Delete unused code in rtc_base/testutils.*.

Bug: webrtc:6424
Change-Id: I6205ad4d336a617e685d80a006167e0dd29de470
Reviewed-on: https://webrtc-review.googlesource.com/33012
Reviewed-by: Taylor Brandstetter <deadbeef@webrtc.org>
Commit-Queue: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21317}
This commit is contained in:
Niels Möller
2017-12-14 17:36:45 +01:00
committed by Commit Bot
parent 1cb9b69b7c
commit aec6842b31
2 changed files with 0 additions and 319 deletions

View File

@ -13,29 +13,15 @@
// Utilities for testing rtc infrastructure in unittests
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
#include <X11/Xlib.h>
#include <X11/extensions/Xrandr.h>
// X defines a few macros that stomp on types that gunit.h uses.
#undef None
#undef Bool
#endif
#include <algorithm>
#include <map>
#include <memory>
#include <vector>
#include "rtc_base/arraysize.h"
#include "rtc_base/asyncsocket.h"
#include "rtc_base/checks.h"
#include "rtc_base/gunit.h"
#include "rtc_base/nethelpers.h"
#include "rtc_base/pathutils.h"
#include "rtc_base/stream.h"
#include "rtc_base/stringencode.h"
#include "rtc_base/stringutils.h"
#include "rtc_base/thread.h"
namespace webrtc {
namespace testing {
@ -241,283 +227,6 @@ public:
size_t read_block_, write_block_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestClient
// Creates a simulated client for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestClient : public sigslot::has_slots<> {
public:
SocketTestClient();
SocketTestClient(AsyncSocket* socket);
SocketTestClient(const SocketAddress& address);
~SocketTestClient() override;
AsyncSocket* socket() { return socket_.get(); }
void QueueString(const char* data) { QueueData(data, strlen(data)); }
void QueueStringF(const char* format, ...) {
va_list args;
va_start(args, format);
char buffer[1024];
size_t len = vsprintfn(buffer, sizeof(buffer), format, args);
RTC_CHECK(len < sizeof(buffer) - 1);
va_end(args);
QueueData(buffer, len);
}
void QueueData(const char* data, size_t len) {
send_buffer_.insert(send_buffer_.end(), data, data + len);
if (Socket::CS_CONNECTED == socket_->GetState()) {
Flush();
}
}
std::string ReadData() {
std::string data(&recv_buffer_[0], recv_buffer_.size());
recv_buffer_.clear();
return data;
}
bool IsConnected() const {
return (Socket::CS_CONNECTED == socket_->GetState());
}
bool IsClosed() const {
return (Socket::CS_CLOSED == socket_->GetState());
}
private:
typedef std::vector<char> Buffer;
void Init(AsyncSocket* socket, int family) {
if (!socket) {
socket = Thread::Current()->socketserver()
->CreateAsyncSocket(family, SOCK_STREAM);
}
socket_.reset(socket);
socket_->SignalConnectEvent.connect(this,
&SocketTestClient::OnConnectEvent);
socket_->SignalReadEvent.connect(this, &SocketTestClient::OnReadEvent);
socket_->SignalWriteEvent.connect(this, &SocketTestClient::OnWriteEvent);
socket_->SignalCloseEvent.connect(this, &SocketTestClient::OnCloseEvent);
}
void Flush() {
size_t sent = 0;
while (sent < send_buffer_.size()) {
int result = socket_->Send(&send_buffer_[sent],
send_buffer_.size() - sent);
if (result > 0) {
sent += result;
} else {
break;
}
}
size_t new_size = send_buffer_.size() - sent;
memmove(&send_buffer_[0], &send_buffer_[sent], new_size);
send_buffer_.resize(new_size);
}
void OnConnectEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnReadEvent(AsyncSocket* socket) {
char data[64 * 1024];
int result = socket_->Recv(data, arraysize(data), nullptr);
if (result > 0) {
recv_buffer_.insert(recv_buffer_.end(), data, data + result);
}
}
void OnWriteEvent(AsyncSocket* socket) {
if (!send_buffer_.empty()) {
Flush();
}
}
void OnCloseEvent(AsyncSocket* socket, int error) {
}
std::unique_ptr<AsyncSocket> socket_;
Buffer send_buffer_, recv_buffer_;
};
///////////////////////////////////////////////////////////////////////////////
// SocketTestServer
// Creates a simulated server for testing. Works on real and virtual networks.
///////////////////////////////////////////////////////////////////////////////
class SocketTestServer : public sigslot::has_slots<> {
public:
SocketTestServer(const SocketAddress& address);
~SocketTestServer() override;
size_t size() const { return clients_.size(); }
SocketTestClient* client(size_t index) const { return clients_[index]; }
SocketTestClient* operator[](size_t index) const { return client(index); }
void clear() {
for (size_t i=0; i<clients_.size(); ++i) {
delete clients_[i];
}
clients_.clear();
}
private:
void OnReadEvent(AsyncSocket* socket) {
AsyncSocket* accepted = static_cast<AsyncSocket*>(socket_->Accept(nullptr));
if (!accepted)
return;
clients_.push_back(new SocketTestClient(accepted));
}
std::unique_ptr<AsyncSocket> socket_;
std::vector<SocketTestClient*> clients_;
};
///////////////////////////////////////////////////////////////////////////////
// Unittest predicates which are similar to STREQ, but for raw memory
///////////////////////////////////////////////////////////////////////////////
inline ::testing::AssertionResult CmpHelperMemEq(
const char* expected_expression,
const char* expected_length_expression,
const char* actual_expression,
const char* actual_length_expression,
const void* expected,
size_t expected_length,
const void* actual,
size_t actual_length) {
if ((expected_length == actual_length)
&& (0 == memcmp(expected, actual, expected_length))) {
return ::testing::AssertionSuccess();
}
::testing::Message msg;
msg << "Value of: " << actual_expression
<< " [" << actual_length_expression << "]";
if (true) { //!actual_value.Equals(actual_expression)) {
size_t buffer_size = actual_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(actual), actual_length);
msg << "\n Actual: " << buffer << " [" << actual_length << "]";
}
msg << "\nExpected: " << expected_expression
<< " [" << expected_length_expression << "]";
if (true) { //!expected_value.Equals(expected_expression)) {
size_t buffer_size = expected_length * 2 + 1;
char* buffer = STACK_ARRAY(char, buffer_size);
hex_encode(buffer, buffer_size,
reinterpret_cast<const char*>(expected), expected_length);
msg << "\nWhich is: " << buffer << " [" << expected_length << "]";
}
return AssertionFailure(msg);
}
#define EXPECT_MEMEQ(expected, expected_length, actual, actual_length) \
EXPECT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
#define ASSERT_MEMEQ(expected, expected_length, actual, actual_length) \
ASSERT_PRED_FORMAT4(::testing::CmpHelperMemEq, expected, expected_length, \
actual, actual_length)
///////////////////////////////////////////////////////////////////////////////
// Helpers for initializing constant memory with integers in a particular byte
// order
///////////////////////////////////////////////////////////////////////////////
#define BYTE_CAST(x) static_cast<uint8_t>((x)&0xFF)
// Declare a N-bit integer as a little-endian sequence of bytes
#define LE16(x) BYTE_CAST(((uint16_t)x) >> 0), BYTE_CAST(((uint16_t)x) >> 8)
#define LE32(x) \
BYTE_CAST(((uint32_t)x) >> 0), BYTE_CAST(((uint32_t)x) >> 8), \
BYTE_CAST(((uint32_t)x) >> 16), BYTE_CAST(((uint32_t)x) >> 24)
#define LE64(x) \
BYTE_CAST(((uint64_t)x) >> 0), BYTE_CAST(((uint64_t)x) >> 8), \
BYTE_CAST(((uint64_t)x) >> 16), BYTE_CAST(((uint64_t)x) >> 24), \
BYTE_CAST(((uint64_t)x) >> 32), BYTE_CAST(((uint64_t)x) >> 40), \
BYTE_CAST(((uint64_t)x) >> 48), BYTE_CAST(((uint64_t)x) >> 56)
// Declare a N-bit integer as a big-endian (Internet) sequence of bytes
#define BE16(x) BYTE_CAST(((uint16_t)x) >> 8), BYTE_CAST(((uint16_t)x) >> 0)
#define BE32(x) \
BYTE_CAST(((uint32_t)x) >> 24), BYTE_CAST(((uint32_t)x) >> 16), \
BYTE_CAST(((uint32_t)x) >> 8), BYTE_CAST(((uint32_t)x) >> 0)
#define BE64(x) \
BYTE_CAST(((uint64_t)x) >> 56), BYTE_CAST(((uint64_t)x) >> 48), \
BYTE_CAST(((uint64_t)x) >> 40), BYTE_CAST(((uint64_t)x) >> 32), \
BYTE_CAST(((uint64_t)x) >> 24), BYTE_CAST(((uint64_t)x) >> 16), \
BYTE_CAST(((uint64_t)x) >> 8), BYTE_CAST(((uint64_t)x) >> 0)
// Declare a N-bit integer as a this-endian (local machine) sequence of bytes
#ifndef BIG_ENDIAN
#define BIG_ENDIAN 1
#endif // BIG_ENDIAN
#if BIG_ENDIAN
#define TE16 BE16
#define TE32 BE32
#define TE64 BE64
#else // !BIG_ENDIAN
#define TE16 LE16
#define TE32 LE32
#define TE64 LE64
#endif // !BIG_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// Helpers for determining if X/screencasting is available (on linux).
#define MAYBE_SKIP_SCREENCAST_TEST() \
if (!testing::IsScreencastingAvailable()) { \
RTC_LOG(LS_WARNING) \
<< "Skipping test, since it doesn't have the requisite " \
<< "X environment for screen capture."; \
return; \
}
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
struct XDisplay {
XDisplay() : display_(XOpenDisplay(nullptr)) {}
~XDisplay() { if (display_) XCloseDisplay(display_); }
bool IsValid() const { return display_ != nullptr; }
operator Display*() { return display_; }
private:
Display* display_;
};
#endif
// Returns true if screencasting is available. When false, anything that uses
// screencasting features may fail.
inline bool IsScreencastingAvailable() {
#if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID)
XDisplay display;
if (!display.IsValid()) {
RTC_LOG(LS_WARNING) << "No X Display available.";
return false;
}
int ignored_int, major_version, minor_version;
if (!XRRQueryExtension(display, &ignored_int, &ignored_int) ||
!XRRQueryVersion(display, &major_version, &minor_version)) {
RTC_LOG(LS_WARNING) << "XRandr is not supported.";
return false;
}
if (major_version < 1 || (major_version < 2 && minor_version < 3)) {
RTC_LOG(LS_WARNING) << "XRandr is too old (version: " << major_version
<< "." << minor_version << "). Need 1.3 or later.";
return false;
}
#endif
return true;
}
} // namespace testing
} // namespace webrtc