RNN VAD: FC and GRU layers implicit conversion to ArrayView
Plus a few minor code readability improvements. Bug: webrtc:10480 Change-Id: I590d8e203b1d05959a8c15373841e37abe83237e Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/195334 Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32764}
This commit is contained in:
committed by
Commit Bot
parent
40c3ea5c71
commit
812dc072c6
@ -39,30 +39,20 @@ constexpr std::array<float, kFeatureVectorSize> kFeatures = {
|
||||
-0.690268f, -0.925327f, -0.541354f, 0.58455f, -0.606726f, -0.0372358f,
|
||||
0.565991f, 0.435854f, 0.420812f, 0.162198f, -2.13f, 10.0089f};
|
||||
|
||||
void WarmUpRnnVad(RnnBasedVad& rnn_vad) {
|
||||
void WarmUpRnnVad(RnnVad& rnn_vad) {
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
||||
}
|
||||
}
|
||||
|
||||
void TestFullyConnectedLayer(FullyConnectedLayer* fc,
|
||||
rtc::ArrayView<const float> input_vector,
|
||||
rtc::ArrayView<const float> expected_output) {
|
||||
RTC_CHECK(fc);
|
||||
fc->ComputeOutput(input_vector);
|
||||
ExpectNearAbsolute(expected_output, fc->GetOutput(), 1e-5f);
|
||||
}
|
||||
|
||||
void TestGatedRecurrentLayer(
|
||||
GatedRecurrentLayer& gru,
|
||||
rtc::ArrayView<const float> input_sequence,
|
||||
rtc::ArrayView<const float> expected_output_sequence) {
|
||||
auto gru_output_view = gru.GetOutput();
|
||||
const int input_sequence_length = rtc::CheckedDivExact(
|
||||
rtc::dchecked_cast<int>(input_sequence.size()), gru.input_size());
|
||||
const int output_sequence_length = rtc::CheckedDivExact(
|
||||
rtc::dchecked_cast<int>(expected_output_sequence.size()),
|
||||
gru.output_size());
|
||||
rtc::dchecked_cast<int>(expected_output_sequence.size()), gru.size());
|
||||
ASSERT_EQ(input_sequence_length, output_sequence_length)
|
||||
<< "The test data length is invalid.";
|
||||
// Feed the GRU layer and check the output at every step.
|
||||
@ -71,9 +61,9 @@ void TestGatedRecurrentLayer(
|
||||
SCOPED_TRACE(i);
|
||||
gru.ComputeOutput(
|
||||
input_sequence.subview(i * gru.input_size(), gru.input_size()));
|
||||
const auto expected_output = expected_output_sequence.subview(
|
||||
i * gru.output_size(), gru.output_size());
|
||||
ExpectNearAbsolute(expected_output, gru_output_view, 3e-6f);
|
||||
const auto expected_output =
|
||||
expected_output_sequence.subview(i * gru.size(), gru.size());
|
||||
ExpectNearAbsolute(expected_output, gru, 3e-6f);
|
||||
}
|
||||
}
|
||||
|
||||
@ -190,8 +180,8 @@ TEST_P(RnnParametrization, CheckFullyConnectedLayerOutput) {
|
||||
rnnoise::kInputLayerInputSize, rnnoise::kInputLayerOutputSize,
|
||||
rnnoise::kInputDenseBias, rnnoise::kInputDenseWeights,
|
||||
rnnoise::TansigApproximated, /*cpu_features=*/GetParam());
|
||||
TestFullyConnectedLayer(&fc, kFullyConnectedInputVector,
|
||||
kFullyConnectedExpectedOutput);
|
||||
fc.ComputeOutput(kFullyConnectedInputVector);
|
||||
ExpectNearAbsolute(kFullyConnectedExpectedOutput, fc, 1e-5f);
|
||||
}
|
||||
|
||||
TEST_P(RnnParametrization, DISABLED_BenchmarkFullyConnectedLayer) {
|
||||
@ -237,7 +227,7 @@ INSTANTIATE_TEST_SUITE_P(
|
||||
|
||||
// Checks that the speech probability is zero with silence.
|
||||
TEST(RnnVadTest, CheckZeroProbabilityWithSilence) {
|
||||
RnnBasedVad rnn_vad(GetAvailableCpuFeatures());
|
||||
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
||||
WarmUpRnnVad(rnn_vad);
|
||||
EXPECT_EQ(rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true), 0.f);
|
||||
}
|
||||
@ -245,7 +235,7 @@ TEST(RnnVadTest, CheckZeroProbabilityWithSilence) {
|
||||
// Checks that the same output is produced after reset given the same input
|
||||
// sequence.
|
||||
TEST(RnnVadTest, CheckRnnVadReset) {
|
||||
RnnBasedVad rnn_vad(GetAvailableCpuFeatures());
|
||||
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
||||
WarmUpRnnVad(rnn_vad);
|
||||
float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
||||
rnn_vad.Reset();
|
||||
@ -257,7 +247,7 @@ TEST(RnnVadTest, CheckRnnVadReset) {
|
||||
// Checks that the same output is produced after silence is observed given the
|
||||
// same input sequence.
|
||||
TEST(RnnVadTest, CheckRnnVadSilence) {
|
||||
RnnBasedVad rnn_vad(GetAvailableCpuFeatures());
|
||||
RnnVad rnn_vad(GetAvailableCpuFeatures());
|
||||
WarmUpRnnVad(rnn_vad);
|
||||
float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false);
|
||||
rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true);
|
||||
|
||||
Reference in New Issue
Block a user