Improve wraparound handling in the render time extrapolator.

This was actually working as intended, but as r3970 changed when render timestamps were extrapolated to when a frame was taken out for decoding, the wraparound could have happened in the Update() step before it had happened in the ExtrapolateLocalTime() step. This causes render timestamps to be generated 13 hours into the future.

TEST=trybots
BUG=1787
R=mflodman@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/1497004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@4055 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
stefan@webrtc.org
2013-05-17 12:55:07 +00:00
parent 14d7700d00
commit 9f557c140e
9 changed files with 191 additions and 301 deletions

View File

@ -1,230 +0,0 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/test/receiver_tests.h"
#include "webrtc/modules/video_coding/main/test/test_macros.h"
#include "webrtc/modules/video_coding/main/test/test_util.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/test/testsupport/fileutils.h"
using namespace webrtc;
float vcmFloatMax(float a, float b)
{
return a > b ? a : b;
}
float vcmFloatMin(float a, float b)
{
return a < b ? a : b;
}
double const pi = 4*std::atan(1.0);
class GaussDist
{
public:
static float RandValue(float m, float stdDev) // returns a single normally distributed number
{
float r1 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0)); // gives equal distribution in (0, 1]
float r2 = static_cast<float>((std::rand() + 1.0)/(RAND_MAX + 1.0));
return m + stdDev * static_cast<float>(std::sqrt(-2*std::log(r1))*std::cos(2*pi*r2));
}
};
int ReceiverTimingTests(CmdArgs& args)
{
// Set up trace
Trace::CreateTrace();
Trace::SetTraceFile((test::OutputPath() + "receiverTestTrace.txt").c_str());
Trace::SetLevelFilter(webrtc::kTraceAll);
// A static random seed
srand(0);
Clock* clock = Clock::GetRealTimeClock();
VCMTiming timing(clock);
float clockInMs = 0.0;
uint32_t waitTime = 0;
uint32_t jitterDelayMs = 0;
uint32_t maxDecodeTimeMs = 0;
uint32_t timeStamp = 0;
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
timing.UpdateCurrentDelay(timeStamp);
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
jitterDelayMs = 20;
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
// First update initializes the render time. Since we have no decode delay
// we get waitTime = renderTime - now - renderDelay = jitter
TEST(waitTime == jitterDelayMs);
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
timeStamp += 90000;
clockInMs += 1000.0f;
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
// Since we gradually increase the delay we only get
// 100 ms every second.
TEST(waitTime == jitterDelayMs - 10);
timeStamp += 90000;
clockInMs += 1000.0;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
// 300 incoming frames without jitter, verify that this gives the exact wait time
for (int i=0; i < 300; i++)
{
clockInMs += 1000.0f/30.0f;
timeStamp += 3000;
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
}
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
// Add decode time estimates
for (int i=0; i < 10; i++)
{
int64_t startTimeMs = static_cast<int64_t>(clockInMs + 0.5);
clockInMs += 10.0f;
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<int64_t>(clockInMs + 0.5));
timeStamp += 3000;
clockInMs += 1000.0f/30.0f - 10.0f;
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
}
maxDecodeTimeMs = 10;
timing.SetRequiredDelay(jitterDelayMs);
clockInMs += 1000.0f;
timeStamp += 90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
TEST(waitTime == jitterDelayMs);
uint32_t totalDelay1 = timing.TargetVideoDelay();
uint32_t minTotalDelayMs = 200;
timing.SetMinimumTotalDelay(minTotalDelayMs);
clockInMs += 5000.0f;
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
uint32_t totalDelay2 = timing.TargetVideoDelay();
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime (10) to wait
TEST(waitTime == minTotalDelayMs - maxDecodeTimeMs - 10);
// The total video delay should not increase with the extra delay,
// the extra delay should be independent.
TEST(totalDelay1 == totalDelay2);
// Reset min total delay
timing.SetMinimumTotalDelay(0);
clockInMs += 5000.0f;
timeStamp += 5*90000;
timing.UpdateCurrentDelay(timeStamp);
// A sudden increase in timestamp of 2.1 seconds
clockInMs += 1000.0f/30.0f;
timeStamp += static_cast<uint32_t>(2.1*90000 + 0.5);
int64_t ret = timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
TEST(ret == -1);
timing.Reset();
// This test produces a trace which can be parsed with plotTimingTest.m. The plot
// can be used to see that the timing is reasonable under noise, and that the
// gradual transition between delays works as expected.
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "Stochastic test 1");
jitterDelayMs = 60;
maxDecodeTimeMs = 10;
timeStamp = static_cast<uint32_t>(-10000); // To produce a wrap
clockInMs = 10000.0f;
timing.Reset(static_cast<int64_t>(clockInMs + 0.5));
float noise = 0.0f;
for (int i=0; i < 1400; i++)
{
if (i == 400)
{
jitterDelayMs = 30;
}
else if (i == 700)
{
jitterDelayMs = 100;
}
else if (i == 1000)
{
minTotalDelayMs = 200;
timing.SetMinimumTotalDelay(minTotalDelayMs);
}
else if (i == 1200)
{
minTotalDelayMs = 0;
timing.SetMinimumTotalDelay(minTotalDelayMs);
}
int64_t startTimeMs = static_cast<int64_t>(clockInMs + 0.5);
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 2), -10.0f), 30.0f);
clockInMs += 10.0f;
timing.StopDecodeTimer(timeStamp, startTimeMs, static_cast<int64_t>(clockInMs + noise + 0.5));
timeStamp += 3000;
clockInMs += 1000.0f/30.0f - 10.0f;
noise = vcmFloatMin(vcmFloatMax(GaussDist::RandValue(0, 8), -15.0f), 15.0f);
timing.IncomingTimestamp(timeStamp, static_cast<int64_t>(clockInMs + noise + 0.5));
timing.SetRequiredDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5)),
static_cast<int64_t>(clockInMs + 0.5));
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "timeStamp=%u clock=%u maxWaitTime=%u", timeStamp,
static_cast<uint32_t>(clockInMs + 0.5), waitTime);
int64_t renderTimeMs = timing.RenderTimeMs(timeStamp, static_cast<int64_t>(clockInMs + 0.5));
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1,
"timeStamp=%u renderTime=%u",
timeStamp,
MaskWord64ToUWord32(renderTimeMs));
}
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding, -1, "End Stochastic test 1");
printf("\nVCM Timing Test: \n\n%i tests completed\n", vcmMacrosTests);
if (vcmMacrosErrors > 0)
{
printf("%i FAILED\n\n", vcmMacrosErrors);
}
else
{
printf("ALL PASSED\n\n");
}
Trace::ReturnTrace();
return 0;
}

View File

@ -97,7 +97,6 @@ int main(int argc, char **argv) {
case 0:
ret = NormalTest::RunTest(args);
ret |= CodecDataBaseTest::RunTest(args);
ret |= ReceiverTimingTests(args);
break;
case 1:
ret = NormalTest::RunTest(args);
@ -115,9 +114,6 @@ int main(int argc, char **argv) {
// 0- normal, 1-Release test(50 runs) 2- from file
ret = MediaOptTest::RunTest(0, args);
break;
case 6:
ret = ReceiverTimingTests(args);
break;
case 7:
ret = RtpPlay(args);
break;