Remove unused functions in VCMTiming.
Remove VCMTiming::EnoughTimeToDecode, VCMTiming::ResetDecodeTime. Make VCMTiming::StopDecodeTimer void (always returning zero). Update ReceiverTiming.WrapAround test to insert timestamp that wraps. Bug: none Change-Id: I85a8bfd6be18371810b638284b4af73a46894be7 Reviewed-on: https://webrtc-review.googlesource.com/36060 Reviewed-by: Rasmus Brandt <brandtr@webrtc.org> Commit-Queue: Åsa Persson <asapersson@webrtc.org> Cr-Commit-Position: refs/heads/master@{#21660}
This commit is contained in:
@ -8,138 +8,123 @@
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "modules/video_coding/include/video_coding.h"
|
||||
#include "modules/video_coding/internal_defines.h"
|
||||
#include "modules/video_coding/timing.h"
|
||||
#include "system_wrappers/include/clock.h"
|
||||
#include "test/gtest.h"
|
||||
#include "test/testsupport/fileutils.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
const int kFps = 25;
|
||||
} // namespace
|
||||
|
||||
TEST(ReceiverTiming, Tests) {
|
||||
SimulatedClock clock(0);
|
||||
VCMTiming timing(&clock);
|
||||
uint32_t waitTime = 0;
|
||||
uint32_t jitterDelayMs = 0;
|
||||
uint32_t requiredDecodeTimeMs = 0;
|
||||
uint32_t timeStamp = 0;
|
||||
timing.Reset();
|
||||
|
||||
uint32_t timestamp = 0;
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
|
||||
timing.Reset();
|
||||
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
|
||||
timing.Reset();
|
||||
|
||||
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
||||
jitterDelayMs = 20;
|
||||
timing.SetJitterDelay(jitterDelayMs);
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
uint32_t jitter_delay_ms = 20;
|
||||
timing.SetJitterDelay(jitter_delay_ms);
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
timing.set_render_delay(0);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
uint32_t wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
// First update initializes the render time. Since we have no decode delay
|
||||
// we get waitTime = renderTime - now - renderDelay = jitter.
|
||||
EXPECT_EQ(jitterDelayMs, waitTime);
|
||||
// we get wait_time_ms = renderTime - now - renderDelay = jitter.
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
||||
timeStamp += 90000;
|
||||
jitter_delay_ms += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
||||
timestamp += 90000;
|
||||
clock.AdvanceTimeMilliseconds(1000);
|
||||
timing.SetJitterDelay(jitterDelayMs);
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
timing.SetJitterDelay(jitter_delay_ms);
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
// Since we gradually increase the delay we only get 100 ms every second.
|
||||
EXPECT_EQ(jitterDelayMs - 10, waitTime);
|
||||
EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms);
|
||||
|
||||
timeStamp += 90000;
|
||||
timestamp += 90000;
|
||||
clock.AdvanceTimeMilliseconds(1000);
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
EXPECT_EQ(waitTime, jitterDelayMs);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
// 300 incoming frames without jitter, verify that this gives the exact wait
|
||||
// time.
|
||||
for (int i = 0; i < 300; i++) {
|
||||
clock.AdvanceTimeMilliseconds(1000 / 25);
|
||||
timeStamp += 90000 / 25;
|
||||
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
||||
// Insert frames without jitter, verify that this gives the exact wait time.
|
||||
const int kNumFrames = 300;
|
||||
for (int i = 0; i < kNumFrames; i++) {
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps);
|
||||
timestamp += 90000 / kFps;
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
}
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
EXPECT_EQ(waitTime, jitterDelayMs);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
// Add decode time estimates.
|
||||
for (int i = 0; i < 10; i++) {
|
||||
int64_t startTimeMs = clock.TimeInMilliseconds();
|
||||
clock.AdvanceTimeMilliseconds(10);
|
||||
// Add decode time estimates for 1 second.
|
||||
const uint32_t kDecodeTimeMs = 10;
|
||||
for (int i = 0; i < kFps; i++) {
|
||||
clock.AdvanceTimeMilliseconds(kDecodeTimeMs);
|
||||
timing.StopDecodeTimer(
|
||||
timeStamp, clock.TimeInMilliseconds() - startTimeMs,
|
||||
clock.TimeInMilliseconds(),
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()));
|
||||
timeStamp += 90000 / 25;
|
||||
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
|
||||
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
|
||||
timestamp, kDecodeTimeMs, clock.TimeInMilliseconds(),
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()));
|
||||
timestamp += 90000 / kFps;
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps - kDecodeTimeMs);
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
}
|
||||
requiredDecodeTimeMs = 10;
|
||||
timing.SetJitterDelay(jitterDelayMs);
|
||||
clock.AdvanceTimeMilliseconds(1000);
|
||||
timeStamp += 90000;
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
EXPECT_EQ(waitTime, jitterDelayMs);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
|
||||
int minTotalDelayMs = 200;
|
||||
timing.set_min_playout_delay(minTotalDelayMs);
|
||||
const int kMinTotalDelayMs = 200;
|
||||
timing.set_min_playout_delay(kMinTotalDelayMs);
|
||||
clock.AdvanceTimeMilliseconds(5000);
|
||||
timeStamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
timestamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
const int kRenderDelayMs = 10;
|
||||
timing.set_render_delay(kRenderDelayMs);
|
||||
waitTime = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds());
|
||||
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime
|
||||
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
|
||||
// (10) to wait.
|
||||
EXPECT_EQ(waitTime, minTotalDelayMs - requiredDecodeTimeMs - kRenderDelayMs);
|
||||
EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms);
|
||||
// The total video delay should be equal to the min total delay.
|
||||
EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
|
||||
EXPECT_EQ(kMinTotalDelayMs, timing.TargetVideoDelay());
|
||||
|
||||
// Reset playout delay.
|
||||
timing.set_min_playout_delay(0);
|
||||
clock.AdvanceTimeMilliseconds(5000);
|
||||
timeStamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timeStamp);
|
||||
timestamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
}
|
||||
|
||||
TEST(ReceiverTiming, WrapAround) {
|
||||
const int kFramerate = 25;
|
||||
SimulatedClock clock(0);
|
||||
VCMTiming timing(&clock);
|
||||
// Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
|
||||
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
|
||||
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFps;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
|
||||
timestamp += 90000 / kFramerate;
|
||||
int64_t render_time =
|
||||
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds());
|
||||
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
|
||||
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
|
||||
clock.TimeInMilliseconds());
|
||||
EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps);
|
||||
timestamp += 90000 / kFps;
|
||||
EXPECT_EQ(3 * 1000 / kFps,
|
||||
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()));
|
||||
EXPECT_EQ(3 * 1000 / kFps + 1,
|
||||
timing.RenderTimeMs(89u, // One ms later in 90 kHz.
|
||||
clock.TimeInMilliseconds()));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user