Avoid precision loss in TrendlineEstimator by passing the arrival time as an int64_t instead of a double.
BUG=webrtc:6884 Committed: https://crrev.com/c12cbaf9dd0729dd45f3fc45a1938d1b3455e40a Review-Url: https://codereview.webrtc.org/2577463002 Cr-Original-Commit-Position: refs/heads/master@{#15631} Cr-Commit-Position: refs/heads/master@{#15641}
This commit is contained in:
@ -13,12 +13,14 @@
|
|||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
|
||||||
#include "webrtc/base/checks.h"
|
#include "webrtc/base/checks.h"
|
||||||
|
#include "webrtc/base/optional.h"
|
||||||
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_logging.h"
|
||||||
|
|
||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
double LinearFitSlope(const std::list<std::pair<double, double>> points) {
|
rtc::Optional<double> LinearFitSlope(
|
||||||
|
const std::list<std::pair<double, double>> points) {
|
||||||
RTC_DCHECK(points.size() >= 2);
|
RTC_DCHECK(points.size() >= 2);
|
||||||
// Compute the "center of mass".
|
// Compute the "center of mass".
|
||||||
double sum_x = 0;
|
double sum_x = 0;
|
||||||
@ -36,7 +38,9 @@ double LinearFitSlope(const std::list<std::pair<double, double>> points) {
|
|||||||
numerator += (point.first - x_avg) * (point.second - y_avg);
|
numerator += (point.first - x_avg) * (point.second - y_avg);
|
||||||
denominator += (point.first - x_avg) * (point.first - x_avg);
|
denominator += (point.first - x_avg) * (point.first - x_avg);
|
||||||
}
|
}
|
||||||
return numerator / denominator;
|
if (denominator == 0)
|
||||||
|
return rtc::Optional<double>();
|
||||||
|
return rtc::Optional<double>(numerator / denominator);
|
||||||
}
|
}
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
@ -49,6 +53,7 @@ TrendlineEstimator::TrendlineEstimator(size_t window_size,
|
|||||||
smoothing_coef_(smoothing_coef),
|
smoothing_coef_(smoothing_coef),
|
||||||
threshold_gain_(threshold_gain),
|
threshold_gain_(threshold_gain),
|
||||||
num_of_deltas_(0),
|
num_of_deltas_(0),
|
||||||
|
first_arrival_time_ms(-1),
|
||||||
accumulated_delay_(0),
|
accumulated_delay_(0),
|
||||||
smoothed_delay_(0),
|
smoothed_delay_(0),
|
||||||
delay_hist_(),
|
delay_hist_(),
|
||||||
@ -58,30 +63,35 @@ TrendlineEstimator::~TrendlineEstimator() {}
|
|||||||
|
|
||||||
void TrendlineEstimator::Update(double recv_delta_ms,
|
void TrendlineEstimator::Update(double recv_delta_ms,
|
||||||
double send_delta_ms,
|
double send_delta_ms,
|
||||||
double now_ms) {
|
int64_t arrival_time_ms) {
|
||||||
const double delta_ms = recv_delta_ms - send_delta_ms;
|
const double delta_ms = recv_delta_ms - send_delta_ms;
|
||||||
++num_of_deltas_;
|
++num_of_deltas_;
|
||||||
if (num_of_deltas_ > kDeltaCounterMax) {
|
if (num_of_deltas_ > kDeltaCounterMax)
|
||||||
num_of_deltas_ = kDeltaCounterMax;
|
num_of_deltas_ = kDeltaCounterMax;
|
||||||
}
|
if (first_arrival_time_ms == -1)
|
||||||
|
first_arrival_time_ms = arrival_time_ms;
|
||||||
|
|
||||||
// Exponential backoff filter.
|
// Exponential backoff filter.
|
||||||
accumulated_delay_ += delta_ms;
|
accumulated_delay_ += delta_ms;
|
||||||
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", now_ms, accumulated_delay_);
|
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms,
|
||||||
|
accumulated_delay_);
|
||||||
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
|
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
|
||||||
(1 - smoothing_coef_) * accumulated_delay_;
|
(1 - smoothing_coef_) * accumulated_delay_;
|
||||||
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", now_ms, smoothed_delay_);
|
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms,
|
||||||
|
smoothed_delay_);
|
||||||
|
|
||||||
// Simple linear regression.
|
// Simple linear regression.
|
||||||
delay_hist_.push_back(std::make_pair(now_ms, smoothed_delay_));
|
delay_hist_.push_back(std::make_pair(
|
||||||
if (delay_hist_.size() > window_size_) {
|
static_cast<double>(arrival_time_ms - first_arrival_time_ms),
|
||||||
|
smoothed_delay_));
|
||||||
|
if (delay_hist_.size() > window_size_)
|
||||||
delay_hist_.pop_front();
|
delay_hist_.pop_front();
|
||||||
}
|
|
||||||
if (delay_hist_.size() == window_size_) {
|
if (delay_hist_.size() == window_size_) {
|
||||||
trendline_ = LinearFitSlope(delay_hist_);
|
// Only update trendline_ if it is possible to fit a line to the data.
|
||||||
|
trendline_ = LinearFitSlope(delay_hist_).value_or(trendline_);
|
||||||
}
|
}
|
||||||
|
|
||||||
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", now_ms, trendline_);
|
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trendline_);
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace webrtc
|
} // namespace webrtc
|
||||||
|
|||||||
@ -10,11 +10,13 @@
|
|||||||
#ifndef WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
|
#ifndef WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
|
||||||
#define WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
|
#define WEBRTC_MODULES_CONGESTION_CONTROLLER_TRENDLINE_ESTIMATOR_H_
|
||||||
|
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
#include <list>
|
#include <list>
|
||||||
#include <utility>
|
#include <utility>
|
||||||
|
|
||||||
#include "webrtc/base/constructormagic.h"
|
#include "webrtc/base/constructormagic.h"
|
||||||
#include "webrtc/common_types.h"
|
|
||||||
|
|
||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
@ -33,7 +35,9 @@ class TrendlineEstimator {
|
|||||||
|
|
||||||
// Update the estimator with a new sample. The deltas should represent deltas
|
// Update the estimator with a new sample. The deltas should represent deltas
|
||||||
// between timestamp groups as defined by the InterArrival class.
|
// between timestamp groups as defined by the InterArrival class.
|
||||||
void Update(double recv_delta_ms, double send_delta_ms, double now_ms);
|
void Update(double recv_delta_ms,
|
||||||
|
double send_delta_ms,
|
||||||
|
int64_t arrival_time_ms);
|
||||||
|
|
||||||
// Returns the estimated trend k multiplied by some gain.
|
// Returns the estimated trend k multiplied by some gain.
|
||||||
// 0 < k < 1 -> the delay increases, queues are filling up
|
// 0 < k < 1 -> the delay increases, queues are filling up
|
||||||
@ -51,6 +55,8 @@ class TrendlineEstimator {
|
|||||||
const double threshold_gain_;
|
const double threshold_gain_;
|
||||||
// Used by the existing threshold.
|
// Used by the existing threshold.
|
||||||
unsigned int num_of_deltas_;
|
unsigned int num_of_deltas_;
|
||||||
|
// Keep the arrival times small by using the change from the first packet.
|
||||||
|
int64_t first_arrival_time_ms;
|
||||||
// Exponential backoff filtering.
|
// Exponential backoff filtering.
|
||||||
double accumulated_delay_;
|
double accumulated_delay_;
|
||||||
double smoothed_delay_;
|
double smoothed_delay_;
|
||||||
|
|||||||
@ -15,100 +15,59 @@
|
|||||||
namespace webrtc {
|
namespace webrtc {
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
constexpr size_t kWindowSize = 15;
|
constexpr size_t kWindowSize = 20;
|
||||||
constexpr double kSmoothing = 0.0;
|
constexpr double kSmoothing = 0.0;
|
||||||
constexpr double kGain = 1;
|
constexpr double kGain = 1;
|
||||||
constexpr int64_t kAvgTimeBetweenPackets = 10;
|
constexpr int64_t kAvgTimeBetweenPackets = 10;
|
||||||
|
constexpr size_t kPacketCount = 2 * kWindowSize + 1;
|
||||||
|
|
||||||
|
void TestEstimator(double slope, double jitter_stddev, double tolerance) {
|
||||||
|
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
||||||
|
Random random(0x1234567);
|
||||||
|
int64_t send_times[kPacketCount];
|
||||||
|
int64_t recv_times[kPacketCount];
|
||||||
|
int64_t send_start_time = random.Rand(1000000);
|
||||||
|
int64_t recv_start_time = random.Rand(1000000);
|
||||||
|
for (size_t i = 0; i < kPacketCount; ++i) {
|
||||||
|
send_times[i] = send_start_time + i * kAvgTimeBetweenPackets;
|
||||||
|
double latency = i * kAvgTimeBetweenPackets / (1 - slope);
|
||||||
|
double jitter = random.Gaussian(0, jitter_stddev);
|
||||||
|
recv_times[i] = recv_start_time + latency + jitter;
|
||||||
|
}
|
||||||
|
for (size_t i = 1; i < kPacketCount; ++i) {
|
||||||
|
double recv_delta = recv_times[i] - recv_times[i - 1];
|
||||||
|
double send_delta = send_times[i] - send_times[i - 1];
|
||||||
|
estimator.Update(recv_delta, send_delta, recv_times[i]);
|
||||||
|
if (i < kWindowSize)
|
||||||
|
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
||||||
|
else
|
||||||
|
EXPECT_NEAR(estimator.trendline_slope(), slope, tolerance);
|
||||||
|
}
|
||||||
|
}
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
|
TEST(TrendlineEstimator, PerfectLineSlopeOneHalf) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(0.5, 0, 0.001);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = 2 * send_delta;
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
if (i < kWindowSize)
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
||||||
else
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.001);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
|
TEST(TrendlineEstimator, PerfectLineSlopeMinusOne) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(-1, 0, 0.001);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = 0.5 * send_delta;
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
if (i < kWindowSize)
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
||||||
else
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.001);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(TrendlineEstimator, PerfectLineSlopeZero) {
|
TEST(TrendlineEstimator, PerfectLineSlopeZero) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(0, 0, 0.001);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = send_delta;
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
|
TEST(TrendlineEstimator, JitteryLineSlopeOneHalf) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(0.5, kAvgTimeBetweenPackets / 3.0, 0.01);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = 2 * send_delta + rand.Gaussian(0, send_delta / 3);
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
if (i < kWindowSize)
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
||||||
else
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0.5, 0.1);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
|
TEST(TrendlineEstimator, JitteryLineSlopeMinusOne) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(-1, kAvgTimeBetweenPackets / 3.0, 0.075);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = 0.5 * send_delta + rand.Gaussian(0, send_delta / 25);
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
if (i < kWindowSize)
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.001);
|
|
||||||
else
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), -1, 0.1);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(TrendlineEstimator, JitteryLineSlopeZero) {
|
TEST(TrendlineEstimator, JitteryLineSlopeZero) {
|
||||||
TrendlineEstimator estimator(kWindowSize, kSmoothing, kGain);
|
TestEstimator(0, kAvgTimeBetweenPackets / 3.0, 0.02);
|
||||||
Random rand(0x1234567);
|
|
||||||
double now_ms = rand.Rand<double>() * 10000;
|
|
||||||
for (size_t i = 1; i < 2 * kWindowSize; i++) {
|
|
||||||
double send_delta = rand.Rand<double>() * 2 * kAvgTimeBetweenPackets;
|
|
||||||
double recv_delta = send_delta + rand.Gaussian(0, send_delta / 8);
|
|
||||||
now_ms += recv_delta;
|
|
||||||
estimator.Update(recv_delta, send_delta, now_ms);
|
|
||||||
EXPECT_NEAR(estimator.trendline_slope(), 0, 0.1);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace webrtc
|
} // namespace webrtc
|
||||||
|
|||||||
Reference in New Issue
Block a user