsHigh = 30;
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
// Minimum delay is used as it is higher than base minimum delay.
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsHigh));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh));
// Base minimum delay is used as it is now higher than minimum delay.
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(),
kBaseMinimumDelayMsHigh);
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh);
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow));
// Check that minimum delay is memorized and is used again.
EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs);
}
TEST_F(DelayManagerTest, BaseMinimumDelay) {
@ -284,16 +259,16 @@ TEST_F(DelayManagerTest, BaseMinimumDelay) {
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kExpectedTarget, dm_->TargetDelayMs());
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs;
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_->TargetDelayMs());
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, BaseMinimumDelayAffectsTargetDelay) {
@ -306,7 +281,7 @@ TEST_F(DelayManagerTest, BaseMinimumDelayAffectsTargetDelay) {
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kTimeIncrement, dm_->TargetDelayMs());
EXPECT_EQ(kTimeIncrement, dm_.TargetDelayMs());
// Minimum delay is lower than base minimum delay, that is why base minimum
// delay is used to calculate target level.
@ -317,137 +292,31 @@ TEST_F(DelayManagerTest, BaseMinimumDelayAffectsTargetDelay) {
constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs;
EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs);
EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_->TargetDelayMs());
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, Failures) {
// Wrong sample rate.
EXPECT_EQ(absl::nullopt, dm_->Update(0, -1));
EXPECT_EQ(absl::nullopt, dm_.Update(0, -1));
// Wrong packet size.
EXPECT_EQ(-1, dm_->SetPacketAudioLength(0));
EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1));
EXPECT_EQ(-1, dm_.SetPacketAudioLength(0));
EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1));
// Minimum delay higher than a maximum delay is not accepted.
EXPECT_TRUE(dm_->SetMaximumDelay(20));
EXPECT_FALSE(dm_->SetMinimumDelay(40));
EXPECT_TRUE(dm_.SetMaximumDelay(20));
EXPECT_FALSE(dm_.SetMinimumDelay(40));
// Maximum delay less than minimum delay is not accepted.
EXPECT_TRUE(dm_->SetMaximumDelay(100));
EXPECT_TRUE(dm_->SetMinimumDelay(80));
EXPECT_FALSE(dm_->SetMaximumDelay(60));
}
TEST_F(DelayManagerTest, DelayHistogramFieldTrial) {
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998/");
RecreateDelayManager();
EXPECT_EQ(1030792151, dm_->histogram_quantile()); // 0.96 in Q30.
EXPECT_EQ(
32702,
dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15.
EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing());
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqDelayHistogram/Enabled-97.5-0.998/");
RecreateDelayManager();
EXPECT_EQ(1046898278, dm_->histogram_quantile()); // 0.975 in Q30.
EXPECT_EQ(
32702,
dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15.
EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing());
}
// Test parameter for new call start adaptation.
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1/");
RecreateDelayManager();
EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.0);
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1.5/");
RecreateDelayManager();
EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.5);
}
{
test::ScopedFieldTrials field_trial(
"WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-0.5/");
RecreateDelayManager();
EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing());
}
}
TEST_F(DelayManagerTest, RelativeArrivalDelay) {
use_mock_histogram_ = true;
RecreateDelayManager();
InsertNextPacket();
IncreaseTime(kFrameSizeMs);
EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed.
InsertNextPacket();
IncreaseTime(2 * kFrameSizeMs);
EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed.
dm_->Update(ts_, kFs);
EXPECT_CALL(*mock_histogram_, Add(3)); // Reordered, 60ms delayed.
dm_->Update(ts_ - 2 * kTsIncrement, kFs);
IncreaseTime(2 * kFrameSizeMs);
EXPECT_CALL(*mock_histogram_, Add(2)); // 40ms delayed.
dm_->Update(ts_ + kTsIncrement, kFs);
}
TEST_F(DelayManagerTest, ReorderedPackets) {
use_mock_histogram_ = true;
RecreateDelayManager();
// Insert first packet.
InsertNextPacket();
// Insert reordered packet.
EXPECT_CALL(*mock_histogram_, Add(4));
dm_->Update(ts_ - 5 * kTsIncrement, kFs);
// Insert another reordered packet.
EXPECT_CALL(*mock_histogram_, Add(1));
dm_->Update(ts_ - 2 * kTsIncrement, kFs);
// Insert the next packet in order and verify that the relative delay is
// estimated based on the first inserted packet.
IncreaseTime(4 * kFrameSizeMs);
EXPECT_CALL(*mock_histogram_, Add(3));
InsertNextPacket();
}
TEST_F(DelayManagerTest, MaxDelayHistory) {
use_mock_histogram_ = true;
RecreateDelayManager();
InsertNextPacket();
// Insert 20 ms iat delay in the delay history.
IncreaseTime(2 * kFrameSizeMs);
EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed.
InsertNextPacket();
// Insert next packet with a timestamp difference larger than maximum history
// size. This removes the previously inserted iat delay from the history.
constexpr int kMaxHistoryMs = 2000;
IncreaseTime(kMaxHistoryMs + kFrameSizeMs);
ts_ += kFs * kMaxHistoryMs / 1000;
EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed.
dm_->Update(ts_, kFs);
EXPECT_TRUE(dm_.SetMaximumDelay(100));
EXPECT_TRUE(dm_.SetMinimumDelay(80));
EXPECT_FALSE(dm_.SetMaximumDelay(60));
}
TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) {
@ -459,31 +328,4 @@ TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) {
EXPECT_EQ(20, InsertNextPacket());
}
TEST_F(DelayManagerTest, ResamplePacketDelays) {
use_mock_histogram_ = true;
resample_interval_ms_ = 500;
RecreateDelayManager();
// The histogram should be updated once with the maximum delay observed for
// the following sequence of packets.
EXPECT_CALL(*mock_histogram_, Add(5)).Times(1);
EXPECT_EQ(absl::nullopt, InsertNextPacket());
IncreaseTime(kFrameSizeMs);
EXPECT_EQ(0, InsertNextPacket());
IncreaseTime(3 * kFrameSizeMs);
EXPECT_EQ(2 * kFrameSizeMs, InsertNextPacket());
IncreaseTime(4 * kFrameSizeMs);
EXPECT_EQ(5 * kFrameSizeMs, InsertNextPacket());
for (int i = 4; i >= 0; --i) {
EXPECT_EQ(i * kFrameSizeMs, InsertNextPacket());
}
for (int i = 0; i < *resample_interval_ms_ / kFrameSizeMs; ++i) {
IncreaseTime(kFrameSizeMs);
EXPECT_EQ(0, InsertNextPacket());
}
}
} // namespace webrtc