Remove webrtc/base/move.h, and make types move-only manually

In days of yore, move.h contained complicated macros for approximating
move-only behavior in C++03. But since we live in the future now, and
can rely on C++11 features---including real move semantics!---it makes
more sense to just write the handful of required lines by hand in each
move-only class.

(We only live in the near future, though, not in some sci-fi
intergalactic civilization singularity type future, so we have to
define Pass() methods for these classes since we're not allowed to use
std::move().)

R=tommi@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/45099004

Cr-Commit-Position: refs/heads/master@{#9060}
This commit is contained in:
Karl Wiberg
2015-04-22 19:44:19 +02:00
parent ee0b00e8a9
commit a8e285d193
3 changed files with 29 additions and 247 deletions

View File

@ -1,237 +0,0 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Borrowed from Chromium's src/base/move.h.
#ifndef WEBRTC_BASE_MOVE_H_
#define WEBRTC_BASE_MOVE_H_
#include "webrtc/typedefs.h"
// Macro with the boilerplate that makes a type move-only in C++03.
//
// USAGE
//
// This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
// a "move-only" type. Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
// the first line in a class declaration.
//
// A class using this macro must call .Pass() (or somehow be an r-value already)
// before it can be:
//
// * Passed as a function argument
// * Used as the right-hand side of an assignment
// * Returned from a function
//
// Each class will still need to define their own "move constructor" and "move
// operator=" to make this useful. Here's an example of the macro, the move
// constructor, and the move operator= from the scoped_ptr class:
//
// template <typename T>
// class scoped_ptr {
// RTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
// public:
// scoped_ptr(RValue& other) : ptr_(other.release()) { }
// scoped_ptr& operator=(RValue& other) {
// swap(other);
// return *this;
// }
// };
//
// Note that the constructor must NOT be marked explicit.
//
// For consistency, the second parameter to the macro should always be RValue
// unless you have a strong reason to do otherwise. It is only exposed as a
// macro parameter so that the move constructor and move operator= don't look
// like they're using a phantom type.
//
//
// HOW THIS WORKS
//
// For a thorough explanation of this technique, see:
//
// http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
//
// The summary is that we take advantage of 2 properties:
//
// 1) non-const references will not bind to r-values.
// 2) C++ can apply one user-defined conversion when initializing a
// variable.
//
// The first lets us disable the copy constructor and assignment operator
// by declaring private version of them with a non-const reference parameter.
//
// For l-values, direct initialization still fails like in
// DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
// operators are private.
//
// For r-values, the situation is different. The copy constructor and
// assignment operator are not viable due to (1), so we are trying to call
// a non-existent constructor and non-existing operator= rather than a private
// one. Since we have not committed an error quite yet, we can provide an
// alternate conversion sequence and a constructor. We add
//
// * a private struct named "RValue"
// * a user-defined conversion "operator RValue()"
// * a "move constructor" and "move operator=" that take the RValue& as
// their sole parameter.
//
// Only r-values will trigger this sequence and execute our "move constructor"
// or "move operator=." L-values will match the private copy constructor and
// operator= first giving a "private in this context" error. This combination
// gives us a move-only type.
//
// For signaling a destructive transfer of data from an l-value, we provide a
// method named Pass() which creates an r-value for the current instance
// triggering the move constructor or move operator=.
//
// Other ways to get r-values is to use the result of an expression like a
// function call.
//
// Here's an example with comments explaining what gets triggered where:
//
// class Foo {
// RTC_MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
//
// public:
// ... API ...
// Foo(RValue other); // Move constructor.
// Foo& operator=(RValue rhs); // Move operator=
// };
//
// Foo MakeFoo(); // Function that returns a Foo.
//
// Foo f;
// Foo f_copy(f); // ERROR: Foo(Foo&) is private in this context.
// Foo f_assign;
// f_assign = f; // ERROR: operator=(Foo&) is private in this context.
//
//
// Foo f(MakeFoo()); // R-value so alternate conversion executed.
// Foo f_copy(f.Pass()); // R-value so alternate conversion executed.
// f = f_copy.Pass(); // R-value so alternate conversion executed.
//
//
// IMPLEMENTATION SUBTLETIES WITH RValue
//
// The RValue struct is just a container for a pointer back to the original
// object. It should only ever be created as a temporary, and no external
// class should ever declare it or use it in a parameter.
//
// It is tempting to want to use the RValue type in function parameters, but
// excluding the limited usage here for the move constructor and move
// operator=, doing so would mean that the function could take both r-values
// and l-values equially which is unexpected. See COMPARED To Boost.Move for
// more details.
//
// An alternate, and incorrect, implementation of the RValue class used by
// Boost.Move makes RValue a fieldless child of the move-only type. RValue&
// is then used in place of RValue in the various operators. The RValue& is
// "created" by doing *reinterpret_cast<RValue*>(this). This has the appeal
// of never creating a temporary RValue struct even with optimizations
// disabled. Also, by virtue of inheritance you can treat the RValue
// reference as if it were the move-only type itself. Unfortunately,
// using the result of this reinterpret_cast<> is actually undefined behavior
// due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
// will generate non-working code.
//
// In optimized builds, both implementations generate the same assembly so we
// choose the one that adheres to the standard.
//
//
// WHY HAVE typedef void MoveOnlyTypeForCPP03
//
// Callback<>/Bind() needs to understand movable-but-not-copyable semantics
// to call .Pass() appropriately when it is expected to transfer the value.
// The cryptic typedef MoveOnlyTypeForCPP03 is added to make this check
// easy and automatic in helper templates for Callback<>/Bind().
// See IsMoveOnlyType template and its usage in base/callback_internal.h
// for more details.
//
//
// COMPARED TO C++11
//
// In C++11, you would implement this functionality using an r-value reference
// and our .Pass() method would be replaced with a call to std::move().
//
// This emulation also has a deficiency where it uses up the single
// user-defined conversion allowed by C++ during initialization. This can
// cause problems in some API edge cases. For instance, in scoped_ptr, it is
// impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
// value of type scoped_ptr<Child> even if you add a constructor to
// scoped_ptr<> that would make it look like it should work. C++11 does not
// have this deficiency.
//
//
// COMPARED TO Boost.Move
//
// Our implementation similar to Boost.Move, but we keep the RValue struct
// private to the move-only type, and we don't use the reinterpret_cast<> hack.
//
// In Boost.Move, RValue is the boost::rv<> template. This type can be used
// when writing APIs like:
//
// void MyFunc(boost::rv<Foo>& f)
//
// that can take advantage of rv<> to avoid extra copies of a type. However you
// would still be able to call this version of MyFunc with an l-value:
//
// Foo f;
// MyFunc(f); // Uh oh, we probably just destroyed |f| w/o calling Pass().
//
// unless someone is very careful to also declare a parallel override like:
//
// void MyFunc(const Foo& f)
//
// that would catch the l-values first. This was declared unsafe in C++11 and
// a C++11 compiler will explicitly fail MyFunc(f). Unfortunately, we cannot
// ensure this in C++03.
//
// Since we have no need for writing such APIs yet, our implementation keeps
// RValue private and uses a .Pass() method to do the conversion instead of
// trying to write a version of "std::move()." Writing an API like std::move()
// would require the RValue struct to be public.
//
//
// CAVEATS
//
// If you include a move-only type as a field inside a class that does not
// explicitly declare a copy constructor, the containing class's implicit
// copy constructor will change from Containing(const Containing&) to
// Containing(Containing&). This can cause some unexpected errors.
//
// http://llvm.org/bugs/show_bug.cgi?id=11528
//
// The workaround is to explicitly declare your copy constructor.
//
#define RTC_MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
private: \
struct rvalue_type { \
explicit rvalue_type(type* object) : object(object) {} \
type* object; \
}; \
type(type&); \
void operator=(type&); \
public: \
operator rvalue_type() { return rvalue_type(this); } \
type Pass() WARN_UNUSED_RESULT { return type(rvalue_type(this)); } \
typedef void MoveOnlyTypeForCPP03; \
private:
#define RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(type) \
private: \
type(type&); \
void operator=(type&); \
public: \
type&& Pass() WARN_UNUSED_RESULT { return static_cast<type&&>(*this); } \
typedef void MoveOnlyTypeForCPP03; \
private:
#endif // WEBRTC_BASE_MOVE_H_

View File

@ -105,7 +105,6 @@
#include <algorithm> // For std::swap().
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/move.h"
#include "webrtc/base/template_util.h"
#include "webrtc/typedefs.h"
@ -322,7 +321,6 @@ class scoped_ptr_impl {
// types.
template <class T, class D = rtc::DefaultDeleter<T> >
class scoped_ptr {
RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
// TODO(ajm): If we ever import RefCountedBase, this check needs to be
// enabled.
@ -386,6 +384,13 @@ class scoped_ptr {
return *this;
}
// Deleted copy constructor and copy assignment, to make the type move-only.
scoped_ptr(const scoped_ptr& other) = delete;
scoped_ptr& operator=(const scoped_ptr& other) = delete;
// Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
// Reset. Deletes the currently owned object, if any.
// Then takes ownership of a new object, if given.
void reset(element_type* p = nullptr) { impl_.reset(p); }
@ -470,8 +475,6 @@ class scoped_ptr {
template <class T, class D>
class scoped_ptr<T[], D> {
RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr)
public:
// The element and deleter types.
typedef T element_type;
@ -514,6 +517,13 @@ class scoped_ptr<T[], D> {
return *this;
}
// Deleted copy constructor and copy assignment, to make the type move-only.
scoped_ptr(const scoped_ptr& other) = delete;
scoped_ptr& operator=(const scoped_ptr& other) = delete;
// Get an rvalue reference. (sp.Pass() does the same thing as std::move(sp).)
scoped_ptr&& Pass() { return static_cast<scoped_ptr&&>(*this); }
// Reset. Deletes the currently owned array, if any.
// Then takes ownership of a new object, if given.
void reset(element_type* array = nullptr) { impl_.reset(array); }

View File

@ -16,7 +16,6 @@
#include <vector>
#include "webrtc/base/checks.h"
#include "webrtc/base/move.h"
#include "webrtc/system_wrappers/interface/stl_util.h"
namespace webrtc {
@ -25,8 +24,6 @@ namespace webrtc {
// destructor.
template <class T>
class ScopedVector {
RTC_MOVE_ONLY_TYPE_FOR_CPP_03(ScopedVector, RValue)
public:
typedef typename std::vector<T*>::allocator_type allocator_type;
typedef typename std::vector<T*>::size_type size_type;
@ -44,13 +41,25 @@ class ScopedVector {
ScopedVector() {}
~ScopedVector() { clear(); }
ScopedVector(RValue other) { swap(*other.object); }
ScopedVector& operator=(RValue rhs) {
swap(*rhs.object);
// Move construction and assignment.
ScopedVector(ScopedVector&& other) {
*this = static_cast<ScopedVector&&>(other);
}
ScopedVector& operator=(ScopedVector&& other) {
std::swap(v_, other.v_); // The arguments are std::vectors, so std::swap
// is the one that we want.
other.clear();
return *this;
}
// Deleted copy constructor and copy assignment, to make the type move-only.
ScopedVector(const ScopedVector& other) = delete;
ScopedVector& operator=(const ScopedVector& other) = delete;
// Get an rvalue reference. (sv.Pass() does the same thing as std::move(sv).)
ScopedVector&& Pass() { return static_cast<ScopedVector&&>(*this); }
reference operator[](size_t index) { return v_[index]; }
const_reference operator[](size_t index) const { return v_[index]; }