Add fieldtrial to enable minimum pacing of video frames

If the RTP header extension playout-delay is used and set
to min=0, max>=0, frames are scheduled to be decoded as
soon as possible. There's a risk that too many frames are
sent to the decoder at once, which may cause problems
further down in the video pipeline.

This CL adds the fieldtrial WebRTC-ZeroPlayoutDelay with
the parameter min_pacing that determines the minimum
pacing interval between two frames scheduled for
decoding.

Bug: None
Change-Id: I471f7718761cfce9789b3aa8adea3e8a16ecb2fd
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/223742
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Johannes Kron <kron@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34387}
This commit is contained in:
Johannes Kron
2021-06-29 11:37:06 +02:00
committed by WebRTC LUCI CQ
parent dcb9ffc6f2
commit 985905d42d
4 changed files with 119 additions and 12 deletions

View File

@ -11,6 +11,7 @@
#include "modules/video_coding/timing.h"
#include "system_wrappers/include/clock.h"
#include "test/field_trial.h"
#include "test/gtest.h"
namespace webrtc {
@ -18,7 +19,7 @@ namespace {
const int kFps = 25;
} // namespace
TEST(ReceiverTiming, Tests) {
TEST(ReceiverTimingTest, JitterDelay) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
timing.Reset();
@ -110,7 +111,7 @@ TEST(ReceiverTiming, Tests) {
timing.UpdateCurrentDelay(timestamp);
}
TEST(ReceiverTiming, WrapAround) {
TEST(ReceiverTimingTest, TimestampWrapAround) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
@ -127,4 +128,89 @@ TEST(ReceiverTiming, WrapAround) {
}
}
TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
// This is the default path when the RTP playout delay header extension is set
// to min==0.
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
constexpr int64_t kZeroRenderTimeMs = 0;
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock);
timing.Reset();
for (int i = 0; i < 10; ++i) {
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
int64_t now_ms = clock.TimeInMilliseconds();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
}
// Another frame submitted at the same time also returns a negative max
// waiting time.
int64_t now_ms = clock.TimeInMilliseconds();
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
// MaxWaitingTime should be less than zero even if there's a burst of frames.
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
}
TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
// The minimum pacing is enabled by a field trial and active if the RTP
// playout delay header extension is set to min==0.
constexpr int64_t kMinPacingMs = 3;
test::ScopedFieldTrials override_field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
constexpr int64_t kZeroRenderTimeMs = 0;
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock);
timing.Reset();
// MaxWaitingTime() returns zero for evenly spaced video frames.
for (int i = 0; i < 10; ++i) {
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
int64_t now_ms = clock.TimeInMilliseconds();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
}
// Another frame submitted at the same time is paced according to the field
// trial setting.
int64_t now_ms = clock.TimeInMilliseconds();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
// If there's a burst of frames, the min pacing interval is summed.
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 2 * kMinPacingMs);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 3 * kMinPacingMs);
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 4 * kMinPacingMs);
// Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
constexpr int64_t kTwoMs = 2;
clock.AdvanceTimeMilliseconds(kTwoMs);
now_ms = clock.TimeInMilliseconds();
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms),
5 * kMinPacingMs - kTwoMs);
}
TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
// The minimum pacing is enabled by a field trial but should not have any
// effect if render_time_ms is greater than 0;
test::ScopedFieldTrials override_field_trials(
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
SimulatedClock clock(kStartTimeUs);
VCMTiming timing(&clock);
timing.Reset();
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
int64_t now_ms = clock.TimeInMilliseconds();
int64_t render_time_ms = now_ms + 30;
// Estimate the internal processing delay from the first frame.
int64_t estimated_processing_delay =
(render_time_ms - now_ms) - timing.MaxWaitingTime(render_time_ms, now_ms);
EXPECT_GT(estimated_processing_delay, 0);
// Any other frame submitted at the same time should be scheduled according to
// its render time.
for (int i = 0; i < 5; ++i) {
render_time_ms += kTimeDeltaMs;
EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms),
render_time_ms - now_ms - estimated_processing_delay);
}
}
} // namespace webrtc