Deprecate inheritance hierachy of plot formats in event_log_visualizer.

Instead add separate printing functions for each plot format in the base class.

Bug: webrtc:11566
Change-Id: I8adfc983b4e8a66c477de4022c2d97b6975d7e5c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/176563
Reviewed-by: Artem Titov <titovartem@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Andrey Logvin <landrey@webrtc.org>
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#31496}
This commit is contained in:
Bjorn Terelius
2020-06-09 17:17:21 +02:00
committed by Commit Bot
parent e366045375
commit 8a89b5bc0d
8 changed files with 272 additions and 236 deletions

View File

@ -25,149 +25,7 @@ PythonPlot::PythonPlot() {}
PythonPlot::~PythonPlot() {}
void PythonPlot::Draw() {
// Write python commands to stdout. Intended program usage is
// ./event_log_visualizer event_log160330.dump | python
if (!series_list_.empty()) {
printf("color_count = %zu\n", series_list_.size());
printf(
"hls_colors = [(i*1.0/color_count, 0.25+i*0.5/color_count, 0.8) for i "
"in range(color_count)]\n");
printf("colors = [colorsys.hls_to_rgb(*hls) for hls in hls_colors]\n");
for (size_t i = 0; i < series_list_.size(); i++) {
printf("\n# === Series: %s ===\n", series_list_[i].label.c_str());
// List x coordinates
printf("x%zu = [", i);
if (!series_list_[i].points.empty())
printf("%.3f", series_list_[i].points[0].x);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %.3f", series_list_[i].points[j].x);
printf("]\n");
// List y coordinates
printf("y%zu = [", i);
if (!series_list_[i].points.empty())
printf("%G", series_list_[i].points[0].y);
for (size_t j = 1; j < series_list_[i].points.size(); j++)
printf(", %G", series_list_[i].points[j].y);
printf("]\n");
if (series_list_[i].line_style == LineStyle::kBar) {
// There is a plt.bar function that draws bar plots,
// but it is *way* too slow to be useful.
printf(
"plt.vlines(x%zu, map(lambda t: min(t,0), y%zu), map(lambda t: "
"max(t,0), y%zu), color=colors[%zu], "
"label=\'%s\')\n",
i, i, i, i, series_list_[i].label.c_str());
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], "
"marker='.', ls=' ')\n",
i, i, i);
}
} else if (series_list_[i].line_style == LineStyle::kLine) {
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', "
"marker='.')\n",
i, i, i, series_list_[i].label.c_str());
} else {
printf("plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\')\n", i,
i, i, series_list_[i].label.c_str());
}
} else if (series_list_[i].line_style == LineStyle::kStep) {
// Draw lines from (x[0],y[0]) to (x[1],y[0]) to (x[1],y[1]) and so on
// to illustrate the "steps". This can be expressed by duplicating all
// elements except the first in x and the last in y.
printf("xd%zu = [dup for v in x%zu for dup in [v, v]]\n", i, i);
printf("yd%zu = [dup for v in y%zu for dup in [v, v]]\n", i, i);
printf(
"plt.plot(xd%zu[1:], yd%zu[:-1], color=colors[%zu], "
"label=\'%s\')\n",
i, i, i, series_list_[i].label.c_str());
if (series_list_[i].point_style == PointStyle::kHighlight) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], "
"marker='.', ls=' ')\n",
i, i, i);
}
} else if (series_list_[i].line_style == LineStyle::kNone) {
printf(
"plt.plot(x%zu, y%zu, color=colors[%zu], label=\'%s\', "
"marker='o', ls=' ')\n",
i, i, i, series_list_[i].label.c_str());
} else {
printf("raise Exception(\"Unknown graph type\")\n");
}
}
// IntervalSeries
printf("interval_colors = ['#ff8e82','#5092fc','#c4ffc4','#aaaaaa']\n");
RTC_CHECK_LE(interval_list_.size(), 4);
// To get the intervals to show up in the legend we have to create patches
// for them.
printf("legend_patches = []\n");
for (size_t i = 0; i < interval_list_.size(); i++) {
// List intervals
printf("\n# === IntervalSeries: %s ===\n",
interval_list_[i].label.c_str());
printf("ival%zu = [", i);
if (!interval_list_[i].intervals.empty()) {
printf("(%G, %G)", interval_list_[i].intervals[0].begin,
interval_list_[i].intervals[0].end);
}
for (size_t j = 1; j < interval_list_[i].intervals.size(); j++) {
printf(", (%G, %G)", interval_list_[i].intervals[j].begin,
interval_list_[i].intervals[j].end);
}
printf("]\n");
printf("for i in range(0, %zu):\n", interval_list_[i].intervals.size());
if (interval_list_[i].orientation == IntervalSeries::kVertical) {
printf(
" plt.axhspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
} else {
printf(
" plt.axvspan(ival%zu[i][0], ival%zu[i][1], "
"facecolor=interval_colors[%zu], "
"alpha=0.3)\n",
i, i, i);
}
printf(
"legend_patches.append(mpatches.Patch(ec=\'black\', "
"fc=interval_colors[%zu], label='%s'))\n",
i, interval_list_[i].label.c_str());
}
}
printf("plt.xlim(%f, %f)\n", xaxis_min_, xaxis_max_);
printf("plt.ylim(%f, %f)\n", yaxis_min_, yaxis_max_);
printf("plt.xlabel(\'%s\')\n", xaxis_label_.c_str());
printf("plt.ylabel(\'%s\')\n", yaxis_label_.c_str());
printf("plt.title(\'%s\')\n", title_.c_str());
printf("fig = plt.gcf()\n");
printf("fig.canvas.set_window_title(\'%s\')\n", id_.c_str());
if (!yaxis_tick_labels_.empty()) {
printf("yaxis_tick_labels = [");
for (const auto& kv : yaxis_tick_labels_) {
printf("(%f,\"%s\"),", kv.first, kv.second.c_str());
}
printf("]\n");
printf("yaxis_tick_labels = list(zip(*yaxis_tick_labels))\n");
printf("plt.yticks(*yaxis_tick_labels)\n");
}
if (!series_list_.empty() || !interval_list_.empty()) {
printf("handles, labels = plt.gca().get_legend_handles_labels()\n");
printf("for lp in legend_patches:\n");
printf(" handles.append(lp)\n");
printf(" labels.append(lp.get_label())\n");
printf("plt.legend(handles, labels, loc=\'best\', fontsize=\'small\')\n");
}
PrintPythonCode();
}
PythonPlotCollection::PythonPlotCollection(bool shared_xaxis)
@ -176,24 +34,7 @@ PythonPlotCollection::PythonPlotCollection(bool shared_xaxis)
PythonPlotCollection::~PythonPlotCollection() {}
void PythonPlotCollection::Draw() {
printf("import matplotlib.pyplot as plt\n");
printf("plt.rcParams.update({'figure.max_open_warning': 0})\n");
printf("import matplotlib.patches as mpatches\n");
printf("import matplotlib.patheffects as pe\n");
printf("import colorsys\n");
for (size_t i = 0; i < plots_.size(); i++) {
printf("plt.figure(%zu)\n", i);
if (shared_xaxis_) {
// Link x-axes across all figures for synchronized zooming.
if (i == 0) {
printf("axis0 = plt.subplot(111)\n");
} else {
printf("plt.subplot(111, sharex=axis0)\n");
}
}
plots_[i]->Draw();
}
printf("plt.show()\n");
PrintPythonCode(shared_xaxis_);
}
Plot* PythonPlotCollection::AppendNewPlot() {