Remove legacy delay manger field trial and update default config.

Bug: webrtc:10333
Change-Id: I20e55d8d111d93657d1afe556fe3a325337c074c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/232820
Reviewed-by: Ivo Creusen <ivoc@webrtc.org>
Commit-Queue: Jakob Ivarsson <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35321}
This commit is contained in:
Jakob Ivarsson
2021-11-05 10:23:56 +01:00
committed by WebRTC LUCI CQ
parent 28c7180999
commit 93849d4b2a
11 changed files with 144 additions and 293 deletions

View File

@ -20,6 +20,7 @@
#include "modules/include/module_common_types_public.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
@ -45,9 +46,17 @@ std::unique_ptr<ReorderOptimizer> MaybeCreateReorderOptimizer(
} // namespace
DelayManager::Config::Config() {
Parser()->Parse(webrtc::field_trial::FindFullName(
"WebRTC-Audio-NetEqDelayManagerConfig"));
MaybeUpdateFromLegacyFieldTrial();
StructParametersParser::Create( //
"quantile", &quantile, //
"forget_factor", &forget_factor, //
"start_forget_weight", &start_forget_weight, //
"resample_interval_ms", &resample_interval_ms, //
"max_history_ms", &max_history_ms, //
"use_reorder_optimizer", &use_reorder_optimizer, //
"reorder_forget_factor", &reorder_forget_factor, //
"ms_per_loss_percent", &ms_per_loss_percent)
->Parse(webrtc::field_trial::FindFullName(
"WebRTC-Audio-NetEqDelayManagerConfig"));
}
void DelayManager::Config::Log() {
@ -63,42 +72,6 @@ void DelayManager::Config::Log() {
<< " ms_per_loss_percent=" << ms_per_loss_percent;
}
std::unique_ptr<StructParametersParser> DelayManager::Config::Parser() {
return StructParametersParser::Create( //
"quantile", &quantile, //
"forget_factor", &forget_factor, //
"start_forget_weight", &start_forget_weight, //
"resample_interval_ms", &resample_interval_ms, //
"max_history_ms", &max_history_ms, //
"use_reorder_optimizer", &use_reorder_optimizer, //
"reorder_forget_factor", &reorder_forget_factor, //
"ms_per_loss_percent", &ms_per_loss_percent);
}
// TODO(jakobi): remove legacy field trial.
void DelayManager::Config::MaybeUpdateFromLegacyFieldTrial() {
constexpr char kDelayHistogramFieldTrial[] =
"WebRTC-Audio-NetEqDelayHistogram";
if (!webrtc::field_trial::IsEnabled(kDelayHistogramFieldTrial)) {
return;
}
const auto field_trial_string =
webrtc::field_trial::FindFullName(kDelayHistogramFieldTrial);
double percentile = -1.0;
double forget_factor = -1.0;
double start_forget_weight = -1.0;
if (sscanf(field_trial_string.c_str(), "Enabled-%lf-%lf-%lf", &percentile,
&forget_factor, &start_forget_weight) >= 2 &&
percentile >= 0.0 && percentile <= 100.0 && forget_factor >= 0.0 &&
forget_factor <= 1.0) {
this->quantile = percentile / 100;
this->forget_factor = forget_factor;
this->start_forget_weight = start_forget_weight >= 1
? absl::make_optional(start_forget_weight)
: absl::nullopt;
}
}
DelayManager::DelayManager(const Config& config, const TickTimer* tick_timer)
: max_packets_in_buffer_(config.max_packets_in_buffer),
underrun_optimizer_(tick_timer,

View File

@ -23,7 +23,6 @@
#include "modules/audio_coding/neteq/reorder_optimizer.h"
#include "modules/audio_coding/neteq/underrun_optimizer.h"
#include "rtc_base/constructor_magic.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
namespace webrtc {
@ -34,10 +33,10 @@ class DelayManager {
void Log();
// Options that can be configured via field trial.
double quantile = 0.97;
double forget_factor = 0.9993;
double quantile = 0.95;
double forget_factor = 0.983;
absl::optional<double> start_forget_weight = 2;
absl::optional<int> resample_interval_ms;
absl::optional<int> resample_interval_ms = 500;
int max_history_ms = 2000;
bool use_reorder_optimizer = true;
@ -47,12 +46,6 @@ class DelayManager {
// Options that are externally populated.
int max_packets_in_buffer = 200;
int base_minimum_delay_ms = 0;
private:
std::unique_ptr<StructParametersParser> Parser();
// TODO(jakobi): remove legacy field trial.
void MaybeUpdateFromLegacyFieldTrial();
};
DelayManager(const Config& config, const TickTimer* tick_timer);

View File

@ -44,8 +44,8 @@ class DelayManagerTest : public ::testing::Test {
absl::optional<int> InsertNextPacket();
void IncreaseTime(int inc_ms);
DelayManager dm_;
TickTimer tick_timer_;
DelayManager dm_;
uint32_t ts_;
};
@ -74,39 +74,18 @@ TEST_F(DelayManagerTest, CreateAndDestroy) {
}
TEST_F(DelayManagerTest, UpdateNormal) {
// First packet arrival.
InsertNextPacket();
// Advance time by one frame size.
IncreaseTime(kFrameSizeMs);
// Second packet arrival.
InsertNextPacket();
for (int i = 0; i < 50; ++i) {
InsertNextPacket();
IncreaseTime(kFrameSizeMs);
}
EXPECT_EQ(20, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) {
// First packet arrival.
InsertNextPacket();
// Advance time by two frame size.
IncreaseTime(2 * kFrameSizeMs);
// Second packet arrival.
InsertNextPacket();
EXPECT_EQ(40, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, MaxDelay) {
const int kExpectedTarget = 5 * kFrameSizeMs;
// First packet arrival.
InsertNextPacket();
// Second packet arrival.
IncreaseTime(kExpectedTarget);
InsertNextPacket();
// No limit is set.
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
const int kMaxDelayMs = 3 * kFrameSizeMs;
const int kMaxDelayMs = 60;
EXPECT_GT(dm_.TargetDelayMs(), kMaxDelayMs);
EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs));
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs());
@ -115,17 +94,9 @@ TEST_F(DelayManagerTest, MaxDelay) {
}
TEST_F(DelayManagerTest, MinDelay) {
const int kExpectedTarget = 5 * kFrameSizeMs;
// First packet arrival.
InsertNextPacket();
// Second packet arrival.
IncreaseTime(kExpectedTarget);
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
int kMinDelayMs = 7 * kFrameSizeMs;
EXPECT_LT(dm_.TargetDelayMs(), kMinDelayMs);
dm_.SetMinimumDelay(kMinDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
@ -251,48 +222,11 @@ TEST_F(DelayManagerTest, MinimumDelayMemorization) {
}
TEST_F(DelayManagerTest, BaseMinimumDelay) {
const int kExpectedTarget = 5 * kFrameSizeMs;
// First packet arrival.
InsertNextPacket();
// Second packet arrival.
IncreaseTime(kExpectedTarget);
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kExpectedTarget, dm_.TargetDelayMs());
constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs;
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
IncreaseTime(kFrameSizeMs);
InsertNextPacket();
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);
EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs());
}
TEST_F(DelayManagerTest, BaseMinimumDelayAffectsTargetDelay) {
const int kExpectedTarget = 5;
const int kTimeIncrement = kExpectedTarget * kFrameSizeMs;
// First packet arrival.
InsertNextPacket();
// Second packet arrival.
IncreaseTime(kTimeIncrement);
InsertNextPacket();
// No limit is applied.
EXPECT_EQ(kTimeIncrement, dm_.TargetDelayMs());
// Minimum delay is lower than base minimum delay, that is why base minimum
// delay is used to calculate target level.
constexpr int kMinimumDelayPackets = kExpectedTarget + 1;
constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2;
constexpr int kMinimumDelayMs = kMinimumDelayPackets * kFrameSizeMs;
constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs;
EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs));
EXPECT_LT(dm_.TargetDelayMs(), kBaseMinimumDelayMs);
EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs));
EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs);

View File

@ -1370,7 +1370,7 @@ int NetEqImpl::GetDecision(Operation* operation,
}
}
timestamp_ = end_timestamp;
timestamp_ = sync_buffer_->end_timestamp();
return 0;
}

View File

@ -1026,22 +1026,37 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
EXPECT_CALL(mock_decoder, PacketDuration(nullptr, 0))
.WillRepeatedly(Return(rtc::checked_cast<int>(kPayloadLengthSamples)));
// Pointee(x) verifies that first byte of the payload equals x, this makes it
// possible to verify that the correct payload is fed to Decode().
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(0), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("opus", 48000, 2)));
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(1), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
struct Packet {
int sequence_number_delta;
int timestamp_delta;
AudioDecoder::SpeechType decoder_output_type;
};
std::vector<Packet> packets = {
{0, 0, AudioDecoder::kSpeech},
{1, kPayloadLengthSamples, AudioDecoder::kComfortNoise},
{2, 2 * kPayloadLengthSamples, AudioDecoder::kSpeech},
{1, kPayloadLengthSamples, AudioDecoder::kSpeech}};
for (size_t i = 0; i < packets.size(); ++i) {
rtp_header.sequenceNumber += packets[i].sequence_number_delta;
rtp_header.timestamp += packets[i].timestamp_delta;
payload[0] = i;
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload));
// Pointee(x) verifies that first byte of the payload equals x, this makes
// it possible to verify that the correct payload is fed to Decode().
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(i), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(
dummy_output, dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(packets[i].decoder_output_type),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
}
// Expect comfort noise to be returned by the decoder.
EXPECT_CALL(mock_decoder,
DecodeInternal(IsNull(), 0, kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
@ -1049,87 +1064,24 @@ TEST_F(NetEqImplTest, CodecInternalCng) {
SetArgPointee<4>(AudioDecoder::kComfortNoise),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
EXPECT_CALL(mock_decoder, DecodeInternal(Pointee(2), kPayloadLengthBytes,
kSampleRateKhz * 1000, _, _))
.WillOnce(DoAll(SetArrayArgument<3>(dummy_output,
dummy_output + kPayloadLengthSamples),
SetArgPointee<4>(AudioDecoder::kSpeech),
Return(rtc::checked_cast<int>(kPayloadLengthSamples))));
std::vector<AudioFrame::SpeechType> expected_output = {
AudioFrame::kNormalSpeech, AudioFrame::kCNG, AudioFrame::kNormalSpeech};
size_t output_index = 0;
EXPECT_TRUE(neteq_->RegisterPayloadType(kPayloadType,
SdpAudioFormat("opus", 48000, 2)));
const size_t kMaxOutputSize = static_cast<size_t>(10 * kSampleRateKhz);
AudioFrame output;
AudioFrame::SpeechType expected_type[8] = {
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech, AudioFrame::kCNG,
AudioFrame::kCNG, AudioFrame::kCNG, AudioFrame::kCNG,
AudioFrame::kNormalSpeech, AudioFrame::kNormalSpeech};
int expected_timestamp_increment[8] = {
-1, // will not be used.
10 * kSampleRateKhz,
-1,
-1, // timestamp will be empty during CNG mode; indicated by -1 here.
-1,
-1,
50 * kSampleRateKhz,
10 * kSampleRateKhz};
// Insert one packet (decoder will return speech).
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload));
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
absl::optional<uint32_t> last_timestamp = neteq_->GetPlayoutTimestamp();
ASSERT_TRUE(last_timestamp);
// Insert second packet (decoder will return CNG).
payload[0] = 1;
rtp_header.sequenceNumber++;
rtp_header.timestamp += kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload));
// Lambda for verifying the timestamps.
auto verify_timestamp = [&last_timestamp, &expected_timestamp_increment](
absl::optional<uint32_t> ts, size_t i) {
if (expected_timestamp_increment[i] == -1) {
// Expect to get an empty timestamp value during CNG and PLC.
EXPECT_FALSE(ts) << "i = " << i;
int timeout_counter = 0;
while (!packet_buffer_->Empty()) {
ASSERT_LT(timeout_counter++, 20) << "Test timed out";
AudioFrame output;
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
if (output_index + 1 < expected_output.size() &&
output.speech_type_ == expected_output[output_index + 1]) {
++output_index;
} else {
ASSERT_TRUE(ts) << "i = " << i;
EXPECT_EQ(*ts, *last_timestamp + expected_timestamp_increment[i])
<< "i = " << i;
last_timestamp = ts;
EXPECT_EQ(output.speech_type_, expected_output[output_index]);
}
};
for (size_t i = 1; i < 6; ++i) {
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
SCOPED_TRACE("");
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
}
// Insert third packet, which leaves a gap from last packet.
payload[0] = 2;
rtp_header.sequenceNumber += 2;
rtp_header.timestamp += 2 * kPayloadLengthSamples;
EXPECT_EQ(NetEq::kOK, neteq_->InsertPacket(rtp_header, payload));
for (size_t i = 6; i < 8; ++i) {
ASSERT_EQ(kMaxOutputSize, output.samples_per_channel_);
EXPECT_EQ(1u, output.num_channels_);
EXPECT_EQ(expected_type[i - 1], output.speech_type_);
EXPECT_EQ(NetEq::kOK, neteq_->GetAudio(&output, &muted));
SCOPED_TRACE("");
verify_timestamp(neteq_->GetPlayoutTimestamp(), i);
}
// Now check the packet buffer, and make sure it is empty.
EXPECT_TRUE(packet_buffer_->Empty());
EXPECT_CALL(mock_decoder, Die());
}

View File

@ -274,7 +274,7 @@ class NetEqNetworkStatsTest {
// Next we introduce packet losses.
SetPacketLossRate(0.1);
expects.stats_ref.expand_rate = expects.stats_ref.speech_expand_rate = 1065;
expects.stats_ref.expand_rate = expects.stats_ref.speech_expand_rate = 898;
RunTest(50, expects);
// Next we enable FEC.

View File

@ -82,17 +82,17 @@ TEST_F(NetEqDecodingTest, MAYBE_TestBitExactness) {
const std::string input_rtp_file =
webrtc::test::ResourcePath("audio_coding/neteq_universal_new", "rtp");
const std::string output_checksum = PlatformChecksum(
"6c35140ce4d75874bdd60aa1872400b05fd05ca2",
"ab451bb8301d9a92fbf4de91556b56f1ea38b4ce", "not used",
"6c35140ce4d75874bdd60aa1872400b05fd05ca2",
"64b46bb3c1165537a880ae8404afce2efba456c0");
const std::string output_checksum =
PlatformChecksum("ba4fae83a52f5e9d95b0910f05d540114285697b",
"aa557f30f7fdcebbbbf99d7f235ccba3a1c98983", "not used",
"ba4fae83a52f5e9d95b0910f05d540114285697b",
"64b46bb3c1165537a880ae8404afce2efba456c0");
const std::string network_stats_checksum = PlatformChecksum(
"90594d85fa31d3d9584d79293bf7aa4ee55ed751",
"77b9c3640b81aff6a38d69d07dd782d39c15321d", "not used",
"90594d85fa31d3d9584d79293bf7aa4ee55ed751",
"90594d85fa31d3d9584d79293bf7aa4ee55ed751");
const std::string network_stats_checksum =
PlatformChecksum("fa878a8464ef1cb3d01503b7f927c3e2ce6f02c4",
"300ccc2aaee7ed1971afb2f9a20247ed8760441d", "not used",
"fa878a8464ef1cb3d01503b7f927c3e2ce6f02c4",
"fa878a8464ef1cb3d01503b7f927c3e2ce6f02c4");
DecodeAndCompare(input_rtp_file, output_checksum, network_stats_checksum,
absl::GetFlag(FLAGS_gen_ref));
@ -531,11 +531,16 @@ TEST_F(NetEqDecodingTest, DiscardDuplicateCng) {
out_frame_.timestamp_ + out_frame_.samples_per_channel_);
}
// Insert speech again.
++seq_no;
timestamp += kCngPeriodSamples;
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
uint32_t first_speech_timestamp = timestamp;
// Insert speech again.
for (int i = 0; i < 3; ++i) {
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload));
++seq_no;
timestamp += kSamples;
}
// Pull audio once and verify that the output is speech again.
ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted));
@ -543,7 +548,7 @@ TEST_F(NetEqDecodingTest, DiscardDuplicateCng) {
EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_);
absl::optional<uint32_t> playout_timestamp = neteq_->GetPlayoutTimestamp();
ASSERT_TRUE(playout_timestamp);
EXPECT_EQ(timestamp + kSamples - algorithmic_delay_samples,
EXPECT_EQ(first_speech_timestamp + kSamples - algorithmic_delay_samples,
*playout_timestamp);
}
@ -1263,7 +1268,7 @@ TEST(NetEqOutputDelayTest, RunTestWithFieldTrial) {
// The base delay values are taken from the resuts of the non-delayed case in
// NetEqOutputDelayTest.RunTest above.
EXPECT_EQ(20 + kExpectedDelayMs, result.target_delay_ms);
EXPECT_EQ(24 + kExpectedDelayMs, result.filtered_current_delay_ms);
EXPECT_EQ(60 + kExpectedDelayMs, result.filtered_current_delay_ms);
}
// Set a non-multiple-of-10 value in the field trial, and verify that we don't
@ -1278,7 +1283,7 @@ TEST(NetEqOutputDelayTest, RunTestWithFieldTrialOddValue) {
// The base delay values are taken from the resuts of the non-delayed case in
// NetEqOutputDelayTest.RunTest above.
EXPECT_EQ(20 + kRoundedDelayMs, result.target_delay_ms);
EXPECT_EQ(24 + kRoundedDelayMs, result.filtered_current_delay_ms);
EXPECT_EQ(60 + kRoundedDelayMs, result.filtered_current_delay_ms);
}
} // namespace test

View File

@ -49,7 +49,7 @@ absl::optional<int> RelativeArrivalDelayTracker::Update(uint32_t timestamp,
void RelativeArrivalDelayTracker::Reset() {
delay_history_.clear();
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
packet_iat_stopwatch_.reset();
newest_timestamp_ = absl::nullopt;
last_timestamp_ = absl::nullopt;
}

View File

@ -245,15 +245,9 @@ void NetEqDecodingTest::WrapTest(uint16_t start_seq_no,
NetEqNetworkStatistics network_stats;
ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats));
// Due to internal NetEq logic, preferred buffer-size is about 4 times the
// packet size for first few packets. Therefore we refrain from checking
// the criteria.
if (packets_inserted > 4) {
// Expect preferred and actual buffer size to be no more than 2 frames.
EXPECT_LE(network_stats.preferred_buffer_size_ms, kFrameSizeMs * 2);
EXPECT_LE(network_stats.current_buffer_size_ms,
kFrameSizeMs * 2 + algorithmic_delay_ms_);
}
EXPECT_LE(network_stats.preferred_buffer_size_ms, 80);
EXPECT_LE(network_stats.current_buffer_size_ms,
80 + algorithmic_delay_ms_);
last_seq_no = seq_no;
last_timestamp = timestamp;

View File

@ -63,7 +63,7 @@ void UnderrunOptimizer::Update(int relative_delay_ms) {
void UnderrunOptimizer::Reset() {
histogram_.Reset();
resample_stopwatch_ = tick_timer_->GetNewStopwatch();
resample_stopwatch_.reset();
max_delay_in_interval_ms_ = 0;
optimal_delay_ms_.reset();
}