Define rtc::BufferT, like rtc::Buffer but for any trivial type
And redefine rtc::Buffer as using Buffer = BufferT<uint8_t>; (In the long run, I'd like to remove the type alias and rename the template to just rtc::Buffer, but that requires all current users of Buffer to start saying Buffer<uint8_t> instead, and since Buffer is used in the API, we can't do that in one step.) The immediate reason for the new template is that we'd like to use BufferT<int16_t> in the AudioDecoder interface. BUG=webrtc:5801 Review-Url: https://codereview.webrtc.org/1929903002 Cr-Commit-Position: refs/heads/master@{#12564}
This commit is contained in:
@ -13,79 +13,114 @@
|
||||
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#include "webrtc/base/array_view.h"
|
||||
#include "webrtc/base/checks.h"
|
||||
#include "webrtc/base/constructormagic.h"
|
||||
|
||||
namespace rtc {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// (Internal; please don't use outside this file.) ByteType<T>::t is int if T
|
||||
// is uint8_t, int8_t, or char; otherwise, it's a compilation error. Use like
|
||||
// this:
|
||||
//
|
||||
// template <typename T, typename ByteType<T>::t = 0>
|
||||
// void foo(T* x);
|
||||
//
|
||||
// to let foo<T> be defined only for byte-sized integers.
|
||||
template <typename T>
|
||||
struct ByteType {
|
||||
private:
|
||||
static int F(uint8_t*);
|
||||
static int F(int8_t*);
|
||||
static int F(char*);
|
||||
|
||||
public:
|
||||
using t = decltype(F(static_cast<T*>(nullptr)));
|
||||
// (Internal; please don't use outside this file.) Determines if elements of
|
||||
// type U are compatible with a BufferT<T>. For most types, we just ignore
|
||||
// top-level const and forbid top-level volatile and require T and U to be
|
||||
// otherwise equal, but all byte-sized integers (notably char, int8_t, and
|
||||
// uint8_t) are compatible with each other. (Note: We aim to get rid of this
|
||||
// behavior, and treat all types the same.)
|
||||
template <typename T, typename U>
|
||||
struct BufferCompat {
|
||||
static constexpr bool value =
|
||||
!std::is_volatile<U>::value &&
|
||||
((std::is_integral<T>::value && sizeof(T) == 1)
|
||||
? (std::is_integral<U>::value && sizeof(U) == 1)
|
||||
: (std::is_same<T, typename std::remove_const<U>::type>::value));
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
// Basic buffer class, can be grown and shrunk dynamically.
|
||||
// Unlike std::string/vector, does not initialize data when expanding capacity.
|
||||
class Buffer {
|
||||
// Unlike std::string/vector, does not initialize data when increasing size.
|
||||
template <typename T>
|
||||
class BufferT {
|
||||
// We want T's destructor and default constructor to be trivial, i.e. perform
|
||||
// no action, so that we don't have to touch the memory we allocate and
|
||||
// deallocate. And we want T to be trivially copyable, so that we can copy T
|
||||
// instances with std::memcpy. This is precisely the definition of a trivial
|
||||
// type.
|
||||
static_assert(std::is_trivial<T>::value, "T must be a trivial type.");
|
||||
|
||||
// This class relies heavily on being able to mutate its data.
|
||||
static_assert(!std::is_const<T>::value, "T may not be const");
|
||||
|
||||
public:
|
||||
Buffer(); // An empty buffer.
|
||||
Buffer(Buffer&& buf); // Move contents from an existing buffer.
|
||||
// An empty BufferT.
|
||||
BufferT() : size_(0), capacity_(0), data_(nullptr) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
}
|
||||
|
||||
// Construct a buffer with the specified number of uninitialized bytes.
|
||||
explicit Buffer(size_t size);
|
||||
Buffer(size_t size, size_t capacity);
|
||||
// Disable copy construction and copy assignment, since copying a buffer is
|
||||
// expensive enough that we want to force the user to be explicit about it.
|
||||
BufferT(const BufferT&) = delete;
|
||||
BufferT& operator=(const BufferT&) = delete;
|
||||
|
||||
// Construct a buffer and copy the specified number of bytes into it. The
|
||||
// source array may be (const) uint8_t*, int8_t*, or char*.
|
||||
template <typename T, typename internal::ByteType<T>::t = 0>
|
||||
Buffer(const T* data, size_t size)
|
||||
: Buffer(data, size, size) {}
|
||||
BufferT(BufferT&& buf)
|
||||
: size_(buf.size()),
|
||||
capacity_(buf.capacity()),
|
||||
data_(std::move(buf.data_)) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
buf.OnMovedFrom();
|
||||
}
|
||||
|
||||
template <typename T, typename internal::ByteType<T>::t = 0>
|
||||
Buffer(const T* data, size_t size, size_t capacity)
|
||||
: Buffer(size, capacity) {
|
||||
std::memcpy(data_.get(), data, size);
|
||||
// Construct a buffer with the specified number of uninitialized elements.
|
||||
explicit BufferT(size_t size) : BufferT(size, size) {}
|
||||
|
||||
BufferT(size_t size, size_t capacity)
|
||||
: size_(size),
|
||||
capacity_(std::max(size, capacity)),
|
||||
data_(new T[capacity_]) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
}
|
||||
|
||||
// Construct a buffer and copy the specified number of elements into it.
|
||||
template <typename U,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
BufferT(const U* data, size_t size) : BufferT(data, size, size) {}
|
||||
|
||||
template <typename U,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
BufferT(U* data, size_t size, size_t capacity) : BufferT(size, capacity) {
|
||||
static_assert(sizeof(T) == sizeof(U), "");
|
||||
std::memcpy(data_.get(), data, size * sizeof(U));
|
||||
}
|
||||
|
||||
// Construct a buffer from the contents of an array.
|
||||
template <typename T, size_t N, typename internal::ByteType<T>::t = 0>
|
||||
Buffer(const T(&array)[N])
|
||||
: Buffer(array, N) {}
|
||||
template <typename U,
|
||||
size_t N,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
BufferT(U (&array)[N]) : BufferT(array, N) {}
|
||||
|
||||
~Buffer();
|
||||
|
||||
// Get a pointer to the data. Just .data() will give you a (const) uint8_t*,
|
||||
// but you may also use .data<int8_t>() and .data<char>().
|
||||
template <typename T = uint8_t, typename internal::ByteType<T>::t = 0>
|
||||
const T* data() const {
|
||||
// Get a pointer to the data. Just .data() will give you a (const) T*, but if
|
||||
// T is a byte-sized integer, you may also use .data<U>() for any other
|
||||
// byte-sized integer U.
|
||||
template <typename U = T,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
const U* data() const {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
return reinterpret_cast<T*>(data_.get());
|
||||
return reinterpret_cast<U*>(data_.get());
|
||||
}
|
||||
|
||||
template <typename T = uint8_t, typename internal::ByteType<T>::t = 0>
|
||||
T* data() {
|
||||
template <typename U = T,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
U* data() {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
return reinterpret_cast<T*>(data_.get());
|
||||
return reinterpret_cast<U*>(data_.get());
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
@ -98,7 +133,7 @@ class Buffer {
|
||||
return capacity_;
|
||||
}
|
||||
|
||||
Buffer& operator=(Buffer&& buf) {
|
||||
BufferT& operator=(BufferT&& buf) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
RTC_DCHECK(buf.IsConsistent());
|
||||
size_ = buf.size_;
|
||||
@ -108,94 +143,120 @@ class Buffer {
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const Buffer& buf) const {
|
||||
bool operator==(const BufferT& buf) const {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
return size_ == buf.size() && memcmp(data_.get(), buf.data(), size_) == 0;
|
||||
if (size_ != buf.size_) {
|
||||
return false;
|
||||
}
|
||||
if (std::is_integral<T>::value) {
|
||||
// Optimization.
|
||||
return std::memcmp(data_.get(), buf.data_.get(), size_ * sizeof(T)) == 0;
|
||||
}
|
||||
for (size_t i = 0; i < size_; ++i) {
|
||||
if (data_[i] != buf.data_[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool operator!=(const Buffer& buf) const { return !(*this == buf); }
|
||||
bool operator!=(const BufferT& buf) const { return !(*this == buf); }
|
||||
|
||||
uint8_t& operator[](size_t index) {
|
||||
T& operator[](size_t index) {
|
||||
RTC_DCHECK_LT(index, size_);
|
||||
return data()[index];
|
||||
}
|
||||
|
||||
uint8_t operator[](size_t index) const {
|
||||
T operator[](size_t index) const {
|
||||
RTC_DCHECK_LT(index, size_);
|
||||
return data()[index];
|
||||
}
|
||||
|
||||
// The SetData functions replace the contents of the buffer. They accept the
|
||||
// same input types as the constructors.
|
||||
template <typename T, typename internal::ByteType<T>::t = 0>
|
||||
void SetData(const T* data, size_t size) {
|
||||
template <typename U,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
void SetData(const U* data, size_t size) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
size_ = 0;
|
||||
AppendData(data, size);
|
||||
}
|
||||
|
||||
template <typename T, size_t N, typename internal::ByteType<T>::t = 0>
|
||||
void SetData(const T(&array)[N]) {
|
||||
template <typename U,
|
||||
size_t N,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
void SetData(const U (&array)[N]) {
|
||||
SetData(array, N);
|
||||
}
|
||||
|
||||
void SetData(const Buffer& buf) { SetData(buf.data(), buf.size()); }
|
||||
void SetData(const BufferT& buf) { SetData(buf.data(), buf.size()); }
|
||||
|
||||
// Replace the data in the buffer with at most |max_bytes| of data, using the
|
||||
// function |setter|, which should have the following signature:
|
||||
// size_t setter(ArrayView<T> view)
|
||||
// Replace the data in the buffer with at most |max_elements| of data, using
|
||||
// the function |setter|, which should have the following signature:
|
||||
// size_t setter(ArrayView<U> view)
|
||||
// |setter| is given an appropriately typed ArrayView of the area in which to
|
||||
// write the data (i.e. starting at the beginning of the buffer) and should
|
||||
// return the number of bytes actually written. This number must be <=
|
||||
// |max_bytes|.
|
||||
template <typename T = uint8_t, typename F,
|
||||
typename internal::ByteType<T>::t = 0>
|
||||
size_t SetData(size_t max_bytes, F&& setter) {
|
||||
// return the number of elements actually written. This number must be <=
|
||||
// |max_elements|.
|
||||
template <typename U = T,
|
||||
typename F,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
size_t SetData(size_t max_elements, F&& setter) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
size_ = 0;
|
||||
return AppendData<T>(max_bytes, std::forward<F>(setter));
|
||||
return AppendData<U>(max_elements, std::forward<F>(setter));
|
||||
}
|
||||
|
||||
// The AppendData functions adds data to the end of the buffer. They accept
|
||||
// The AppendData functions add data to the end of the buffer. They accept
|
||||
// the same input types as the constructors.
|
||||
template <typename T, typename internal::ByteType<T>::t = 0>
|
||||
void AppendData(const T* data, size_t size) {
|
||||
template <typename U,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
void AppendData(const U* data, size_t size) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
const size_t new_size = size_ + size;
|
||||
EnsureCapacity(new_size);
|
||||
std::memcpy(data_.get() + size_, data, size);
|
||||
static_assert(sizeof(T) == sizeof(U), "");
|
||||
std::memcpy(data_.get() + size_, data, size * sizeof(U));
|
||||
size_ = new_size;
|
||||
RTC_DCHECK(IsConsistent());
|
||||
}
|
||||
|
||||
template <typename T, size_t N, typename internal::ByteType<T>::t = 0>
|
||||
void AppendData(const T(&array)[N]) {
|
||||
template <typename U,
|
||||
size_t N,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
void AppendData(const U (&array)[N]) {
|
||||
AppendData(array, N);
|
||||
}
|
||||
|
||||
void AppendData(const Buffer& buf) { AppendData(buf.data(), buf.size()); }
|
||||
void AppendData(const BufferT& buf) { AppendData(buf.data(), buf.size()); }
|
||||
|
||||
// Append at most |max_bytes| of data to the end of the buffer, using the
|
||||
// function |setter|, which should have the following signature:
|
||||
// size_t setter(ArrayView<T> view)
|
||||
// Append at most |max_elements| to the end of the buffer, using the function
|
||||
// |setter|, which should have the following signature:
|
||||
// size_t setter(ArrayView<U> view)
|
||||
// |setter| is given an appropriately typed ArrayView of the area in which to
|
||||
// write the data (i.e. starting at the former end of the buffer) and should
|
||||
// return the number of bytes actually written. This number must be <=
|
||||
// |max_bytes|.
|
||||
template <typename T = uint8_t, typename F,
|
||||
typename internal::ByteType<T>::t = 0>
|
||||
size_t AppendData(size_t max_bytes, F&& setter) {
|
||||
// return the number of elements actually written. This number must be <=
|
||||
// |max_elements|.
|
||||
template <typename U = T,
|
||||
typename F,
|
||||
typename std::enable_if<
|
||||
internal::BufferCompat<T, U>::value>::type* = nullptr>
|
||||
size_t AppendData(size_t max_elements, F&& setter) {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
const size_t old_size = size_;
|
||||
SetSize(old_size + max_bytes);
|
||||
T *base_ptr = data<T>() + old_size;
|
||||
size_t written_bytes =
|
||||
setter(rtc::ArrayView<T>(base_ptr, max_bytes));
|
||||
SetSize(old_size + max_elements);
|
||||
U* base_ptr = data<U>() + old_size;
|
||||
size_t written_elements = setter(rtc::ArrayView<U>(base_ptr, max_elements));
|
||||
|
||||
RTC_CHECK_LE(written_bytes, max_bytes);
|
||||
size_ = old_size + written_bytes;
|
||||
RTC_CHECK_LE(written_elements, max_elements);
|
||||
size_ = old_size + written_elements;
|
||||
RTC_DCHECK(IsConsistent());
|
||||
return written_bytes;
|
||||
return written_elements;
|
||||
}
|
||||
|
||||
// Sets the size of the buffer. If the new size is smaller than the old, the
|
||||
@ -214,8 +275,8 @@ class Buffer {
|
||||
RTC_DCHECK(IsConsistent());
|
||||
if (capacity <= capacity_)
|
||||
return;
|
||||
std::unique_ptr<uint8_t[]> new_data(new uint8_t[capacity]);
|
||||
std::memcpy(new_data.get(), data_.get(), size_);
|
||||
std::unique_ptr<T[]> new_data(new T[capacity]);
|
||||
std::memcpy(new_data.get(), data_.get(), size_ * sizeof(T));
|
||||
data_ = std::move(new_data);
|
||||
capacity_ = capacity;
|
||||
RTC_DCHECK(IsConsistent());
|
||||
@ -229,7 +290,7 @@ class Buffer {
|
||||
}
|
||||
|
||||
// Swaps two buffers. Also works for buffers that have been moved from.
|
||||
friend void swap(Buffer& a, Buffer& b) {
|
||||
friend void swap(BufferT& a, BufferT& b) {
|
||||
using std::swap;
|
||||
swap(a.size_, b.size_);
|
||||
swap(a.capacity_, b.capacity_);
|
||||
@ -262,11 +323,12 @@ class Buffer {
|
||||
|
||||
size_t size_;
|
||||
size_t capacity_;
|
||||
std::unique_ptr<uint8_t[]> data_;
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(Buffer);
|
||||
std::unique_ptr<T[]> data_;
|
||||
};
|
||||
|
||||
// By far the most common sort of buffer.
|
||||
using Buffer = BufferT<uint8_t>;
|
||||
|
||||
} // namespace rtc
|
||||
|
||||
#endif // WEBRTC_BASE_BUFFER_H_
|
||||
|
Reference in New Issue
Block a user