Changed the digital AGC1 gain to properly support multichannel

Beyond making the digital AGC1 code properly support
multichannel, this CL also
-Removes deprecated debug logging code.
-Converts the gain application to be fully in floating point
 which
--Is less computationally complex.
--Does not quantize the samples to 16 bit before applying the
  gains.

Bug: webrtc:10859
Change-Id: I6020ba8ae7e311dfc93a72783a2bb68d935f90c5
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/159861
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29886}
This commit is contained in:
Per Åhgren
2019-11-23 00:14:31 +01:00
committed by Commit Bot
parent 3af0cd8de2
commit 77dc19905d
10 changed files with 272 additions and 405 deletions

View File

@ -18,8 +18,8 @@
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/constructor_magic.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
@ -39,59 +39,65 @@ int16_t MapSetting(GainControl::Mode mode) {
return -1;
}
// Checks whether the legacy digital gain application should be used.
bool UseLegacyDigitalGainApplier() {
return field_trial::IsEnabled("WebRTC-UseLegacyDigitalGainApplier");
}
// Floating point variant of WebRtcAgc_Process.
void ApplyDigitalGain(const int32_t gains[11],
size_t num_bands,
float* const* out) {
constexpr float kScaling = 1.f / 65536.f;
constexpr int kNumSubSections = 16;
constexpr float kOneByNumSubSections = 1.f / kNumSubSections;
float gains_scaled[11];
for (int k = 0; k < 11; ++k) {
gains_scaled[k] = gains[k] * kScaling;
}
for (size_t b = 0; b < num_bands; ++b) {
float* out_band = out[b];
for (int k = 0, sample = 0; k < 10; ++k) {
const float delta =
(gains_scaled[k + 1] - gains_scaled[k]) * kOneByNumSubSections;
float gain = gains_scaled[k];
for (int n = 0; n < kNumSubSections; ++n, ++sample) {
RTC_DCHECK_EQ(k * kNumSubSections + n, sample);
out_band[sample] *= gain;
out_band[sample] =
std::min(32767.f, std::max(-32768.f, out_band[sample]));
gain += delta;
}
}
}
}
} // namespace
class GainControlImpl::GainController {
public:
explicit GainController() {
state_ = WebRtcAgc_Create();
RTC_CHECK(state_);
struct GainControlImpl::MonoAgcState {
MonoAgcState() {
state = WebRtcAgc_Create();
RTC_CHECK(state);
}
~GainController() {
RTC_DCHECK(state_);
WebRtcAgc_Free(state_);
~MonoAgcState() {
RTC_DCHECK(state);
WebRtcAgc_Free(state);
}
Handle* state() {
RTC_DCHECK(state_);
return state_;
}
void Initialize(int minimum_capture_level,
int maximum_capture_level,
Mode mode,
int sample_rate_hz,
int capture_level) {
RTC_DCHECK(state_);
int error =
WebRtcAgc_Init(state_, minimum_capture_level, maximum_capture_level,
MapSetting(mode), sample_rate_hz);
RTC_DCHECK_EQ(0, error);
set_capture_level(capture_level);
}
void set_capture_level(int capture_level) { capture_level_ = capture_level; }
int get_capture_level() {
RTC_DCHECK(capture_level_);
return *capture_level_;
}
private:
Handle* state_;
// TODO(peah): Remove the optional once the initialization is moved into the
// ctor.
absl::optional<int> capture_level_;
RTC_DISALLOW_COPY_AND_ASSIGN(GainController);
MonoAgcState(const MonoAgcState&) = delete;
MonoAgcState& operator=(const MonoAgcState&) = delete;
int32_t gains[11];
Handle* state;
};
int GainControlImpl::instance_counter_ = 0;
GainControlImpl::GainControlImpl()
: data_dumper_(new ApmDataDumper(instance_counter_)),
use_legacy_gain_applier_(UseLegacyDigitalGainApplier()),
mode_(kAdaptiveAnalog),
minimum_capture_level_(0),
maximum_capture_level_(255),
@ -102,7 +108,7 @@ GainControlImpl::GainControlImpl()
was_analog_level_set_(false),
stream_is_saturated_(false) {}
GainControlImpl::~GainControlImpl() {}
GainControlImpl::~GainControlImpl() = default;
void GainControlImpl::ProcessRenderAudio(
rtc::ArrayView<const int16_t> packed_render_audio) {
@ -110,8 +116,8 @@ void GainControlImpl::ProcessRenderAudio(
return;
}
for (auto& gain_controller : gain_controllers_) {
WebRtcAgc_AddFarend(gain_controller->state(), packed_render_audio.data(),
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
WebRtcAgc_AddFarend(mono_agcs_[ch]->state, packed_render_audio.data(),
packed_render_audio.size());
}
}
@ -120,27 +126,28 @@ void GainControlImpl::PackRenderAudioBuffer(
const AudioBuffer& audio,
std::vector<int16_t>* packed_buffer) {
RTC_DCHECK_GE(AudioBuffer::kMaxSplitFrameLength, audio.num_frames_per_band());
std::array<int16_t, AudioBuffer::kMaxSplitFrameLength> mixed_low_pass_data;
rtc::ArrayView<const int16_t> mixed_low_pass(mixed_low_pass_data.data(),
audio.num_frames_per_band());
std::array<int16_t, AudioBuffer::kMaxSplitFrameLength>
mixed_16_kHz_render_data;
rtc::ArrayView<const int16_t> mixed_16_kHz_render(
mixed_16_kHz_render_data.data(), audio.num_frames_per_band());
if (audio.num_channels() == 1) {
FloatS16ToS16(audio.split_bands_const(0)[kBand0To8kHz],
audio.num_frames_per_band(), mixed_low_pass_data.data());
audio.num_frames_per_band(), mixed_16_kHz_render_data.data());
} else {
const int num_channels = static_cast<int>(audio.num_channels());
for (size_t i = 0; i < audio.num_frames_per_band(); ++i) {
int32_t value =
FloatS16ToS16(audio.split_channels_const(kBand0To8kHz)[0][i]);
for (int j = 1; j < num_channels; ++j) {
value += FloatS16ToS16(audio.split_channels_const(kBand0To8kHz)[j][i]);
int32_t sum = 0;
for (int ch = 0; ch < num_channels; ++ch) {
sum += FloatS16ToS16(audio.split_channels_const(kBand0To8kHz)[ch][i]);
}
mixed_low_pass_data[i] = value / num_channels;
mixed_16_kHz_render_data[i] = sum / num_channels;
}
}
packed_buffer->clear();
packed_buffer->insert(packed_buffer->end(), mixed_low_pass.data(),
(mixed_low_pass.data() + audio.num_frames_per_band()));
packed_buffer->insert(
packed_buffer->end(), mixed_16_kHz_render.data(),
(mixed_16_kHz_render.data() + audio.num_frames_per_band()));
}
int GainControlImpl::AnalyzeCaptureAudio(const AudioBuffer& audio) {
@ -151,7 +158,7 @@ int GainControlImpl::AnalyzeCaptureAudio(const AudioBuffer& audio) {
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK_GE(AudioBuffer::kMaxSplitFrameLength, audio.num_frames_per_band());
RTC_DCHECK_EQ(audio.num_channels(), *num_proc_channels_);
RTC_DCHECK_LE(*num_proc_channels_, gain_controllers_.size());
RTC_DCHECK_LE(*num_proc_channels_, mono_agcs_.size());
int16_t split_band_data[AudioBuffer::kMaxNumBands]
[AudioBuffer::kMaxSplitFrameLength];
@ -159,39 +166,35 @@ int GainControlImpl::AnalyzeCaptureAudio(const AudioBuffer& audio) {
split_band_data[0], split_band_data[1], split_band_data[2]};
if (mode_ == kAdaptiveAnalog) {
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
gain_controller->set_capture_level(analog_capture_level_);
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
capture_levels_[ch] = analog_capture_level_;
audio.ExportSplitChannelData(capture_channel, split_bands);
audio.ExportSplitChannelData(ch, split_bands);
int err =
WebRtcAgc_AddMic(gain_controller->state(), split_bands,
WebRtcAgc_AddMic(mono_agcs_[ch]->state, split_bands,
audio.num_bands(), audio.num_frames_per_band());
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
++capture_channel;
}
} else if (mode_ == kAdaptiveDigital) {
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
int32_t capture_level_out = 0;
audio.ExportSplitChannelData(capture_channel, split_bands);
audio.ExportSplitChannelData(ch, split_bands);
int err =
WebRtcAgc_VirtualMic(gain_controller->state(), split_bands,
WebRtcAgc_VirtualMic(mono_agcs_[ch]->state, split_bands,
audio.num_bands(), audio.num_frames_per_band(),
analog_capture_level_, &capture_level_out);
gain_controller->set_capture_level(capture_level_out);
capture_levels_[ch] = capture_level_out;
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
}
++capture_channel;
}
}
@ -214,57 +217,78 @@ int GainControlImpl::ProcessCaptureAudio(AudioBuffer* audio,
RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_);
stream_is_saturated_ = false;
int capture_channel = 0;
for (auto& gain_controller : gain_controllers_) {
int32_t capture_level_out = 0;
uint8_t saturation_warning = 0;
bool error_reported = false;
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
int16_t split_band_data[AudioBuffer::kMaxNumBands]
[AudioBuffer::kMaxSplitFrameLength];
int16_t* split_bands[AudioBuffer::kMaxNumBands] = {
split_band_data[0], split_band_data[1], split_band_data[2]};
audio->ExportSplitChannelData(capture_channel, split_bands);
audio->ExportSplitChannelData(ch, split_bands);
// The call to stream_has_echo() is ok from a deadlock perspective
// as the capture lock is allready held.
int err = WebRtcAgc_Process(
gain_controller->state(), split_bands, audio->num_bands(),
audio->num_frames_per_band(), split_bands,
gain_controller->get_capture_level(), &capture_level_out,
stream_has_echo, &saturation_warning);
int32_t new_capture_level = 0;
uint8_t saturation_warning = 0;
int err_analyze = WebRtcAgc_Analyze(
mono_agcs_[ch]->state, split_bands, audio->num_bands(),
audio->num_frames_per_band(), capture_levels_[ch], &new_capture_level,
stream_has_echo, &saturation_warning, mono_agcs_[ch]->gains);
capture_levels_[ch] = new_capture_level;
audio->ImportSplitChannelData(capture_channel, split_bands);
error_reported = error_reported || err_analyze != AudioProcessing::kNoError;
if (err != AudioProcessing::kNoError) {
return AudioProcessing::kUnspecifiedError;
stream_is_saturated_ = stream_is_saturated_ || saturation_warning == 1;
}
// Choose the minimun gain for application
size_t index_to_apply = 0;
for (size_t ch = 1; ch < mono_agcs_.size(); ++ch) {
if (mono_agcs_[index_to_apply]->gains[10] < mono_agcs_[ch]->gains[10]) {
index_to_apply = ch;
}
}
gain_controller->set_capture_level(capture_level_out);
if (saturation_warning == 1) {
stream_is_saturated_ = true;
if (use_legacy_gain_applier_) {
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
int16_t split_band_data[AudioBuffer::kMaxNumBands]
[AudioBuffer::kMaxSplitFrameLength];
int16_t* split_bands[AudioBuffer::kMaxNumBands] = {
split_band_data[0], split_band_data[1], split_band_data[2]};
audio->ExportSplitChannelData(ch, split_bands);
int err_process = WebRtcAgc_Process(
mono_agcs_[ch]->state, mono_agcs_[index_to_apply]->gains, split_bands,
audio->num_bands(), split_bands);
RTC_DCHECK_EQ(err_process, 0);
audio->ImportSplitChannelData(ch, split_bands);
}
} else {
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
ApplyDigitalGain(mono_agcs_[index_to_apply]->gains, audio->num_bands(),
audio->split_bands(ch));
}
++capture_channel;
}
RTC_DCHECK_LT(0ul, *num_proc_channels_);
if (mode_ == kAdaptiveAnalog) {
// Take the analog level to be the average across the handles.
analog_capture_level_ = 0;
for (auto& gain_controller : gain_controllers_) {
analog_capture_level_ += gain_controller->get_capture_level();
// Take the analog level to be the minimum accross all channels.
analog_capture_level_ = capture_levels_[0];
for (size_t ch = 1; ch < mono_agcs_.size(); ++ch) {
analog_capture_level_ =
std::min(analog_capture_level_, capture_levels_[ch]);
}
}
analog_capture_level_ /= (*num_proc_channels_);
if (error_reported) {
return AudioProcessing::kUnspecifiedError;
}
was_analog_level_set_ = false;
return AudioProcessing::kNoError;
}
int GainControlImpl::compression_gain_db() const {
return compression_gain_db_;
}
// TODO(ajm): ensure this is called under kAdaptiveAnalog.
int GainControlImpl::set_stream_analog_level(int level) {
@ -282,9 +306,6 @@ int GainControlImpl::set_stream_analog_level(int level) {
int GainControlImpl::stream_analog_level() const {
data_dumper_->DumpRaw("gain_control_stream_analog_level", 1,
&analog_capture_level_);
// TODO(ajm): enable this assertion?
// RTC_DCHECK_EQ(kAdaptiveAnalog, mode_);
return analog_capture_level_;
}
@ -301,10 +322,6 @@ int GainControlImpl::Enable(bool enable) {
return AudioProcessing::kNoError;
}
bool GainControlImpl::is_enabled() const {
return enabled_;
}
int GainControlImpl::set_mode(Mode mode) {
if (MapSetting(mode) == -1) {
return AudioProcessing::kBadParameterError;
@ -317,49 +334,21 @@ int GainControlImpl::set_mode(Mode mode) {
return AudioProcessing::kNoError;
}
GainControl::Mode GainControlImpl::mode() const {
return mode_;
}
int GainControlImpl::set_analog_level_limits(int minimum, int maximum) {
if (minimum < 0) {
if (minimum < 0 || maximum > 65535 || maximum < minimum) {
return AudioProcessing::kBadParameterError;
}
if (maximum > 65535) {
return AudioProcessing::kBadParameterError;
}
minimum_capture_level_ = minimum;
maximum_capture_level_ = maximum;
if (maximum < minimum) {
return AudioProcessing::kBadParameterError;
}
size_t num_proc_channels_local = 0u;
int sample_rate_hz_local = 0;
{
minimum_capture_level_ = minimum;
maximum_capture_level_ = maximum;
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK(sample_rate_hz_);
num_proc_channels_local = *num_proc_channels_;
sample_rate_hz_local = *sample_rate_hz_;
}
Initialize(num_proc_channels_local, sample_rate_hz_local);
RTC_DCHECK(num_proc_channels_);
RTC_DCHECK(sample_rate_hz_);
Initialize(*num_proc_channels_, *sample_rate_hz_);
return AudioProcessing::kNoError;
}
int GainControlImpl::analog_level_minimum() const {
return minimum_capture_level_;
}
int GainControlImpl::analog_level_maximum() const {
return maximum_capture_level_;
}
bool GainControlImpl::stream_is_saturated() const {
return stream_is_saturated_;
}
int GainControlImpl::set_target_level_dbfs(int level) {
if (level > 31 || level < 0) {
@ -369,10 +358,6 @@ int GainControlImpl::set_target_level_dbfs(int level) {
return Configure();
}
int GainControlImpl::target_level_dbfs() const {
return target_level_dbfs_;
}
int GainControlImpl::set_compression_gain_db(int gain) {
if (gain < 0 || gain > 90) {
RTC_LOG(LS_ERROR) << "set_compression_gain_db(" << gain << ") failed.";
@ -387,10 +372,6 @@ int GainControlImpl::enable_limiter(bool enable) {
return Configure();
}
bool GainControlImpl::is_limiter_enabled() const {
return limiter_enabled_;
}
void GainControlImpl::Initialize(size_t num_proc_channels, int sample_rate_hz) {
data_dumper_->InitiateNewSetOfRecordings();
@ -401,13 +382,18 @@ void GainControlImpl::Initialize(size_t num_proc_channels, int sample_rate_hz) {
return;
}
gain_controllers_.resize(*num_proc_channels_);
for (auto& gain_controller : gain_controllers_) {
if (!gain_controller) {
gain_controller.reset(new GainController());
mono_agcs_.resize(*num_proc_channels_);
capture_levels_.resize(*num_proc_channels_);
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
if (!mono_agcs_[ch]) {
mono_agcs_[ch].reset(new MonoAgcState());
}
gain_controller->Initialize(minimum_capture_level_, maximum_capture_level_,
mode_, *sample_rate_hz_, analog_capture_level_);
int error = WebRtcAgc_Init(mono_agcs_[ch]->state, minimum_capture_level_,
maximum_capture_level_, MapSetting(mode_),
*sample_rate_hz_);
RTC_DCHECK_EQ(error, 0);
capture_levels_[ch] = analog_capture_level_;
}
Configure();
@ -424,11 +410,10 @@ int GainControlImpl::Configure() {
config.limiterEnable = limiter_enabled_;
int error = AudioProcessing::kNoError;
for (auto& gain_controller : gain_controllers_) {
const int handle_error =
WebRtcAgc_set_config(gain_controller->state(), config);
if (handle_error != AudioProcessing::kNoError) {
error = handle_error;
for (size_t ch = 0; ch < mono_agcs_.size(); ++ch) {
int error_ch = WebRtcAgc_set_config(mono_agcs_[ch]->state, config);
if (error_ch != AudioProcessing::kNoError) {
error = error_ch;
}
}
return error;